1
|
Niu H, Wei H, Zhou X, Liu Y, Yang L, Wang Q, Luo B, Luo Q, Song F. BRD4 Induces Esophageal Squamous Cell Carcinoma Progression via the Wnt/β-catenin Pathway. Biochem Genet 2025:10.1007/s10528-025-11043-0. [PMID: 39903433 DOI: 10.1007/s10528-025-11043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
BRD4, part of the bromodomain and extra terminal domain (BET) protein family, plays a pivotal role in gene transcription, DNA replication, and repair via transcription regulators. Despite its established involvement in various human diseases, its function in esophageal squamous cell carcinoma (ESCC) has not been fully explored. Our research investigated the association of BRD4 in ESCC and its underlying molecular mechanisms. The findings revealed that BRD4 knockdown notably diminished the cells' proliferation, migration, invasion capabilities and induced apoptosis and cell cycle arrest. Conversely, overexpression of BRD4 can reverse these phenotypes. Pearson correlation and enrichment analyses indicated that BRD4 expression was associated with the cell cycle and Wnt/β-catenin signaling pathway. Further validation confirmed that reduced BRD4 expression downregulates Cyclin D1 and c-Myc, and suppresses epithelial-to-mesenchymal transition (EMT) and Wnt/β-catenin signaling pathway. Furthermore, rescue experiments showed that overexpressing c-Myc significantly mitigated the inhibitory impact of BRD4. Moreover, by employing single-cell transcriptome sequencing, we explored the impact of the tumor microenvironment on BRD4 overexpression in ESCC cells. These insights confirmed BRD4's potential as a therapeutic target, suggesting that modulating its expression could yield promising strategies for ESCC treatment.
Collapse
Affiliation(s)
- Haiyu Niu
- Department of Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Hanwen Wei
- Department of Cardiology, The First People's Hospital of Lanzhou, Lanzhou, 730050, China
| | - Xiaochun Zhou
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yating Liu
- Department of Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Luxi Yang
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Qi Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Benxin Luo
- Department of Internal Medicine, The People's Hospital of Zhouqu, Gannan, 746300, China
| | - Qingping Luo
- Department of Traditional Chinese Medicine, The People's Hospital of Zhouqu, Gannan, 746300, China
| | - Feixue Song
- Department of Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Li W, Chen M, Chen F, Li Y, Zhong Y, Lu Y, Zhang K, Yang F. Vitamin D combined with whole-body vibration training for the treatment of osteo-sarcopenia: study protocol for a randomized controlled trial. Trials 2024; 25:638. [PMID: 39350307 PMCID: PMC11440726 DOI: 10.1186/s13063-024-08498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Osteo-sarcopenia (OS) has become a global public health problem and a frontier research problem, as a combination of sarcopenia (SP) and osteoporosis (OP) diseases. The clinical performances include muscle weakness, systemic bone pain, standing difficulty, even falls and fractures, etc., which seriously affect the patient's life and work. The pathological mechanism of the OS may be the abnormal metabolism which disrupts the equilibrium stability of the musculoskeletal system. Therefore, this study combined vitamin D (Vit. D) and whole-body vibration training (WBVT) to intervene in subjects of OS, aiming to evaluate the effectiveness and safety of the diagnosis and treatment protocol and to explore the efficacy mechanism. METHODS We propose a multicenter, parallel-group clinical trial to evaluate the efficacy and safety of Vit. D combined with WBVT intervention in OS. Subjects who met the inclusion or exclusion criteria and signed the informed consent form would be randomly assigned to the WBVT group, Vit. D group, or WBVT+ Vit. D group. All subjects will be treated for 1 month and followed up after 3 and 6 months. The primary outcomes are lumbar bone mineral density (BMD) and appendicular skeletal muscle mass (ASM) measured by dual-energy X-ray absorptiometry (DXA) and handgrip strength measured by grip strength meter. Secondary outcomes include serum markers of myostatin (MSTN), irisin and bone turnover markers (BTM), SARC-CalF questionnaire, 1-min test question of osteoporosis risk, patient health status (evaluated by the SF-36 health survey), physical performance measurement that includes 5-time chair stand test, 6-m walk, and the short physical performance battery (SPPB). DISCUSSION If Vit. D combined with WBVT can well relieve OS symptoms without adverse effects, this protocol may be a new treatment strategy for OS. After therapeutic intervention, if the serum marker MSTN/irisin is significant, both have the potential to become sensitive indicators for screening OS effective drugs and treatments, which also indicates that WBVT combined with Vit. D plays a role in improving OS by regulating MSTN/irisin. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2400082269 . Registered on March 26, 2024.
Collapse
Affiliation(s)
- Wenxiong Li
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, 712083, China
| | - Menghan Chen
- Hancheng Hospital of Traditional Chinese Medicine, Hancheng, 715400, China
| | - Feifei Chen
- Baoji Hospital of Traditional Chinese Medicine, Baoji, 721001, China
| | - Yanan Li
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Zhong
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Lu
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Kuaiqiang Zhang
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, 712083, China.
| | - Feng Yang
- Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, 712083, China.
| |
Collapse
|
3
|
Yang YH, Yan F, Yuan W, Shi PS, Wu SM, Cui DJ. High-altitude hypoxia promotes BRD4-mediated activation of the Wnt/β-catenin pathway and disruption of intestinal barrier. Cell Signal 2024; 120:111187. [PMID: 38648894 DOI: 10.1016/j.cellsig.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Hypobaric hypoxia, commonly experienced at elevated altitudes, presents significant physiological challenges. Our investigation is centered on the impact of the bromodomain protein 4 (BRD4) under these conditions, especially its interaction with the Wnt/β-Catenin pathway and resultant effects on glycolytic inflammation and intestinal barrier stability. By combining transcriptome sequencing with bioinformatics, we identified BRD4's key role in hypoxia-related intestinal anomalies. Clinical parameters of altitude sickness patients, including serum BRD4 levels, inflammatory markers, and barrier integrity metrics, were scrutinized. In vitro studies using CCD 841 CoN cells depicted expression changes in BRD4, Interleukin (IL)-1β, IL-6, and β-Catenin. Transepithelial electrical resistance (TEER) and FD4 analyses assessed barrier resilience. Hypoxia-induced mouse models, analyzed via H&E staining and Western blot, provided insights into barrier and protein alterations. Under hypoxic conditions, marked BRD4 expression variations emerged. Elevated serum BRD4 in patients coincided with intensified Wnt signaling, inflammation, and barrier deterioration. In vitro, findings showed hypoxia-induced upregulation of BRD4 and inflammatory markers but a decline in Occludin and ZO1, affecting barrier strength-effects mitigated by BRD4 inhibition. Mouse models echoed these patterns, linking BRD4 upregulation in hypoxia to barrier perturbations. Hypobaric hypoxia-induced BRD4 upregulation disrupts the Wnt/β-Catenin signaling, sparking glycolysis-fueled inflammation and weakening intestinal tight junctions and barrier degradation.
Collapse
Affiliation(s)
- Yun-Han Yang
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fang Yan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Wenqiang Yuan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Peng-Shuang Shi
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shi-Min Wu
- Graduate School, Zunyi Medical University, Zunyi, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
4
|
Lin W, Hou L, Tang J, Huang A, Jia Z. Mir-195-5p targets Smad7 regulation of the Wnt/β-catenin pathway to promote osteogenic differentiation of vascular smooth muscle cells. BMC Cardiovasc Disord 2024; 24:221. [PMID: 38654161 PMCID: PMC11036659 DOI: 10.1186/s12872-024-03891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
In this study, we sought to investigate the mechanisms of action of miR-195-5p in the osteogenic differentiation of vascular smooth muscle cells (VSMCs), and thereby provide novel insights and a reference for the targeted therapy of arterial media calcification. VSMC differentiation was induced using sodium β-glycerophosphate, and we investigated the effects of transfecting cells with miR-195-5p mimics, vectors overexpressing Smad7, and the Wnt/β-catenin pathway inhibitor (KYA1797K) on VSMC differentiation by determining cell viability and apoptosis, and the mRNA and protein expression of factors associated with osteogenic differentiation and the Wnt/β-catenin pathway. The results revealed that miR-195-5p mimics enhanced the osteogenic differentiation of VSMCs induced by β-glycerophosphate, whereas the overexpression of Smad7 reversed this phenomenon. In addition, KYA1797K was found to promote the effects of Smad7 overexpression. In conclusion, by targeting, Smad7, miR-195-5p promotes the Wnt/β-catenin pathway. and thus the osteogenic differentiation of VSMCs. These findings will provide a reference for elucidating the mechanisms whereby miR-195-5p regulates osteogenic differentiation.
Collapse
Affiliation(s)
- Wei Lin
- Department of Intervention, Wen Zhou People's Hospital, Wenzhou, 325041, China
| | - Lianglei Hou
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China
| | - Jialyu Tang
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China
| | - Anwu Huang
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China
| | - Zhuyin Jia
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, 325000, China.
- Panvascular Disease Management Center (PVDMC), Wen Zhou Central Hospital, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024; 16:102-113. [PMID: 38455105 PMCID: PMC10915952 DOI: 10.4252/wjsc.v16.i2.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) originate from many sources, including the bone marrow and adipose tissue, and differentiate into various cell types, such as osteoblasts and adipocytes. Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development. Osteogenesis is the process by which new bones are formed; it also aids in bone remodeling. Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways are involved in many cellular processes and considered to be essential for life. Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body. Recent studies have indicated that these two signaling pathways contribute to osteogenic differentiation. Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway. Here, we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation, emphasizing the canonical pathways. This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch- and extracellular-regulated kinases in osteogenic differentiation and bone development.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
6
|
Wang H, Zhang H, Zhang Y, Wang P. Icariin promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by regulating USP47/SIRT1/Wnt/β-catenin. Chem Biol Drug Des 2024; 103:e14431. [PMID: 38373741 DOI: 10.1111/cbdd.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/21/2024]
Abstract
Icariin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the underlying molecular mechanism by which Icariin regulates osteogenic differentiation needs to be further revealed. The viability of BMSCs was assessed by cell counting kit 8 assay. BMSC osteogenic differentiation ability was evaluated by detecting alkaline phosphatase activity and performing alizarin red S staining. The protein levels of osteogenic differentiation-related markers, sirtuin 1 (SIRT1), ubiquitin-specific protease 47 (USP47), and Wnt/β-catenin-related markers were determined using western blot. SIRT1 mRNA level was measured using quantitative real-time PCR. The regulation of USP47 on SIRT1 was confirmed by ubiquitination detection and co-immunoprecipitation analysis. Icariin could promote BMSC osteogenic differentiation. SIRT1 expression was enhanced by Icariin, and its knockdown suppressed Icariin-induced BMSC osteogenic differentiation. Moreover, deubiquitinating enzyme USP47 could stabilize SIRT1 protein expression. Besides, SIRT1 overexpression reversed the inhibiting effect of USP47 knockdown on BMSC osteogenic differentiation, and USP47 knockdown also restrained Icariin-induced BMSC osteogenic differentiation. Additionally, Icariin enhanced the activity of the Wnt/β-catenin pathway by upregulating SIRT1. Icariin facilitated BMSC osteogenic differentiation via the USP47/SIRT1/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hongrui Wang
- Department of Orthopedics, First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongyue Zhang
- Department of Orthopedics, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuntong Zhang
- Department of Orthopedics, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Panfeng Wang
- Department of Orthopedics, First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Bao DY, Yang Y, Tong X, Qin HY. Activation of wnt/β-catenin signaling pathway down regulated osteogenic differentiation of bone marrow-derived stem cells in an anhidrotic ectodermal dysplasia patient with EDA/EDAR/EDARADD mutation. Heliyon 2024; 10:e23057. [PMID: 38169761 PMCID: PMC10758735 DOI: 10.1016/j.heliyon.2023.e23057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/29/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Objective To explore the mechanism by which the Wnt/β-catenin pathway induces osteogenic differentiation of bone marrow-derived stem cells (BMSCs) in anhidrotic ectodermal dysplasia (AED) with an Ectodysplasin A (EDA)/EDA receptor (EDAR)/EDARADD mutation. Methods An AED patient served as the AED group, whereas the other patients without AED were included in the normal group. Peripheral venous blood collected from the AED patient was subjected to whole-genome resequencing. BMSCs from the mandible of patients with AED and normal individuals were isolated and cultured in vitro. Cell proliferation assay was performed to compare the growth speed of BMSCs between the AED and normal groups. CHIR-99021, an activator of the Wnt/β-catenin pathway and XAV-939, an inhibitor, was used to manage BMSCs in an osteogenic environment in both groups. The expression of β-catenin was detected by quantitative polymerase chain reaction, while that of RUNX2 was detected by western blotting. Alizarin red was used for staining. Results A novel mutation (c.152T > A in EDA) and two known mutations (c.1109T > C in EDAR and c.27G > A in EDARADD) were identified. The growth rate in the normal group was higher than that in the AED group. In the normal group, the number and size of calcified nodes and the expression of RUNX-2 increased with CHIR-99021 treatment, which could be inhibited by XAV-939. In contrast, CHIR-99021 inhibited osteogenesis in the AED group and this effect was promoted by XAV-939. Conclusion Activation of the Wnt/β-catenin pathway downregulates osteogenesis of BMSCs in AED patients with EDA/EDAR/EDARADD gene mutations. Further investigation in more AED patients is required, given the wide range of mutations involved in AED.
Collapse
Affiliation(s)
- Dong-yu Bao
- Department of Stomatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No.30 Zhongyang Road, Nanjing, 210008, China
| | - Yun Yang
- Department of Stomatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xin Tong
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No.30 Zhongyang Road, Nanjing, 210008, China
| | - Hai-yan Qin
- Department of Stomatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing, 210008, China
| |
Collapse
|
8
|
Ning T, Guo H, Ma M, Zha Z. BRD4 facilitates osteogenic differentiation of human bone marrow mesenchymal stem cells through WNT4/NF-κB pathway. J Orthop Surg Res 2023; 18:876. [PMID: 37980502 PMCID: PMC10656925 DOI: 10.1186/s13018-023-04335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Human bone marrow mesenchymal stem cells (hBMSCs) are a major source of osteoblast precursor cells and are directly involved in osteoporosis (OP) progression. Bromodomain-containing protein 4 (BRD4) is an important regulator for osteogenic differentiation. Therefore, its role and mechanism in osteogenic differentiation process deserve further investigation. METHODS hBMSCs osteogenic differentiation was evaluated by flow cytometry, alkaline phosphatase assay and alizarin red staining. Western blot was used to test osteogenic differentiation-related proteins, BRD4 protein, WNT family members-4 (WNT4)/NF-κB-related proteins, and glycolysis-related proteins. Metabolomics techniques were used to detect metabolite changes and metabolic pathways. BRD4 and WNT4 mRNA levels were determined using quantitative real-time PCR. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to detect BRD4 and WNT4 interaction. Glycolysis ability was assessed by testing glucose uptake, lactic acid production, and ATP levels. RESULTS After successful induction of osteogenic differentiation, the expression of BRD4 was increased significantly. BRD4 knockdown inhibited hBMSCs osteogenic differentiation. Metabolomics analysis showed that BRD4 expression was related to glucose metabolism in osteogenic differentiation. Moreover, BRD4 could directly bind to the promoter of the WNT4 gene. Further experiments confirmed that recombinant WNT4 reversed the inhibition effect of BRD4 knockdown on glycolysis, and NF-κB inhibitors (Bardoxolone Methyl) overturned the suppressive effect of BRD4 knockdown on hBMSCs osteogenic differentiation. CONCLUSION BRD4 promoted hBMSCs osteogenic differentiation by inhibiting NF-κB pathway via enhancing WNT4 expression.
Collapse
Affiliation(s)
- Tao Ning
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Province, People's Republic of China
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Huihui Guo
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Mingming Ma
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Zhengang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Province, People's Republic of China.
| |
Collapse
|
9
|
Zheng Y, Shen P, Tong M, Li H, Ren C, Wu F, Li H, Yang H, Cai B, Du W, Zhao X, Yao S, Quan R. WISP2 downregulation inhibits the osteogenic differentiation of BMSCs in congenital scoliosis by regulating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2023:166783. [PMID: 37302424 DOI: 10.1016/j.bbadis.2023.166783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) are instrumental in bone development, metabolism, and marrow microenvironment homeostasis. Despite this, the relevant effects and mechanisms of BMSCs on congenital scoliosis (CS) remain undefined. Herein, it becomes our focus to reveal the corresponding effects and mechanisms implicated. METHODS BMSCs from CS patients (hereafter referred as CS-BMSCs) and healthy donors (NC-BMSCs) were observed and identified. Differentially expressed genes in BMSCs were analyzed utilizing scRNA-seq and RNA-seq profiles. The multi-differentiation potential of BMSCs following the transfection or infection was evaluated. The expression levels of factors related to osteogenic differentiation and Wnt/β-catenin pathway were further determined as appropriate. RESULTS A decreased osteogenic differentiation ability was shown in CS-BMSCs. Both the proportion of LEPR+ BMSCs and the expression level of WNT1-inducible-signaling pathway protein 2 (WISP2) were decreased in CS-BMSCs. WISP2 knockdown suppressed the osteogenic differentiation of NC-BMSCs, while WISP2 overexpression facilitated the osteogenesis of CS-BMSCs via acting on the Wnt/β-catenin pathway. CONCLUSIONS Our study collectively indicates WISP2 knockdown blocks the osteogenic differentiation of BMSCs in CS by regulating Wnt/β-catenin signaling, thus providing new insights into the aetiology of CS.
Collapse
Affiliation(s)
- Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panyang Shen
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Tong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangchao Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengqing Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanyu Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingbing Cai
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Weibin Du
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Xing Zhao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shasha Yao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Renfu Quan
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China; Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
Yin P, Xue Y. CircRNA hsa_circ_0006859 inhibits the osteogenic differentiation of BMSCs and aggravates osteoporosis by targeting miR-642b-5p/miR-483-3p and upregulating EFNA2/DOCK3. Int Immunopharmacol 2023; 116:109844. [PMID: 36764273 DOI: 10.1016/j.intimp.2023.109844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Hsa_circ_0006859 has been found as a possible biomarker for postmenopausal osteoporosis (PMOP) with an effect on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but the underlying mechanism is unclear. Bioinformatics analysis was used to identify dysregulated RNAs involved in osteoporosis based on public datasets. Function assays were used to determine the functions of hsa_circ_0006859 on cell proliferation and osteogenic differentiation in vitro. It was found that hsa_circ_0006859 was upregulated in OVX mice-derived BMSCs, but lowly expressed during osteogenic differentiation. Overexpressing hsa_circ_0006859 inhibited the cell proliferation and osteogenesis of BMSCs and hFOB 1.19 cells, vice versa. Bilateral ovariectomy (OVX) was used to induce PMOP in mice. The interactions among circ_0006859, miR-642b-5p/miR-483-3p, and EFNA2/DOCK3 were determined using the RIP assay. Silencing circ_0006859 relieved PMOP in mice. Mechanistically, circ_0006859 bound to miR-642b-5p/miR-483-3p directly, while miR-642b-5p and miR-483-3p respectively targeted EFNA2 and DOCK3. Hsa_circ_0006859 downregulated the expression of miR-642b-5p/miR-483-3p to upregulate EFNA2/DOCK3. Additionally, miR-642b-5p/miR-483-3p targeted EFNA2/DOCK3 to inhibit BMSCs osteogenic differentiation and facilitate osteoporosis progression by inactivating the Wnt signaling. In conclusion, hsa_circ_0006859 is involved in PMOP by targeting miR-642b-5p/EFNA2 and miR-483-3p/DOCK3 axes to maintain the Wnt-signaling pathway, which may be a novel possible therapeutic targets and biomarkers for PMOP.
Collapse
Affiliation(s)
- Peng Yin
- Department of Orthopaedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, China.
| | - Yuan Xue
- Department of Orthopaedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, China.
| |
Collapse
|
11
|
Lv H, Wang T, Zhai S, Hou Z, Chen S. Dynamic transcriptome changes during osteogenic differentiation of bone marrow-derived mesenchymal stem cells isolated from chicken. Front Cell Dev Biol 2022; 10:940248. [PMID: 36120570 PMCID: PMC9478182 DOI: 10.3389/fcell.2022.940248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoblasts are indispensable for skeletal growth and maintenance. Bone marrow-derived mesenchymal stem cells (BMSCs) are useful in studying osteogenesis. In this study, BMSCs isolated from White Leghorns were differentiated into osteoblasts in vitro. Cells induced for -1, 0, 1, 11, and 22 d were used for transcriptomic analyses using the HISAT2-Stringtie-DESeq2 pipeline. Weighted correlation network analysis was processed to investigate significant modules, including differentially expressed genes (DEGs), correlated with osteogenic differentiation. Gene ontology and pathway enrichment analyses of DEGs were performed to elucidate the mechanisms of osteoblast differentiation. A total of 534, 1,144, 1,077, and 337 DEGs were identified between cells induced for -1 and 0, 0 and 1, 1 and 11, and 11 and 22 d, respectively (|log2FC| > 1.0, FDR <0.05). DEGs were mainly enriched in pathways related to cell proliferation in the early stage of osteogenic differentiation and pathways, such as the TGF-β signaling pathway, in the middle and late stages of osteogenic differentiation. A protein–protein interaction network of the 87 DEGs in the MEturquoise module within top 5-%-degree value was built utilizing the STRING database. This study is the first to elucidate the transcriptomic changes in the osteogenic differentiation of BMSCs isolated from White Leghorns at different times. Our results provide insight into the dynamic transcriptome changes during BMSC differentiation into osteoblasts in chicken.
Collapse
|
12
|
Zhang J, Tong Y, Liu Y, Lin M, Xiao Y, Liu C. Mechanical loading attenuated negative effects of nucleotide analogue reverse-transcriptase inhibitor TDF on bone repair via Wnt/β-catenin pathway. Bone 2022; 161:116449. [PMID: 35605959 DOI: 10.1016/j.bone.2022.116449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Abstract
The nucleotide analog reverse-transcriptase inhibitor, tenofovir disoproxil fumarate (TDF), is widely used to treat hepatitis B virus (HBV) and human immunodeficiency virus infection (HIV). However, long-term TDF usage is associated with an increased incidence of bone loss, osteoporosis, fractures, and other adverse reactions. We investigated the effect of chronic TDF use on bone homeostasis and defect repair in mice. In vitro, TDF inhibited osteogenic differentiation and mineralization in MC3T3-E1 cells. In vivo, 8-week-old C57BL/6 female mice were treated with TDF for 38 days to simulate chronic medication. Four-point bending test and μCT showed reduced bone biomechanical properties and microarchitecture in long bones. To investigate the effects of TDF on bone defect repair, we utilized a bilateral tibial monocortical defect model. μCT showed that TDF reduced new bone mineral tissue and bone mineral density (BMD) in the defect. To verify whether mechanical stimulation may be a useful treatment to counteract the negative bone effects of TDF, controlled dynamic mechanical loading was applied to the whole tibia during the matrix deposition phase on post-surgery days (PSDs) 5 to 8. Second harmonic generation (SHG) of collagen fibers and μCT showed that the reduction of new bone volume and bone mineral density caused by TDF was reversed by mechanical loading in the defect. Immunofluorescent deep tissue imaging showed that chronic TDF treatment reduced the number of osteogenic cells and the volume of new vessels. In addition, chronic TDF treatment inhibited the expressions of periostin and β-catenin, but increased the expression of sclerostin. Both negative effects were reversed by mechanical loading. Our study provides strong evidence that chronic use of TDF exerts direct and inhibitory impacts on bone repair, but appropriate mechanical loading could reverse these adverse effects.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yanrong Tong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yao Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Fan L, Yang K, Yu R, Hui H, Wu W. circ-Iqsec1 induces bone marrow-derived mesenchymal stem cell (BMSC) osteogenic differentiation through the miR-187-3p/Satb2 signaling pathway. Arthritis Res Ther 2022; 24:273. [PMID: 36517907 PMCID: PMC9749292 DOI: 10.1186/s13075-022-02964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) are general progenitor cells of osteoblasts and adipocytes and they are characterized as a fundamental mediator for bone formation. The current research studied the molecular mechanisms underlying circRNA-regulated BMSC osteogenic differentiation. METHODS Next-generation sequencing (NGS) was employed to study abnormal circRNA and mRNA expression in BMSCs before and after osteogenic differentiation induction. Bioinformatics analysis and luciferase reporting analysis were employed to confirm correlations among miRNA, circRNA, and mRNA. RT-qPCR, ALP staining, and alizarin red staining illustrated the osteogenic differentiation ability of BMSCs. RESULTS Data showed that circ-Iqsec1 expression increased during BMSC osteogenic differentiation. circ-Iqsec1 downregulation reduced BMSC osteogenic differentiation ability. The present investigation discovered that Satb2 played a role during BMSC osteogenic differentiation. Satb2 downregulation decreased BMSC osteogenic differentiation ability. Bioinformatics and luciferase data showed that miR-187-3p linked circ-Iqsec1 and Satb2. miR-187-3p downregulation or Satb2 overexpression restored the osteogenic differentiation capability of BMSCs post silencing circ-Iqsec1 in in vivo and in vitro experiments. Satb2 upregulation restored osteogenic differentiation capability of BMSCs post miR-187-3p overexpression. CONCLUSION Taken together, our study found that circ-Iqsec1 induced BMSC osteogenic differentiation through the miR-187-3p/Satb2 signaling pathway.
Collapse
Affiliation(s)
- Lixia Fan
- grid.452402.50000 0004 1808 3430Department of Anesthesiology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan city, 250012 Shandong China
| | - Kaiyun Yang
- grid.27255.370000 0004 1761 1174Institute of Stomatology, Shandong University, 107 Wenhua West Road, Jinan city, 250012 Shandong China
| | - Ruixuan Yu
- grid.452402.50000 0004 1808 3430Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan city, 250012 China
| | - Houde Hui
- grid.452402.50000 0004 1808 3430Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan city, 250012 China
| | - Wenliang Wu
- grid.452402.50000 0004 1808 3430Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan city, 250012 China
| |
Collapse
|
14
|
PCAT6 May Be a Whistler and Checkpoint Target for Precision Therapy in Human Cancers. Cancers (Basel) 2021; 13:cancers13236101. [PMID: 34885209 PMCID: PMC8656686 DOI: 10.3390/cancers13236101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Prostate cancer-associated transcript 6 (PCAT6), as a newly discovered carcinogenic long non-coding RNA (lncRNA), is abnormally expressed in multiple diseases. With the accumulation of studies on PCAT6, we have a deeper understanding of its biological functions and mechanisms. Therefore, in this review, the various molecular mechanisms by which PCAT6 promotes multiple tumorigenesis and progression are summarized and discussed. Furthermore, its potential diagnostic, prognostic, and immunotherapeutic values are also clarified. Abstract LncRNAs are involved in the occurrence and progressions of multiple cancers. Emerging evidence has shown that PCAT6, a newly discovered carcinogenic lncRNA, is abnormally elevated in various human malignant tumors. Until now, PCAT6 has been found to sponge various miRNAs to activate the signaling pathways, which further affects tumor cell proliferation, migration, invasion, cycle, apoptosis, radioresistance, and chemoresistance. Moreover, PCAT6 has been shown to exert biological functions beyond ceRNAs. In this review, we summarize the biological characteristics of PCAT6 in a variety of human malignancies and describe the biological mechanisms by which PCAT6 can facilitate tumor progression. Finally, we discuss its diagnostic and prognostic values and clinical applications in various human malignancies.
Collapse
|
15
|
Salidroside promoted osteogenic differentiation of adipose-derived stromal cells through Wnt/β-catenin signaling pathway. J Orthop Surg Res 2021; 16:456. [PMID: 34271966 PMCID: PMC8283984 DOI: 10.1186/s13018-021-02598-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone disease causes short-term or long-term physical pain and disability. It is necessary to explore new drug for bone-related disease. This study aimed to explore the role and mechanism of Salidroside in promoting osteogenic differentiation of adipose-derived stromal cells (ADSCs). METHODS ADSCs were isolated and treated with different dose of Salidroside. Cell count kit-8 (CCK-8) assay was performed to assess the cell viability of ADSCs. Then, ALP and ARS staining were conducted to assess the early and late osteogenic capacity of ADSCs, respectively. Then, differentially expressed genes were obtained by R software. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed genes were further analyzed. The expression of OCN, COL1A1, RUNX2, WNT3A, and β-catenin were measured by real-time PCR and Western blot analysis. Last, β-catenin was silenced by small interfering RNA. RESULTS Salidroside significantly increased the ADSCs viability at a dose-response manner. Moreover, Salidroside enhanced osteogenic capacity of ADSCs, which are identified by enhanced ALP activity and calcium deposition. A total of 543 differentially expressed genes were identified between normal and Salidroside-treated ADSCs. Among these differentially expressed genes, 345 genes were upregulated and 198 genes were downregulated. Differentially expressed genes enriched in the Wnt/β-catenin signaling pathway. Western blot assay indicated that Salidroside enhanced the WNT3A and β-catenin expression. Silencing β-catenin partially reversed the promotion effects of Salidroside. PCR and Western blot results further confirmed these results. CONCLUSION Salidroside promoted osteogenic differentiation of ADSCs through Wnt/β-catenin signaling pathway.
Collapse
|