1
|
Xu L, Sun J, Guo J, Guo S, Li J, Tang Y, Liu X. Transcriptional factor KLF9 overcomes 5-fluorouracil resistance in breast cancer via PTEN-dependent regulation of aerobic glycolysis. J Chemother 2024:1-12. [PMID: 39491797 DOI: 10.1080/1120009x.2024.2421701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The emergence of resistance to 5-Fluorouracil (5-FU) is a staple in breast cancer chemotherapy. This paper delves into the role of PTEN in breast cancer resistance to 5-FU and examines the underlying molecular pathways. PTEN expression was detected in bioinformatics databases and upstream transcription factors (TFs) were identified. PTEN mRNA and protein levels, aerobic glycolysis proteins, lactate production, glucose consumption, and cell viability were measured. Binding interactions were confirmed, and cell proliferation assessed. In breast cancer cells, PTEN expression was downregulated. PTEN overexpression counteracted 5-FU resistance through the suppression of aerobic glycolysis. KLF9, as a TF upstream of PTEN, enhanced the levels of PTEN. In conclusion, the TF KLF9 inhibits the aerobic glycolysis level of breast cancer cells by up-regulating PTEN expression, thereby reducing their resistance to 5-FU. The discovery of this mechanism provides a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Liang Xu
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Jing Sun
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Junlan Guo
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Shengnan Guo
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Jiangli Li
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Yijun Tang
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| | - Xiaohui Liu
- Department of Medical Oncology, Anyang Cancer Hospital, Anyang, China
| |
Collapse
|
2
|
Chakraborty S, Banerjee S. Multidimensional computational study to understand non-coding RNA interactions in breast cancer metastasis. Sci Rep 2023; 13:15771. [PMID: 37737288 PMCID: PMC10516999 DOI: 10.1038/s41598-023-42904-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Metastasis is a major breast cancer hallmark due to which tumor cells tend to relocate to regional or distant organs from their organ of origin. This study is aimed to decipher the interaction among 113 differentially expressed genes, interacting non-coding RNAs and drugs (614 miRNAs, 220 lncRNAs and 3241 interacting drugs) associated with metastasis in breast cancer. For an extensive understanding of genetic interactions in the diseased state, a backbone gene co-expression network was constructed. Further, the mRNA-miRNA-lncRNA-drug interaction network was constructed to identify the top hub RNAs, significant cliques and topological parameters associated with differentially expressed genes. Then, the mRNAs from the top two subnetworks constructed are considered for transcription factor (TF) analysis. 39 interacting miRNAs and 1641 corresponding TFs for the eight mRNAs from the subnetworks are also utilized to construct an mRNA-miRNA-TF interaction network. TF analysis revealed two TFs (EST1 and SP1) from the cliques to be significant. TCGA expression analysis of miRNAs and lncRNAs as well as subclass-based and promoter methylation-based expression, oncoprint and survival analysis of the mRNAs are also done. Finally, functional enrichment of mRNAs is also performed. Significant cliques identified in the study can be utilized for identification of newer therapeutic interventions for breast cancer. This work will also help to gain a deeper insight into the complicated molecular intricacies to reveal the potential biomarkers involved with breast cancer progression in future.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Contreras-Rodríguez JA, Puente-Rivera J, Córdova-Esparza DM, Nuñez-Olvera SI, Silva-Cázares MB. Bioinformatic miRNA-mRNAs Analysis Revels to miR-934 as a Potential Regulator of the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer. Cells 2023; 12:cells12060834. [PMID: 36980175 PMCID: PMC10047237 DOI: 10.3390/cells12060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer and has the worst prognosis. In patients with TNBC tumors, the tumor cells have been reported to have mesenchymal features, which help them migrate and invade. Various studies on cancer have revealed the importance of microRNAs (miRNAs) in different biological processes of the cell in that aberrations, in their expression, lead to alterations and deregulations in said processes, giving rise to tumor progression and aggression. In the present work, we determined the miRNAs that are deregulated in the epithelial-mesenchymal transition process in breast cancer. We discovered that 25 miRNAs that regulate mesenchymal genes are overexpressed in patients with TNBC. We found that miRNA targets modulate different processes and pathways, such as apoptosis, FoxO signaling pathways, and Hippo. We also found that the expression level of miR-934 is specific to the molecular subtype of the triple-negative breast cancer and modulates a set of related epithelial-mesenchymal genes. We determined that miR-934 inhibition in TNBC cell lines inhibits the migratory abilities of tumor cells.
Collapse
Affiliation(s)
| | | | | | - Stephanie I Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | |
Collapse
|
4
|
Jordan-Alejandre E, Campos-Parra AD, Castro-López DL, Silva-Cázares MB. Potential miRNA Use as a Biomarker: From Breast Cancer Diagnosis to Metastasis. Cells 2023; 12:cells12040525. [PMID: 36831192 PMCID: PMC9954167 DOI: 10.3390/cells12040525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common cancer in women. Despite advances in diagnosis and prognosis, distal metastases occur in these patients in up to 15% of cases within 3 years of diagnosis. The main organs in which BC metastasises are the bones, lungs, liver, and brain. Unfortunately, 90% of metastatic patients will die, making this an incurable disease. Researchers are therefore seeking biomarkers for diagnosis and metastasis in different organs. Optimally, such biomarkers should be easy to detect using, preferably, non-invasive methods, such as using miRNA molecules, which are small molecules of about 22 nt that have as their main function the post-transcriptional regulation of genes. Furthermore, due to their uncomplicated detection and reproducibility in the laboratory, they are a tool of complementary interest for diagnosis, prognosis, and treatment. With this in mind, in this review, we focus on describing the most current studies that propose using miRNA independently as a potential biomarker for the diagnosis and prediction of brain, lung, liver, and bone metastases, as well as to open a window of opportunity to deepen this area of study to eventually use miRNAs molecules in clinical practice for the benefit of BC patients.
Collapse
Affiliation(s)
- Euclides Jordan-Alejandre
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México 03100, Mexico
| | - Alma D. Campos-Parra
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Dora Luz Castro-López
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico
| | - Macrina Beatriz Silva-Cázares
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78760, Mexico
- Correspondence:
| |
Collapse
|
5
|
Identification of m7G Methylation-Related miRNA Signature Associated with Survival and Immune Microenvironment Regulation in Uterine Corpus Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8776678. [DOI: 10.1155/2022/8776678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
Background. N7-methylguanosine (m7G) has been implicated in the development of cancer. The role of m7G-related miRNAs in the survival prediction of UCEC patients has not been investigated. Current research was the first to construct an m7G-related miRNA model to accurately predict the survival of patients with uterine corpus endometrial carcinoma (UCEC) and to explore immune cell infiltration and immune activity in the tumor microenvironment. Methods. RNA-seq data and clinical information of UCEC patients were derived from The Cancer Genome Atlas (TCGA) database. Using the TargetScan online database, we predicted miRNAs linked to the m7G-related genes and identified miRNAs which were significantly associated with the survival in UCEC patients and constructed a risk scoring model. The TCGA-UCEC cases were scored according to the risk model, and the high- and low-risk groups were divided by the median risk value. Gene enrichment analysis and immune cell infiltration and immune function analysis were performed using “clusterProfiler” and “GSVA” packages in R. Results. The survival prediction model consisted of 9 miRNAs, namely, hsa-miR-1301, hsa-miR-940, hsa-miR-592, hsa-miR-3170, hsa-miR-876, hsa-miR-215, hsa-miR-934, hsa-miR-3920, and hsa-miR-216b. Survival of UCEC patients in the high-risk group was worse than that in the low-risk group (
). The receiver operating characteristic (ROC) curve showed that the model had good predictive performance, and the area under the curve was 0.800, 0.690, and 0.705 for 1-, 3-, and 5-year survival predictions, respectively. There were differences in the degree of immune cell infiltration and immune activity between the low-risk and high-risk groups. The expression levels of the identified differentially expressed genes correlated with the susceptibility to multiple anticancer drugs. Conclusions. The survival prediction model constructed based on 9 m7G-related miRNAs had good predictive performance.
Collapse
|
6
|
Non-coding RNAs in EMT regulation: Association with tumor progression and therapy response. Eur J Pharmacol 2022; 932:175212. [DOI: 10.1016/j.ejphar.2022.175212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
|
7
|
Zhou X, Yuan G, Wu Y, Yan S, Jiang Q, Tang S. EIF4A3-induced circFIP1L1 represses miR-1253 and promotes radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci 2022; 79:357. [PMID: 35680727 PMCID: PMC11072984 DOI: 10.1007/s00018-022-04350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation is currently used to be a mainstay of salvage therapy for nasopharyngeal carcinoma (NPC), however, development of radioresistance largely limits the radiation efficacy. Circular RNAs (circRNAs) have been shown to affect NPC progression, but its role in radioresistance remain unclear. METHODS The circular structure of circFIP1L1(circ_0069740) was verified by RNA-sequencing, RT-PCR based on gDNA or cDNA, RNase R treatment, and actinomycin D treatment. Cellular localization of circFIP1L1 and miR-1253 was detected by nucleoplasmic separation and/or fluorescence in situ hybridization. Expression of non-coding RNAs and mRNAs was detected by qRT-PCR, protein expression was detected by Western blot. Functionally, EdU, CCK-8, and colony formation experiments were employed to assess cell proliferation, flow cytometry was adopted to estimate cell cycle and apoptosis. Xenograft tumor growth was performed to detect the role of circFIP1L1 in vivo. Mechanistically, we examined the interplay between miR-1253 and circFIP1L1 or EIF4A3 through dual-luciferase reporter assay. The potential regulatory impacts of EIF4A3 on circFIP1L1 or PTEN was examined by RNA immunoprecipitation and RNA pull-down assays. RESULTS CircFIP1L1 overexpression and miR-1253 knockdown repressed NPC cell proliferation, facilitated NPC cell apoptosis, and enhanced NPC radiosensitivity. Mechanistically, circFIP1L1 was revealed to repress miR-1253 by binding to it, and EIF4A3 is a target gene of miR-1253. CircFIP1L1 regulated NPC proliferation, apoptosis, and radiosensitivity through miR-1253/EIF4A3. Moreover, we found that EIF4A3 bound to FIP1L1 mRNA transcript and induced circFIP1L1 formation, and thus stabilizing PTEN mRNA. CONCLUSION Our findings suggested that EIF4A3-induced circFIP1L1 repressed NPC cell proliferation, facilitated NPC cell apoptosis, and enhanced NPC radiosensitivity by miR-1253.
Collapse
Affiliation(s)
- Xiangqi Zhou
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Guangjin Yuan
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Yangjie Wu
- Oncology Department, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Sijia Yan
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Qingshan Jiang
- Otolaryngological Department, The First Affiliated Hospital, University of South China, No 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| | - Sanyuan Tang
- Oncology Department, Affiliated Nanhua Hospital of University of South China, No 336, Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China.
| |
Collapse
|
8
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Gong X, Liu Y, Zheng C, Tian P, Peng M, Pan Y, Li X. Establishment of a 4-miRNA Prognostic Model for Risk Stratification of Patients With Pancreatic Adenocarcinoma. Front Oncol 2022; 12:827259. [PMID: 35186758 PMCID: PMC8851918 DOI: 10.3389/fonc.2022.827259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinomas (PAADs) often remain undiagnosed until later stages, limiting treatment options and leading to poor survival. The lack of robust biomarkers complicates PAAD prognosis, and patient risk stratification remains a major challenge. To address this issue, we established a panel constructed by four miRNAs (miR-4444-2, miR-934, miR-1301 and miR-3655) based on The Cancer Genome Atlas (TCGA) and Human Cancer Metastasis Database (HCMDB) to predicted the prognosis of PAAD patients. Then, a risk prediction model of these four miRNAs was constructed by using Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) regression analysis. This model stratified TCGA PAAD cohort into the low-risk and high-risk groups based on the panel-based risk score, which was significantly associated with 1-, 2-, 3-year OS (AUC=0.836, AUC=0.844, AUC=0.952, respectively). The nomogram was then established with a robust performance signature for predicting prognosis compared to clinical characteristics of pancreatic cancer (PC) patients, including age, gender and clinical stage. Moreover, two GSE data were validated the expressions of 4 miRNAs with prognosis/survival outcome in PC. In the external clinical sample validation, the high-risk group with the upregulated expressions of miR-934/miR-4444-2 and downregulated expressions of miR-1301/miR-3655 were indicated a poor prognosis. Furthermore, the cell counting kit-8 (CCK-8) assay, clone formation, transwell and wound healing assay also confirmed the promoting effect of miR-934/miR-4444-2 and the inhibiting effect of miR-1301/miR-3655 in PC cell proliferation and migration. Taken together, we identified a new 4-miRNA risk stratification model could be used in predicting prognosis in PAAD.
Collapse
Affiliation(s)
- Xun Gong
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China.,College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenglong Zheng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Peikai Tian
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Minjie Peng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| |
Collapse
|