1
|
Chen RY, Ding LJ, Liu YJ, Shi JJ, Yu J, Li CY, Lu JF, Yang GJ, Chen J. Marine Staurosporine Analogues: Activity and Target Identification in Triple-Negative Breast Cancer. Mar Drugs 2024; 22:459. [PMID: 39452867 PMCID: PMC11509616 DOI: 10.3390/md22100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression.
Collapse
Affiliation(s)
- Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Li-Jian Ding
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (R.-Y.C.); (Y.-J.L.); (J.-J.S.); (J.Y.); (C.-Y.L.); (J.-F.L.)
| |
Collapse
|
2
|
Yun BS, Yun NY, Lee JE, Go M, Jang HY, Park JE, Roh JW, Shim SS. Endometrial E-cadherin and N-cadherin Expression during the Mid-Secretory Phase of Women with Ovarian Endometrioma or Uterine Fibroids. J Pers Med 2024; 14:920. [PMID: 39338174 PMCID: PMC11433430 DOI: 10.3390/jpm14090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Endometriosis and uterine fibroids are benign conditions frequently linked to subfertility/infertility. Recent research has highlighted the importance of epithelial-mesenchymal transition between embryonic and endometrial cells in the context of embryo implantation. Additionally, the adverse endometrial environment during implantation has been proposed as a mechanism contributing to infertility in endometriosis. Nevertheless, the role of cadherin molecule alterations in relation to endometrial receptivity and embryo invasion remains a subject of controversy. METHODS We investigated the expression patterns of E-cadherin and N-cadherin in the endometria of women with ovarian endometrioma or uterine fibroids and assessed whether they differed from those of healthy women. We enrolled 17 women with ovarian endometrioma, 16 with uterine fibroids, and 6 healthy women. Endometrial tissues were obtained at the mid-secretory phase on days 19-24 of the menstrual cycle. The E-cadherin and N-cadherin mRNA and protein expression levels were measured using quantitative reverse transcriptase polymerase chain reaction and Western blot analysis, respectively. RESULTS The E-cadherin and N-cadherin mRNA expression levels were higher and lower, respectively, in the endometrium of women with ovarian endometrioma than in those of the controls. In the endometrium of women with uterine fibroids, similar patterns with higher E-cadherin and lower N-cadherin levels were observed compared with that of the controls. Protein expression showed similar patterns. CONCLUSIONS Our findings revealed higher E-cadherin expression and lower N-cadherin expression in the endometria of women with infertility-related diseases than in those of healthy women in the mid-secretory phase. This suggests a resistance to endometrial receptivity, potentially reflecting mesenchymal-epithelial transition properties.
Collapse
Affiliation(s)
- Bo Seong Yun
- Department of Obstetrics and Gynecology, CHA Ilsan Medical Center, CHA University, Goyang 10414, Republic of Korea
| | - Na Yeon Yun
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jung Eun Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Minyeon Go
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06125, Republic of Korea
| | - Hee Yeon Jang
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06125, Republic of Korea
| | - Ji Eun Park
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06125, Republic of Korea
| | - Ju-Won Roh
- Department of Obstetrics and Gynecology, CHA Ilsan Medical Center, CHA University, Goyang 10414, Republic of Korea
| | - Sung Shin Shim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
| |
Collapse
|
3
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. Current understanding of the pathogenesis of placenta accreta spectrum disorder with focus on mitochondrial function. J Obstet Gynaecol Res 2024; 50:929-940. [PMID: 38544343 DOI: 10.1111/jog.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
AIM The refinement of assisted reproductive technology, including the development of cryopreservation techniques (vitrification) and ovarian stimulation protocols, makes frozen embryo transfer (FET) an alternative to fresh ET and has contributed to the success of assisted reproductive technology. Compared with fresh ET cycles, FET cycles were associated with better in vitro fertilization outcomes; however, the occurrence of pregnancy-induced hypertension, preeclampsia, and placenta accreta spectrum (PAS) was higher in FET cycles. PAS has been increasing steadily in incidence as a life-threatening condition along with cesarean rates worldwide. In this review, we summarize the current understanding of the pathogenesis of PAS and discuss future research directions. METHODS A literature search was performed in the PubMed and Google Scholar databases. RESULTS Risk factors associated with PAS incidence include a primary defect of the decidua basalis or scar dehiscence, aberrant vascular remodeling, and abnormally invasive trophoblasts, or a combination thereof. Freezing, thawing, and hormone replacement manipulations have been shown to affect multiple cellular pathways, including cell proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and mitochondrial function. Molecules involved in abnormal migration and EMT of extravillous trophoblast cells are beginning to be identified in PAS placentas. Many of these molecules were also found to be involved in mitochondrial biogenesis and dynamics. CONCLUSION The etiology of PAS may be a multifactorial genesis with intrinsic predisposition (e.g., placental abnormalities) and certain environmental factors (e.g., defective decidua) as triggers for its development. A distinctive feature of this review is its focus on the potential factors linking mitochondrial function to PAS development.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
4
|
Zhou B, Yu G, Zhao M, Li Y, Li J, Xiang Y, Tong L, Chu X, Wang C, Song Y. The lncRNA LINC00339-encoded peptide promotes trophoblast adhesion to endometrial cells via MAPK and PI3K-Akt signaling pathways. J Assist Reprod Genet 2024; 41:493-504. [PMID: 38049704 PMCID: PMC10894799 DOI: 10.1007/s10815-023-02995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Endometrial receptivity (ER), a pivotal event for successful embryo implantation, refers to the capacity of endometrium to allow the adhesion of the trophectoderm of the blastocyst to endometrial cells. In this paper, we set to elucidate whether the peptides encoded by lncRNAs could influence trophoblast cells' adhesion to endometrial cells. METHODS WGCNA construction and bioinformatics were used to find out the ER-related lncRNAs with coding potential. Protein analysis was done by immunoblotting and immunofluorescence (IF) microscopy. CCK-8 and Calcein-AM/PI double staining assays were employed to evaluate cell viability. The effect of the peptide on trophoblast spheroids' adhesion to endometrial cells was evaluated. The RNA sequencing (RNA-seq) analysis was applied to identify downstream molecular processes. RESULTS lncRNA LINC00339 was found to be related to ER development and it had been predicted to have protein-coding potential. LINC00339 had high occupancy of ribosomes and was confirmed to encode a 49-aa peptide (named LINC00339-205-49aa). LINC00339-205-49aa could promote the attachment of JAR trophoblast spheroids to Ishikawa endometrial cells in vitro. LINC00339-205-49aa also upregulated the expression of E-cadherin in Ishikawa cells. Mechanistically, MAPK and PI3K-Akt signaling pathways were involved in the modulation of LINC00339-205-49aa, which were activated by LINC00339-205-49aa in Ishikawa cells. CONCLUSION These data demonstrate that a previously uncharacterized peptide encoded by lncRNA LINC00339 has the ability to enhance JAR trophoblast spheroids' adhesion to Ishikawa endometrial cells, highlighting a new opportunity for the development of drugs to improve ER.
Collapse
Affiliation(s)
- Bo Zhou
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, People's Republic of China
| | - Guo Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Mingqi Zhao
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Jing Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Lili Tong
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Xiying Chu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Caiyi Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
5
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
6
|
Jiménez-Salazar JE, Rivera-Escobar RM, Damián-Ferrara R, Maldonado-Cubas J, Rincón-Pérez C, Tarragó-Castellanos R, Damián-Matsumura P. Estradiol-Induced Epithelial to Mesenchymal Transition and Migration Are Inhibited by Blocking c-Src Kinase in Breast Cancer Cell Lines. J Breast Cancer 2023; 26:446-460. [PMID: 37704382 PMCID: PMC10625871 DOI: 10.4048/jbc.2023.26.e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE The epithelial-to-mesenchymal transition (EMT) is the main event that favors cell migration and metastasis in breast cancer. Previously, we demonstrated that 1 nM estradiol (E2) promotes EMT, induced by c-Src kinase, causing changes in the localization of proteins that compose the tight junction (TJ) and adherens junction (AJ). METHODS The present work highlights the central role of c-Src in the initiation of metastasis, induced by E2, through increasing the ability of MCF-7 and T47-D cells, which express estrogen receptor alpha (ERα), to migrate and invade before they become metastatic. RESULTS Treatment with E2 can activate two signaling pathways, the first one by the phosphorylated c-Src (p-Src) which forms the p-Src/E-cadherin complex. This phenomenon was completely prevented by incubation with a selective inhibitor of c-Src (5 µM PP2). p-Src then promotes the downregulation of E-cadherin and occludin, which are epithelial phenotype marker proteins of the AJ and TJ, respectively. In the second pathway, E2 binds to ERα, creating a complex that translocates to the nucleus, inducing the synthesis of SNAIL1 and N-cadherin proteins, markers of the mesenchymal phenotype. Both processes increased the migratory and invasive capacities of both cell lines. CONCLUSION The present study demonstrate that E2 enhance EMT and migration, through c-Src activation, in human breast cancer cells that express ERα and become potential therapeutic targets.
Collapse
Affiliation(s)
- Javier E Jiménez-Salazar
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional (SEDENA), Mexico City, México
| | - Rene M Rivera-Escobar
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México
| | - Rebeca Damián-Ferrara
- Monterrey Institute of Technology and Higher Education (ITESM), School of Engineering and Sciences, Monterrey, México
| | | | - Catalina Rincón-Pérez
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional (SEDENA), Mexico City, México
| | - Rosario Tarragó-Castellanos
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México
| | - Pablo Damián-Matsumura
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México.
| |
Collapse
|
7
|
Pal U, Manjegowda MC, Singh N, Saikia S, Philip BS, Jyoti Kalita D, Kumar Rai A, Sarma A, Raphael V, Modi D, Chandra Kataki A, Mukund Limaye A. The G-protein-coupled estrogen receptor, a gene co-expressed with ERα in breast tumors, is regulated by estrogen-ERα signalling in ERα positive breast cancer cells. Gene 2023:147548. [PMID: 37279863 DOI: 10.1016/j.gene.2023.147548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/21/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
GPER is a seven transmembrane G-protein-coupled estrogen receptor that mediates rapid estrogen actions. Large volumes of data have revealed its association with clinicopathological variables in breast tumors, role in epidermal growth factor (EGF)-like effects of estrogen, potential as a therapeutic target or a prognostic marker, and involvement in endocrine resistance in the face of tamoxifen agonism. GPER cross-talks with estrogen receptor alpha (ERα) in cell culture models implicating its role the physiology of normal or transformed mammary epithelial cells. However, discrepancies in the literature have obfuscated the nature of their relationship, its significance, and the underlying mechanism. The purpose of this study was to assess the relationship between GPER, and ERα in breast tumors, to understand the mechanistic basis, and to gauge its clinical significance. We mined The Cancer Genome Atlas (TCGA)-BRCA data to examine the relationship between GPER and ERα expression. GPER mRNA, and protein expression were analyzed in ERα-positive or -negative breast tumors from two independent cohorts using immunohistochemistry, western blotting, or RT-qPCR. The Kaplan-Meier Plotter (KM) was employed for survival analysis. The influence of estrogen in vivo was studied by examining GPER expression levels in estrus or diestrus mouse mammary tissues, and the impact of 17β-estradiol (E2) administration in juvenile or adult mice. The effect of E2, or propylpyrazoletriol (PPT, an ERα agonist) stimulation on GPER expression was studied in MCF-7 and T47D cells, with or without tamoxifen or ERα knockdown. ERα-binding to the GPER locus was explored by analysing ChIP-seq data (ERP000380), in silico prediction of estrogen response elements, and chromatin immunoprecipitation (ChIP) assay. Clinical data revealed significant positive association between GPER and ERα expression in breast tumors. The median GPER expression in ERα-positive tumors was significantly higher than ERα-negative tumors. High GPER expression was significantly associated with longer overall survival (OS) of patients with ERα-positive tumors. In vivo experiments showed a positive effect of E2 on GPER expression. E2 induced GPER expression in MCF-7 and T47D cells; an effect mimicked by PPT. Tamoxifen or ERα-knockdown blocked the induction of GPER. Estrogen-mediated induction was associated with increased ERα occupancy in the upstream region of GPER. Furthermore, treatment with 17β-estradiol or PPT significantly reduced the IC50 of the GPER agonist (G1)-mediated loss of MCF-7 or T47D cell viability. In conclusion, GPER is positively associated with ERα in breast tumors, and induced by estrogen-ERα signalling axis. Estrogen-mediated induction of GPER makes the cells more responsive to GPER ligands. More in-depth studies are warranted to establish the significance of GPER-ERα co-expression, and their interplay in breast tumor development, progression, and treatment.
Collapse
Affiliation(s)
- Uttariya Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohan C Manjegowda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai 400012, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Betty S Philip
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences, Shillong 793018, Meghalaya, India
| | - Deep Jyoti Kalita
- Department of Surgical Oncology, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Avdhesh Kumar Rai
- DBT Centre for Molecular Biology and Cancer Research, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Anupam Sarma
- Department of Oncopathology, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Vandana Raphael
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences, Shillong 793018, Meghalaya, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai 400012, India
| | - Amal Chandra Kataki
- Department of Gynecologic Oncology, Dr. Bhubaneshwar Borooah Cancer Institute, Guwahati 781016, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Singh N, Singh D, Bhide A, Sharma R, Bhowmick S, Patel V, Modi D. LHX2 in germ cells control tubular organization in the developing mouse testis. Exp Cell Res 2023; 425:113511. [PMID: 36796745 DOI: 10.1016/j.yexcr.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
In the gonads of mammalian XY embryos, the organization of cords is the hallmark of testis development. This organization is thought to be controlled by interactions of the Sertoli cells, endothelial and interstitial cells with little or no role of germ cells. Challenging this notion, herein we show that the germ cells play an active role in the organization of the testicular tubules. We observed that the LIM-homeobox gene, Lhx2 is expressed in the germ cells of the developing testis between E12.5-E15.5. In Lhx2 knockout-fetal testis there was altered expression of several genes not just in germ cells but also in the supporting (Sertoli) cells, endothelial cells, and interstitial cells. Further, loss of Lhx2 led to disrupted endothelial cell migration and expansion of interstitial cells in the XY gonads. The cords in the developing testis of Lhx2 knockout embryos are disorganized with a disrupted basement membrane. Together, our results show an important role of Lhx2 in testicular development and imply the involvement of germ cells in the tubular organization of the differentiating testis. The preprint version of this manuscript is available at https://doi.org/10.1101/2022.12.29.522214.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Shilpa Bhowmick
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
9
|
Wang J, Shen Y, Wang X, Zhou Z, Zhong Z, Gu T, Wu B. Long non-coding RNA AL137789.1 promoted malignant biological behaviors and immune escape of pancreatic carcinoma cells. Open Med (Wars) 2023; 18:20230661. [PMID: 37020523 PMCID: PMC10068751 DOI: 10.1515/med-2023-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 04/07/2023] Open
Abstract
Our pre-investigation has revealed that long non-coding RNA (LncRNA) AL137789.1 has the potential to predict the survival of patients with pancreatic carcinoma (PCa). Accordingly, the mechanism underlying the implication of AL137789.1 in PCa is covered in the current study. The non-tumor and paired tumor tissues were collected. Kaplan-Meier curve was employed to estimate the survival of PCa patients with high or low expression of AL137789.1. The proliferation, migration, invasion, and cell cycle of PCa cells were determined, and the cytotoxicity of CD8+ T cells was evaluated as well. Levels of AL137789.1, E-cadherin, N-cadherin, and Vimentin were quantified. According to the experimental results, AL137789.1 was highly expressed in PCa and related to a poor prognosis of patients. Overexpressed AL137789.1 enhanced the proliferation, migration, and invasion of PCa cells, increased the cell population at G2/M and S phases yet decreased that in G0/G1 phase, and diminished the cytotoxicity of CD8+ T cells. Also, overexpressed AL137789.1 elevated levels of N-cadherin and Vimentin, while lessening E-cadherin levels. However, the silencing of AL137789.1 produced contrary effects. Collectively, lncRNA AL137789.1 plays a tumor-promotive role in PCa by enhancing the progression and immune escape.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhongcheng Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Tianyuan Gu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, No.
397, Huancheng North Road, Jiaxing 314000, Zhejiang Province, China
| |
Collapse
|
10
|
Sharma K, Uraji J, Ammar OF, Ali ZE, Liperis G, Modi D, Ojosnegros S, Shahbazi MN, Fraire-Zamora JJ. #ESHREjc report: renewing the old: novel stem cell research for unsolved ART problems. Hum Reprod 2022; 37:2224-2227. [PMID: 35881064 DOI: 10.1093/humrep/deac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kashish Sharma
- ART Fertility Clinics LLC, Abu Dhabi, United Arab Emirates
| | - Julia Uraji
- IVF Laboratory, MVZ TFP Düsseldorf, Düsseldorf, Germany
| | - Omar Farhan Ammar
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Zoya E Ali
- Research & Development Department, Hertility Health Limited, London, UK
| | - George Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | | | | |
Collapse
|
11
|
Singh N, Singh D, Bhide A, Sharma R, Sahoo S, Jolly MK, Modi D. Lhx2 in germ cells suppresses endothelial cell migration in the developing ovary. Exp Cell Res 2022; 415:113108. [PMID: 35337816 DOI: 10.1016/j.yexcr.2022.113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
LIM-homeobox genes play multiple roles in developmental processes, but their roles in gonad development are not completely understood. Herein, we report that Lhx2, Ils2, Lmx1a, and Lmx1b are expressed in a sexually dimorphic manner in mouse, rat, and human gonads during sex determination. Amongst these, Lhx2 has female biased expression in the developing gonads of species with environmental and genetic modes of sex determination. Single-cell RNAseq analysis revealed that Lhx2 is exclusively expressed in the germ cells of the developing mouse ovaries. To elucidate the roles of Lhx2 in the germ cells, we analyzed the phenotypes of Lhx2 knockout XX gonads. While the gonads developed appropriately in Lhx2 knockout mice and the somatic cells were correctly specified in the developing ovaries, transcriptome analysis revealed enrichment of genes in the angiogenesis pathway. There was an elevated expression of several pro-angiogenic factors in the Lhx2 knockout ovaries. The elevated expression of pro-angiogenic factors was associated with an increase in numbers of endothelial cells in the Lhx2-/- ovaries at E13.5. Gonad recombination assays revealed that the increased numbers of endothelial cells in the XX gonads in absence of Lhx2 was due to ectopic migration of endothelial cells in a cell non-autonomous manner. We also found that, there was increased expression of several endothelial cell-enriched male-biased genes in Lhx2 knockout ovaries. Also, in absence of Lhx2, the migrated endothelial cells formed an angiogenic network similar to that of the wild type testis, although the coelomic blood vessel did not form. Together, our results suggest that Lhx2 in the germ cells is required to suppress vascularization in the developing ovary. These results suggest a need to explore the roles of germ cells in the control of vascularization in developing gonads. Preprint version of the article is available on BioRxiv at https://doi.org/10.1101/2022.03.07.483280.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Sarthak Sahoo
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|