1
|
Bilgiç S, Aktaş İ, Yahyazadeh A. Protection of lutein against the neurotoxicity of cisplatin in the rat brain. Tissue Cell 2024; 91:102609. [PMID: 39561514 DOI: 10.1016/j.tice.2024.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
One of the biggest problems of cancer treatment is the harmful effects of these drugs on the healthy tissues and organs of the organism. Our study aims to determine the possible protective effects of Lutein (L) against the toxicity of the pharmacological substance Cisplatin (CS), which is used in the treatment of cancer, in the brain of rats, through biochemical and histopathological tests. In our study, lutein (L) (100 mg/kg, orally) was administered for brain toxicity caused by CS (10 mg/kg, intraperitoneal (i.p.)). The study was completed in 7 days with a total of 28 rats from 4 groups, each consisting of 7 subjects. Control, L, CS and CS + L. A decrease in MDA level and an increase in CAT, GSH and SOD levels were observed in the CS + L group compared to the CS group. In histopathological examinations, no significant pathological changes were detected in the cerebrum, while degeneration in Purkinje cells and apoptosis in neurons in the molecular and granular layers in the cerebellum were detected. It is understood from the study that L alleviates the results of oxidative stress, increases antioxidant functions and positively supports brain functions. It also demonstrates the ability of L to prevent CS-induced brain damage. Ultimately, L appears to be a applicable pharmacological agent in this damage.
Collapse
Affiliation(s)
- Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| | - İbrahim Aktaş
- Adıyaman University, Department of Pharmacology, Vocational School of Health Services, Adıyaman, Turkey.
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
2
|
Vanzan DF, Goma EP, Locatelli FR, Honorio TDS, Furtado PDS, Rodrigues CR, de Sousa VP, Mata dos Santos HA, do Carmo FA, Simon A, Pyrrho ADS, Ribeiro AJ, Cabral LM. Evaluation of Silybin Nanoparticles against Liver Damage in Murine Schistosomiasis mansoni Infection. Pharmaceutics 2024; 16:618. [PMID: 38794280 PMCID: PMC11125168 DOI: 10.3390/pharmaceutics16050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic acid and polymeric nanoparticles (PN-SIB) as delivery systems for SIB. The efficacy of these nanosystems was assessed through in vitro studies using the GRX and Caco-2 cell lines for permeability and proliferation assays, respectively, as well as in vivo experiments employing a murine model of Schistosomiasis mansoni infection in BALB/c mice. The mean diameter and encapsulation efficiency of the nanosystems were as follows: SLN-SIB (252.8 ± 4.4 nm, 90.28 ± 2.2%), SLN-SIB-U (252.9 ± 14.4 nm, 77.05 ± 2.8%), and PN-SIB (241.8 ± 4.1 nm, 98.0 ± 0.2%). In the proliferation assay with the GRX cell line, SLN-SIB and SLN-SIB-U exhibited inhibitory effects of 43.09 ± 5.74% and 38.78 ± 3.78%, respectively, compared to PN-SIB, which showed no inhibitory effect. Moreover, SLN-SIB-U demonstrated a greater apparent permeability coefficient (25.82 ± 2.2) than PN-SIB (20.76 ± 0.1), which was twice as high as that of SLN-SIB (11.32 ± 4.6) and pure SIB (11.28 ± 0.2). These findings suggest that solid lipid nanosystems hold promise for further in vivo investigations. In the murine model of acute-phase Schistosomiasis mansoni infection, both SLN-SIB and SLN-SIB-U displayed hepatoprotective effects, as evidenced by lower alanine amino transferase values (22.89 ± 1.6 and 23.93 ± 2.4 U/L, respectively) than those in control groups I (29.55 ± 0.7 U/L) and I+SIB (34.29 ± 0.3 U/L). Among the prepared nanosystems, SLN-SIB-U emerges as a promising candidate for enhancing the pharmacokinetic properties of SIB.
Collapse
Affiliation(s)
- Daniel Figueiredo Vanzan
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ester Puna Goma
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Fernanda Resende Locatelli
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Thiago da Silva Honorio
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Priscila de Souza Furtado
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Hilton Antônio Mata dos Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Flávia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| | - Alexandre dos Santos Pyrrho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Group Genetics of Cognitive Dysfunction, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4169-007 Porto, Portugal
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.F.V.); (F.A.d.C.)
| |
Collapse
|
3
|
Deng J, Qin L, Qin S, Wu R, Huang G, Fang Y, Huang L, Zhou Z. NcRNA Regulated Pyroptosis in Liver Diseases and Traditional Chinese Medicine Intervention: A Narrative Review. J Inflamm Res 2024; 17:2073-2088. [PMID: 38585470 PMCID: PMC10999193 DOI: 10.2147/jir.s448723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Pyroptosis is a novel pro-inflammatory mode of programmed cell death that differs from ferroptosis, necrosis, and apoptosis in terms of its onset and regulatory mechanisms. Pyroptosis is dependent on cysteine aspartate protein hydrolase (caspase)-mediated activation of GSDMD, NLRP3, and the release of pro-inflammatory cytokines, interleukin-1 (IL-1β), and interleukin-18 (IL-18), ultimately leading to cell death. Non-coding RNA (ncRNA) is a type of RNA that does not encode proteins in gene transcription but plays an important regulatory role in other post-transcriptional links. NcRNA mediates pyroptosis by regulating various related pyroptosis factors, which we termed the pyroptosis signaling pathway. Previous researches have manifested that pyroptosis is closely related to the development of liver diseases, and is essential for liver injury, alcoholic fatty liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. In this review, we attempt to address the role of the ncRNA-mediated pyroptosis pathway in the above liver diseases and their pathogenesis in recent years, and briefly outline that TCM (Traditional Chinese Medicine) intervene in liver diseases by modulating ncRNA-mediated pyroptosis, which will provide a strategy to find new therapeutic targets for the prevention and treatment of liver diseases in the future.
Collapse
Affiliation(s)
- Jiasheng Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Le Qin
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Sulang Qin
- School of Graduate Studies, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Ruisheng Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Guidong Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Yibin Fang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Lanlan Huang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Zhipin Zhou
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| |
Collapse
|
4
|
Aktaş İ, Gur FM, Bilgiç S. Protective effect of misoprostol against paclitaxel-induced cardiac damage in rats. Prostaglandins Other Lipid Mediat 2024; 171:106813. [PMID: 38253234 DOI: 10.1016/j.prostaglandins.2024.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVE One of the most critical reasons for limiting cancer treatment is the toxic effects of anti-cancer drugs on healthy tissues and organs. This study aims to investigate the possible protective effects of misoprostol (MS) against the damage that arises from paclitaxel (PT), an anti-cancer pharmacological agent, in the rat heart using histopathological and biochemical analyses. METHODS In this study, four groups, each containing seven animals, were formed by random selection from 28 Sprague Dawley female rats. Control group rats were administered 1 ml of normal saline orally and intraperitoneally (i.p.) for six days. While the PT group rats were administered PT at a dose of 2 mg/kg intraperitoneally (i.p.) on days 0, 2, 4, and 6, the MS group was administered MS at a dose of 0.2 mg/kg in 1 ml normal saline by oral gavage for six days. PT and MS were administered to the PT + MS group rats in the same dose and route as the previous groups. RESULTS Administration of PT increased serum lactate dehydrogenase (LDH), cardiac troponin I (cTn-I), creatine kinase isoenzyme MB (CK-MB), and brain natriuretic peptide (BNP) levels. PT administration also decreased the levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in the heart tissue while increasing the level of malondialdehyde (MDA) (p < 0.05). In histopathological examinations, pathological changes, such as edema, congestion, hemorrhage, apoptosis, and degeneration, occurred in the heart tissue of PT-treated rats. The negative changes in histopathological and biochemical parameters that occurred in the PT group were almost not observed in the PT + MS group (p < 0.005). CONCLUSION When the findings were evaluated, it was concluded that MS protects the heart tissue from the harmful effects of PT, probably due to its antioxidant, anti-apoptotic and TNF-alpha suppressive effects.
Collapse
Affiliation(s)
- İbrahim Aktaş
- Adıyaman University, Department of Pharmacology, Vocational School of Health Services, Adıyaman, Turkey
| | - Fatih Mehmet Gur
- Niğde Ömer Halisdemir University, Department of Histology and Embryology, Faculty of Medicine, Nigde, Turkey
| | - Sedat Bilgiç
- Adıyaman University, Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman, Turkey.
| |
Collapse
|
5
|
Surai PF, Surai A, Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants (Basel) 2024; 13:98. [PMID: 38247522 PMCID: PMC10812610 DOI: 10.3390/antiox13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Faculty of Technology of Grain and Grain Business, Odessa National Technological University, 65039 Odessa, Ukraine
| | | | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK
| |
Collapse
|
6
|
Hădărugă NG, Gârban Z, Baltă C, Muselin F, Hădărugă DI, Riviş M. Beneficial Effects of Resveratrol and γ-Cyclodextrin on the Hematological and Biochemical Parameters of Healthy Wistar Rats Treated with Cisplatin: A PCA Approach. Biomedicines 2023; 11:2726. [PMID: 37893100 PMCID: PMC10604837 DOI: 10.3390/biomedicines11102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
It is well known that platinum-based antineoplastic agents, including cisplatin (CP), have side effects that limit their use. Nefrotoxicity, neurotoxicity, and hemolytic anemia are the most common side effects. There are few studies on the reduction in these effects that involves nanoencapsulation; however, almost none involve cyclodextrins (CDs). Changes in the hematological and biochemical parameters of healthy Wistar rats treated with solutions of γ-cyclodextrin/resveratrol/cisplatin (γ-CD/Rv/CP) ternary complexes are investigated for the first time. They are intraperitoneally injected with γ-CD/Rv/CP solutions containing 5 mg CP/kg.b.w. Single shots were administered to six groups of Wistar rats (six individuals for every group) using γ-CD/Rv/CP, γ-CD/CP, γ-CD/Rv complexes, as well as positive- and negative-control groups, respectively. Thirty-two hematological and biochemical parameters were evaluated from blood samples and used as input variables for the principal component analysis (PCA) discrimination of the groups. The best protection was obtained for the γ-CD/Rv/CP ternary complex, which determined closer biochemical values to the control group. These values significantly differ from those of the γ-CD/CP treated group, especially for the IP, UA, and T-Pro kidney-related biochemical parameters. This finding proves the beneficial influence of Rv during CP administration through CD-based carriers.
Collapse
Affiliation(s)
- Nicoleta-Gabriela Hădărugă
- Department of Food Science, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Zeno Gârban
- Working Group for Xenobiochemistry, Romanian Academy—Timisoara Branch, Mihai Viteazu Bd. 24, 300223 Timisoara, Romania;
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University, Liviu Rebreanu 86, 310414 Arad, Romania;
| | - Florin Muselin
- Department of Toxicology and Toxicoses, Plant Biology and Medicinal Plants, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Daniel-Ioan Hădărugă
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania;
| | - Mircea Riviş
- Department of Anesthesiology and Oral Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania;
| |
Collapse
|