1
|
Hu Y, Mohsenzadeh Y. Neural processing of naturalistic audiovisual events in space and time. Commun Biol 2025; 8:110. [PMID: 39843939 PMCID: PMC11754444 DOI: 10.1038/s42003-024-07434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Our brain seamlessly integrates distinct sensory information to form a coherent percept. However, when real-world audiovisual events are perceived, the specific brain regions and timings for processing different levels of information remain less investigated. To address that, we curated naturalistic videos and recorded functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data when participants viewed videos with accompanying sounds. Our findings reveal early asymmetrical cross-modal interaction, with acoustic information represented in both early visual and auditory regions, while visual information only identified in visual cortices. The visual and auditory features were processed with similar onset but different temporal dynamics. High-level categorical and semantic information emerged in multisensory association areas later in time, indicating late cross-modal integration and its distinct role in converging conceptual information. Comparing neural representations to a two-branch deep neural network model highlighted the necessity of early cross-modal connections to build a biologically plausible model of audiovisual perception. With EEG-fMRI fusion, we provided a spatiotemporally resolved account of neural activity during the processing of naturalistic audiovisual stimuli.
Collapse
Affiliation(s)
- Yu Hu
- Western Institute for Neuroscience, Western University, London, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Yalda Mohsenzadeh
- Western Institute for Neuroscience, Western University, London, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
- Department of Computer Science, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Butz MV, Mittenbühler M, Schwöbel S, Achimova A, Gumbsch C, Otte S, Kiebel S. Contextualizing predictive minds. Neurosci Biobehav Rev 2025; 168:105948. [PMID: 39580009 DOI: 10.1016/j.neubiorev.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The structure of human memory seems to be optimized for efficient prediction, planning, and behavior. We propose that these capacities rely on a tripartite structure of memory that includes concepts, events, and contexts-three layers that constitute the mental world model. We suggest that the mechanism that critically increases adaptivity and flexibility is the tendency to contextualize. This tendency promotes local, context-encoding abstractions, which focus event- and concept-based planning and inference processes on the task and situation at hand. As a result, cognitive contextualization offers a solution to the frame problem-the need to select relevant features of the environment from the rich stream of sensorimotor signals. We draw evidence for our proposal from developmental psychology and neuroscience. Adopting a computational stance, we present evidence from cognitive modeling research which suggests that context sensitivity is a feature that is critical for maximizing the efficiency of cognitive processes. Finally, we turn to recent deep-learning architectures which independently demonstrate how context-sensitive memory can emerge in a self-organized learning system constrained by cognitively-inspired inductive biases.
Collapse
Affiliation(s)
- Martin V Butz
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany.
| | - Maximilian Mittenbühler
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Sarah Schwöbel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| | - Asya Achimova
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Christian Gumbsch
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, TU Dresden, Dresden 01069, Germany
| | - Sebastian Otte
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Adaptive AI Lab, Institute of Robotics and Cognitive Systems, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Stefan Kiebel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| |
Collapse
|
3
|
Hussain A, Walbrin J, Tochadse M, Almeida J. Primary manipulation knowledge of objects is associated with the functional coupling of pMTG and aIPS. Neuropsychologia 2024; 205:109034. [PMID: 39536937 DOI: 10.1016/j.neuropsychologia.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Correctly using hand-held tools and manipulable objects typically relies not only on sensory and motor-related processes, but also centrally on conceptual knowledge about how objects are typically used (e.g. grasping the handle of a kitchen knife rather than the blade avoids injury). A wealth of fMRI connectivity-related evidence demonstrates that contributions from both ventral and dorsal stream areas are important for accurate tool knowledge and use. Here, we investigate the combined role of ventral and dorsal stream areas in representing "primary" manipulation knowledge - that is, knowledge that is hypothesized to be of central importance for day-to-day object use. We operationalize primary manipulation knowledge by extracting the first dimension from a multi-dimensional scaling solution over a behavioral judgement task where subjects arranged a set of 80 manipulable objects based on their overall manipulation similarity. We then relate this dimension to representational and time-course correlations between ventral and dorsal stream areas. Our results show that functional coupling between posterior middle temporal gyrus (pMTG) and anterior intraparietal sulcus (aIPS) is uniquely related to primary manipulation knowledge about objects, and that this effect is more pronounced for objects that require precision grasping. We reason this is due to precision-grasp objects requiring more ventral/temporal information relating to object shape, material and function to allow correct finger placement and controlled manipulation. These results demonstrate the importance of functional coupling across these ventral and dorsal stream areas in service of manipulation knowledge and accurate grasp-related behavior.
Collapse
Affiliation(s)
- Akbar Hussain
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Department of Cognitive Sciences, University of California, Irvine, California 92697-5100, USA
| | - Jon Walbrin
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Marija Tochadse
- Charité - Universitätsmedizin Berlin (Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| |
Collapse
|
4
|
Vaziri-Pashkam M. Two "What" Networks in the Human Brain. J Cogn Neurosci 2024; 36:2584-2593. [PMID: 39106174 DOI: 10.1162/jocn_a_02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Ungerleider and Mishkin, in their influential work that relied on detailed anatomical and ablation studies, suggested that visual information is processed along two distinct pathways: the dorsal "where" pathway, primarily responsible for spatial vision, and the ventral "what" pathway, dedicated to object vision. This strict division of labor has faced challenges in light of compelling evidence revealing robust shape and object selectivity within the putative "where" pathway. This article reviews evidence that supports the presence of shape selectivity in the dorsal pathway. A comparative examination of dorsal and ventral object representations in terms of invariance, task dependency, and representational content reveals similarities and differences between the two pathways. Both exhibit some level of tolerance to image transformations and are influenced by tasks, but responses in the dorsal pathway show weaker tolerance and stronger task modulations than those in the ventral pathway. Furthermore, an examination of their representational content highlights a divergence between the responses in the two pathways, suggesting that they are sensitive to distinct features of objects. Collectively, these findings suggest that two networks exist in the human brain for processing object shapes, one in the dorsal and another in the ventral visual cortex. These studies lay the foundation for future research aimed at revealing the precise roles the two "what" networks play in our ability to understand and interact with objects.
Collapse
|
5
|
Baker C, Kravitz D. Insights from the Evolving Model of Two Cortical Visual Pathways. J Cogn Neurosci 2024; 36:2568-2579. [PMID: 38820560 PMCID: PMC11602006 DOI: 10.1162/jocn_a_02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The two cortical visual pathways framework has had a profound influence on theories and empirical studies of the visual system for over 40 years. By grounding physiological responses and behavior in neuroanatomy, the framework provided a critical guide for understanding vision. Although the framework has evolved over time, as our understanding of the physiology and neuroanatomy expanded, cortical visual processing is still often conceptualized as two separate pathways emerging from the primary visual cortex that support distinct behaviors ("what" vs. "where/how"). Here, we take a historical perspective and review the continuing evolution of the framework, discussing key and often overlooked insights. Rather than a functional and neuroanatomical bifurcation into two independent serial, hierarchical pathways, the current evidence points to two highly recurrent heterarchies with heterogeneous connections to cortical regions and subcortical structures that flexibly support a wide variety of behaviors. Although many of the simplifying assumptions of the framework are belied by the evidence gathered since its initial proposal, the core insight of grounding function and behavior in neuroanatomy remains fundamental. Given this perspective, we highlight critical open questions and the need for a better understanding of neuroanatomy, particularly in the human.
Collapse
Affiliation(s)
| | - Dwight Kravitz
- The George Washington University
- National Science Foundation
| |
Collapse
|
6
|
Britt N, Sun HJ. Spatial attention in three-dimensional space: A meta-analysis for the near advantage in target detection and localization. Neurosci Biobehav Rev 2024; 165:105869. [PMID: 39214342 DOI: 10.1016/j.neubiorev.2024.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Studies have explored how human spatial attention appears allocated in three-dimensional (3D) space. It has been demonstrated that target distance from the viewer can modulate performance in target detection and localization tasks: reaction times are shorter when targets appear nearer to the observer compared to farther distances (i.e., near advantage). Times have reached to quantitatively analyze this literature. In the current meta-analysis, 29 studies (n = 1260 participants) examined target detection and localization across 3-D space. Moderator analyses included: detection vs localization tasks, spatial cueing vs uncued tasks, control of retinal size across depth, central vs peripheral targets, real-space vs stereoscopic vs monocular depth environments, and inclusion of in-trial motion. The analyses revealed a near advantage for spatial attention that was affected by the moderating variables of controlling for retinal size across depth, the use of spatial cueing tasks, and the inclusion of in-trial motion. Overall, these results provide an up-to-date quantification of the effect of depth and provide insight into methodological differences in evaluating spatial attention.
Collapse
Affiliation(s)
- Noah Britt
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Hong-Jin Sun
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
MacNeil RR, Enns JT. The "What" and "How" of Pantomime Actions. Vision (Basel) 2024; 8:58. [PMID: 39449391 PMCID: PMC11503306 DOI: 10.3390/vision8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pantomimes are human actions that simulate ideas, objects, and events, commonly used in conversation, performance art, and gesture-based interfaces for computing and controlling robots. Yet, their underlying neurocognitive mechanisms are not well understood. In this review, we examine pantomimes through two parallel lines of research: (1) the two visual systems (TVS) framework for visually guided action, and (2) the neuropsychological literature on limb apraxia. Historically, the TVS framework has considered pantomime actions as expressions of conscious perceptual processing in the ventral stream, but an emerging view is that they are jointly influenced by ventral and dorsal stream processing. Within the apraxia literature, pantomimes were historically viewed as learned motor schemas, but there is growing recognition that they include creative and improvised actions. Both literatures now recognize that pantomimes are often created spontaneously, sometimes drawing on memory and always requiring online cognitive control. By highlighting this convergence of ideas, we aim to encourage greater collaboration across these two research areas, in an effort to better understand these uniquely human behaviors.
Collapse
Affiliation(s)
- Raymond R. MacNeil
- Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | | |
Collapse
|
8
|
Cai C, Zhang L, Guo Z, Fang X, Quan Z. Effects of color-flavor association on visual search process for reference pictures on beverage packaging: behavioral, electrophysiological, and causal mechanisms. Front Psychol 2024; 15:1433277. [PMID: 39315035 PMCID: PMC11417035 DOI: 10.3389/fpsyg.2024.1433277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The visual search for product packaging involves intricate cognitive processes that are prominently impacted by learned associations derived from extensive long-term experiences. The present research employed EEG technology and manipulated the color display of reference pictures on beverage bottles to explore the underlying neurocognitive pathways. Specifically, we aimed to investigate the influence of color-flavor association strength on the visual processing of such stimuli as well as the in-depth neural mechanisms. The behavioral results revealed that stimuli with strong association strength triggered the fastest response and the highest accuracy, compared with the stimuli with weak association strength and the achromatic ones. The EEG findings further substantiated that the chromatic stimuli evoked a more pronounced N2 component than achromatic ones, and the stimuli with strong association strength elicited larger P3 and smaller N400 amplitudes than the ones with weak association strength. Additionally, the source localization using sLORETA showed significant activations in the inferior temporal gyrus. In conclusion, our research suggests that (1) color expectations would guide visual search process and trigger faster responses to congruent visual stimuli, (2) both the initial perceptual representation and subsequent semantic representation play pivotal roles in effective visual search for the targets, and (3) the color-flavor association strength potentially exerts an impact on visual processing by modulating memory accessibility.
Collapse
Affiliation(s)
- Chen Cai
- Department of Psychology, Normal College, Qingdao University, Qingdao, Shandong, China
| | - Le Zhang
- Department of Psychology, Normal College, Qingdao University, Qingdao, Shandong, China
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, Guangdong, China
| | - Zitao Guo
- Department of Psychology, Normal College, Qingdao University, Qingdao, Shandong, China
| | - Xin Fang
- Department of Psychology, Normal College, Qingdao University, Qingdao, Shandong, China
| | - Zihan Quan
- Department of Psychology, Normal College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Zhong T, Zhou J, Yan T, Qiu J, Wang Y, Lu W. Pseudo-time Series Structural MRI Revealing Progressive Gray Matter Changes with Elevated Intraocular Pressure in Primary Open-Angle Glaucoma: A Preliminary Study. Acad Radiol 2024; 31:3754-3763. [PMID: 38580519 DOI: 10.1016/j.acra.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
RATIONALE AND OBJECTIVES Primary open-angle glaucoma (POAG) is accompanied with gray matter (GM) changes across the brain. However, causal relationships of the GM changes have not been fully understood. Our aim was to investigate the causality of GM progressive changes in POAG using Granger causality (GC) analysis and structural MRI. MATERIALS AND METHODS Structural MRI from 20 healthy controls and 30 POAG patients with elevated intraocular pressure (IOP) were collected. We performed voxel-wise GM volume comparisons between control and POAG groups, and between control and four POAG subgroups (categorized by IOP). Then, we sequenced the structural MRI data of all POAG patients and conducted both voxel-wise and region of interest (ROI)-wise GC analysis to investigate the causality of GM volume changes in POAG brain. RESULTS Compared to healthy controls, reduced GM volumes across the brain were found, GM volume enlargements in the thalamus, caudate nucleus and cuneus were also observed in POAG brain (false discovery rate (FDR) corrected at q< 0.05). As IOP elevated, the reductions of GM volume were more severe in the cerebellum and frontal lobe. GC analysis revealed that the bilateral cerebellum, visual cortices, and the frontal regions served independently as primary hubs of the directional causal network, and projected causal effects to the parietal and temporal regions of the brain (FDR corrected at q<0.05). CONCLUSION POAG exhibits progressive GM alterations across the brain, with oculomotor regions and visual cortices as independent primary hubs. The current results may deepen our understanding of neuropathology of POAG.
Collapse
Affiliation(s)
- Tianzheng Zhong
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jian Zhou
- Department of Radiology, Taian City Central Hospital, Taian, China
| | - Tingqin Yan
- Department of Ophthalmology, Taian City Central Hospital, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
| |
Collapse
|
10
|
Inoue S, Masaki Y, Nakagawa S, Yokoi S. An evolutionarily distinct Hmgn2 variant influences shape recognition in Medaka Fish. Commun Biol 2024; 7:973. [PMID: 39179658 PMCID: PMC11344144 DOI: 10.1038/s42003-024-06667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Protein sequence diversification significantly impacts physiological traits. In this study, using medaka fish (Oryzias latipes), we identify a novel protein variant affecting shape preference behavior. Re-analysis of sequencing data reveals that LOC101156433 encodes a unique Hmgn2 variant with unusual subnuclear localization, clustered separately from the Hmgn2 clades of other species. Medaka mutants with this variant showed reduce telencephalic regions and altered shape preference, suggesting a link between protein sequence variation and behavioral changes. Additionally, this Hmgn2 variant is common in Acanthopterygii fishes, which are adapted to a variety of environments, indicating its potential evolutionary significance. Our findings highlight the relationship between amino acid sequence variation and the development of new molecular and behavioral adaptations, providing insights into the visual shape perception system in fish.
Collapse
Affiliation(s)
- Shuntaro Inoue
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yume Masaki
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
11
|
Jiang YJ, Lai PH, Huang X. Interhemispheric functional in age-related macular degeneration patient: a resting-state functional MRI study. Neuroreport 2024; 35:621-626. [PMID: 38813903 DOI: 10.1097/wnr.0000000000002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent disease leading to severe visual impairment in the elderly population. Despite this, the pathogenesis of AMD remains largely unexplored. The application of resting-state functional MRI (rs-fMRI) allows for the detection of coherent intrinsic brain activities along with the interactions taking place between the two hemispheres. In the frame of our study, we utilize voxel-mirrored homotopic connectivity (VMHC) as an rs-fMRI method to carry out a comparative analysis of functional homotopy between the two hemispheres with the aim of further understanding the pathogenesis of AMD patients. In our study, we utilized the VMHC method to explore levels of brain activity in individuals diagnosed with AMD, planning to investigate potential links with their clinical characteristics. We extended our invitation to 20 AMD patients and 20 healthy controls from Jiangxi Provincial People's Hospital to participate in this research. rs-fMRIs were captured for each participant, and associated neural activity levels were examined using the VMHC method. Remarkably, our comparative examination with the healthy control group revealed significantly reduced VMHC in the cuneus, superior occipital lobe, precentral gyrus, and superior parietal lobule in the patient cohort. Utilizing the VMHC method allows us to identify discrepancies in the visual pathways of AMD patients compared with standard controls, potentially explaining the common challenges among AMD patients with object recognition, face recognition, and reading.
Collapse
Affiliation(s)
| | - Ping-Hong Lai
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
12
|
Mahon BZ, Almeida J. Reciprocal interactions among parietal and occipito-temporal representations support everyday object-directed actions. Neuropsychologia 2024; 198:108841. [PMID: 38430962 PMCID: PMC11498102 DOI: 10.1016/j.neuropsychologia.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Everyday interactions with common manipulable objects require the integration of conceptual knowledge about objects and actions with real-time sensory information about the position, orientation and volumetric structure of the grasp target. The ability to successfully interact with everyday objects involves analysis of visual form and shape, surface texture, material properties, conceptual attributes such as identity, function and typical context, and visuomotor processing supporting hand transport, grasp form, and object manipulation. Functionally separable brain regions across the dorsal and ventral visual pathways support the processing of these different object properties and, in cohort, are necessary for functional object use. Object-directed grasps display end-state-comfort: they anticipate in form and force the shape and material properties of the grasp target, and how the object will be manipulated after it is grasped. End-state-comfort is the default for everyday interactions with manipulable objects and implies integration of information across the ventral and dorsal visual pathways. We propose a model of how visuomotor and action representations in parietal cortex interact with object representations in ventral and lateral occipito-temporal cortex. One pathway, from the supramarginal gyrus to the middle and inferior temporal gyrus, supports the integration of action-related information, including hand and limb position (supramarginal gyrus) with conceptual attributes and an appreciation of the action goal (middle temporal gyrus). A second pathway, from posterior IPS to the fusiform gyrus and collateral sulcus supports the integration of grasp parameters (IPS) with the surface texture and material properties (e.g., weight distribution) of the grasp target. Reciprocal interactions among these regions are part of a broader network of regions that support everyday functional object interactions.
Collapse
Affiliation(s)
- Bradford Z Mahon
- Department of Psychology, Carnegie Mellon University, USA; Neuroscience Institute, Carnegie Mellon University, USA; Department of Neurosurgery, University of Rochester Medical Center, USA.
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
13
|
Goldstein-Marcusohn Y, Asaad R, Asaad L, Freud E. The large-scale organization of shape processing in the ventral and dorsal pathways is dissociable from attention. Cereb Cortex 2024; 34:bhae221. [PMID: 38832533 PMCID: PMC11148664 DOI: 10.1093/cercor/bhae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
The two visual pathways model posits that visual information is processed through two distinct cortical systems: The ventral pathway promotes visual recognition, while the dorsal pathway supports visuomotor control. Recent evidence suggests the dorsal pathway is also involved in shape processing and may contribute to object perception, but it remains unclear whether this sensitivity is independent of attentional mechanisms that were localized to overlapping cortical regions. To address this question, we conducted two fMRI experiments that utilized different parametric scrambling manipulations in which human participants viewed novel objects in different levels of scrambling and were instructed to attend to either the object or to another aspect of the image (e.g. color of the background). Univariate and multivariate analyses revealed that the large-scale organization of shape selectivity along the dorsal and ventral pathways was preserved regardless of the focus of attention. Attention did modulate shape sensitivity, but these effects were similar across the two pathways. These findings support the idea that shape processing is at least partially dissociable from attentional processes and relies on a distributed set of cortical regions across the visual pathways.
Collapse
Affiliation(s)
- Yael Goldstein-Marcusohn
- Department of Psychology and the Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Rahaf Asaad
- Department of Psychology and the Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Leen Asaad
- Department of Psychology and the Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Erez Freud
- Department of Psychology and the Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
14
|
Rennig J, Langenberger C, Karnath HO. Beyond visual integration: sensitivity of the temporal-parietal junction for objects, places, and faces. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:8. [PMID: 38637870 PMCID: PMC11027340 DOI: 10.1186/s12993-024-00233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
One important role of the TPJ is the contribution to perception of the global gist in hierarchically organized stimuli where individual elements create a global visual percept. However, the link between clinical findings in simultanagnosia and neuroimaging in healthy subjects is missing for real-world global stimuli, like visual scenes. It is well-known that hierarchical, global stimuli activate TPJ regions and that simultanagnosia patients show deficits during the recognition of hierarchical stimuli and real-world visual scenes. However, the role of the TPJ in real-world scene processing is entirely unexplored. In the present study, we first localized TPJ regions significantly responding to the global gist of hierarchical stimuli and then investigated the responses to visual scenes, as well as single objects and faces as control stimuli. All three stimulus classes evoked significantly positive univariate responses in the previously localized TPJ regions. In a multivariate analysis, we were able to demonstrate that voxel patterns of the TPJ were classified significantly above chance level for all three stimulus classes. These results demonstrate a significant involvement of the TPJ in processing of complex visual stimuli that is not restricted to visual scenes and that the TPJ is sensitive to different classes of visual stimuli with a specific signature of neuronal activations.
Collapse
Affiliation(s)
- Johannes Rennig
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany.
| | - Christina Langenberger
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- Department of Psychology, University of South Carolina, Columbia, USA
| |
Collapse
|
15
|
Liu Y, Hu J. Effect of Object on Kinesthetic Motor Imagery in Autism Spectrum Disorder: A Pilot Study Based on Eye-Tracking Methodology. Neuropsychiatr Dis Treat 2024; 20:167-183. [PMID: 38282833 PMCID: PMC10822112 DOI: 10.2147/ndt.s435258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction Social disturbance is a significant autism spectrum disorder (ASD) symptom. Action representation, which is a fundamental component of social interaction, can be investigated through kinesthetic motor imagery (KMI). KMI has been commonly studied with the well-developed laterality judgment paradigm, wherein participants are required to discriminate the laterality of a hand rotated by different angles along one or more axes. Here, we investigated the KMI processing in individuals with ASD by hand laterality judgment paradigm with eye-tracking methodology. Methods The current study included 22 participants with ASD and 22 typical developing (TD) peers matched for age, gender, and intelligence. Participants were asked to judge the laterality of hand-with-tooth brush images. Results Compared to the TD controls, individuals with ASD performed KMI with lower accuracy and longer response time in both correct and incorrect action conditions. The incorrect action representation had greater effect on KMI for individuals with ASD. Differences in eye-movement patterns were also observed, characterized by individuals with ASD were more focused on the object area while TD peers were more focused on the hand area. Conclusion Results suggest that while altered KMI performance was observed, the incorrect action representation elicited more engagement of KMI in both groups. The object-centered eye-movement pattern may contribute to the refine of motor simulation intervention for individuals with ASD.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychology, Liaoning Normal University, Dalian, People’s Republic of China
| | - Jinsheng Hu
- Department of Psychology, Liaoning Normal University, Dalian, People’s Republic of China
| |
Collapse
|
16
|
Kéri S, Kelemen O. Motion and Form Perception in Childhood-Onset Schizophrenia. Pediatr Rep 2024; 16:88-99. [PMID: 38251318 PMCID: PMC10801474 DOI: 10.3390/pediatric16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Childhood-onset schizophrenia (COS) is a rare type of psychotic disorder characterized by delusions, hallucinations, grossly disorganized behavior, and poor psychosocial functioning. The etiology of COS is unknown, but neurodevelopmental factors are likely to play a critical role. A potential neurodevelopmental anomaly marker is the dorsal visual system dysfunction, which is implicated in motion perception, spatial functions, and attention. (2) Methods: To elucidate the role of the dorsal visual system in COS, we investigated 21 patients with COS and 21 control participants matched for age, sex, education, IQ, and parental socioeconomic status. Participants completed a motion and form coherence task, during which one assesses an individual's ability to detect the direction of motion within a field of moving elements or dots and to recognize a meaningful form or object from a set of fragmented or disconnected visual elements, respectively. (3) Results: The patients with COS were impaired in both visual tasks compared to the control participants, but the evidence for the deficit was more substantial for motion perception than for form perception (form: BF10 = 27.22; motion: BF10 = 6.97 × 106). (4) Conclusions: These results highlight the importance of dorsal visual stream vulnerability in COS, a potential marker of neurodevelopmental anomalies.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Sztárai Institute, University of Tokaj, 3944 Sárospatak, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Oguz Kelemen
- Department of Behavioral Science, Albert Szent Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Department of Psychiatry, Bács-Kiskun County Hospital, 6000 Kecskemét, Hungary
| |
Collapse
|
17
|
Ahmad Z, Kelly KR, Freud E. Reduced perception-action dissociation in children with amblyopia. Neuropsychologia 2023; 191:108738. [PMID: 38007150 DOI: 10.1016/j.neuropsychologia.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
The functional distinction between vision-for-perception and vision-for-action is a key aspect of understanding the primate visual system. While this dissociation has been well-established in adulthood, its development and dependence on typical visual experience remain unclear. To address these questions, we examined two groups of children: typically developed children and those with amblyopia, who presumably have a sub-optimal visual experience. The Ponzo illusion, known to impact perception but not visuomotor behaviors across age groups, was employed to assess the extent of dissociation. Participants engaged in two tasks involving the Ponzo illusion: a grasping task (vision-for-action) and a manual estimation task (vision-for-perception), with objects placed on the "close" and "far" surfaces of the illusion. Typically developed children displayed grasping movements that were unaffected by the illusion, as their grasping apertures were scaled based on object size, independent of its location. In contrast, children with amblyopia exhibited a clear susceptibility to the illusion, showing larger apertures for objects placed on the 'far' surface of the illusion, and smaller apertures for objects placed on the 'close' surface. Interestingly, both groups of children demonstrated similar susceptibility to the illusion during the perceptual task, with objects placed on the far surface being perceived as longer compared to objects placed on the close surface. These findings shed light on the impact of atypical visual development on the emergence of the dissociation between perception and action, highlighting the crucial role of typical visual experience in establishing this distinction.
Collapse
Affiliation(s)
- Zoha Ahmad
- Department of Biology, York University, Canada; The Centre for Vision Research, York University, Canada.
| | - Krista R Kelly
- School of Optometry and Vision Science, University of Waterloo, Canada; Retina Foundation of the Southwest, Dallas, USA
| | - Erez Freud
- The Centre for Vision Research, York University, Canada; Department of Psychology, York University, Canada
| |
Collapse
|
18
|
Bosco A, Sanz Diez P, Filippini M, De Vitis M, Fattori P. A focus on the multiple interfaces between action and perception and their neural correlates. Neuropsychologia 2023; 191:108722. [PMID: 37931747 DOI: 10.1016/j.neuropsychologia.2023.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Successful behaviour relies on the appropriate interplay between action and perception. The well-established dorsal and ventral stream theories depicted two distinct functional pathways for the processes of action and perception, respectively. In physiological conditions, the two pathways closely cooperate in order to produce successful adaptive behaviour. As the coupling between perception and action exists, this requires an interface that is responsible for a common reading of the two functions. Several studies have proposed different types of perception and action interfaces, suggesting their role in the creation of the shared interaction channel. In the present review, we describe three possible perception and action interfaces: i) the motor code, including common coding approaches, ii) attention, and iii) object affordance; we highlight their potential neural correlates. From this overview, a recurrent neural substrate that underlies all these interface functions appears to be crucial: the parieto-frontal circuit. This network is involved in the mirror mechanism which underlies the perception and action interfaces identified as common coding and motor code theories. The same network is also involved in the spotlight of attention and in the encoding of potential action towards objects; these are manifested in the perception and action interfaces for common attention and object affordance, respectively. Within this framework, most studies were dedicated to the description of the role of the inferior parietal lobule; growing evidence, however, suggests that the superior parietal lobule also plays a crucial role in the interplay between action and perception. The present review proposes a novel model that is inclusive of the superior parietal regions and their relative contribution to the different action and perception interfaces.
Collapse
Affiliation(s)
- A Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy.
| | - P Sanz Diez
- Carl Zeiss Vision International GmbH, Turnstrasse 27, 73430, Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Straße 7, 72076, Tuebingen, Germany
| | - M Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy
| | - M De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - P Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy
| |
Collapse
|
19
|
Zhao D, Shen X, Li S, He W. The Impact of Spatial Frequency on the Perception of Crowd Emotion: An fMRI Study. Brain Sci 2023; 13:1699. [PMID: 38137147 PMCID: PMC10742193 DOI: 10.3390/brainsci13121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Recognizing the emotions of faces in a crowd is crucial for understanding overall behavior and intention as well as for smooth and friendly social interactions. However, it is unclear whether the spatial frequency of faces affects the discrimination of crowd emotion. Although high- and low-spatial-frequency information for individual faces is processed by distinct neural channels, there is a lack of evidence on how this applies to crowd faces. Here, we used functional magnetic resonance imaging (fMRI) to investigate neural representations of crowd faces at different spatial frequencies. Thirty-three participants were asked to compare whether a test face was happy or more fearful than a crowd face that varied in high, low, and broad spatial frequencies. Our findings revealed that fearful faces with low spatial frequencies were easier to recognize in terms of accuracy (78.9%) and response time (927 ms). Brain regions, such as the fusiform gyrus, located in the ventral visual stream, were preferentially activated in high spatial frequency crowds, which, however, were the most difficult to recognize behaviorally (68.9%). Finally, the right inferior frontal gyrus was found to be better activated in the broad spatial frequency crowds. Our study suggests that people are more sensitive to fearful crowd faces with low spatial frequency and that high spatial frequency does not promote crowd face recognition.
Collapse
Affiliation(s)
- Dongfang Zhao
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; (D.Z.); (X.S.); (S.L.)
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| | - Xiangnan Shen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; (D.Z.); (X.S.); (S.L.)
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| | - Shuaixia Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; (D.Z.); (X.S.); (S.L.)
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| | - Weiqi He
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; (D.Z.); (X.S.); (S.L.)
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
| |
Collapse
|
20
|
Yang T, He Y, Wu L, Wang H, Wang X, Li Y, Guo Y, Wu S, Liu X. The effects of object size on spatial orientation: an eye movement study. Front Neurosci 2023; 17:1197618. [PMID: 38027477 PMCID: PMC10668018 DOI: 10.3389/fnins.2023.1197618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The processing of visual information in the human brain is divided into two streams, namely, the dorsal and ventral streams, object identification is related to the ventral stream and motion processing is related to the dorsal stream. Object identification is interconnected with motion processing, object size was found to affect the information processing of motion characteristics in uniform linear motion. However, whether the object size affects the spatial orientation is still unknown. Methods Thirty-eight college students were recruited to participate in an experiment based on the spatial visualization dynamic test. Eyelink 1,000 Plus was used to collect eye movement data. The final direction difference (the difference between the final moving direction of the target and the final direction of the moving target pointing to the destination point), rotation angle (the rotation angle of the knob from the start of the target movement to the moment of key pressing) and eye movement indices under conditions of different object sizes and motion velocities were compared. Results The final direction difference and rotation angle under the condition of a 2.29°-diameter moving target and a 0.76°-diameter destination point were significantly smaller than those under the other conditions (a 0.76°-diameter moving target and a 0.76°-diameter destination point; a 0.76°-diameter moving target and a 2.29°-diameter destination point). The average pupil size under the condition of a 2.29°-diameter moving target and a 0.76°-diameter destination point was significantly larger than the average pupil size under other conditions (a 0.76°-diameter moving target and a 0.76°-diameter destination point; a 0.76°-diameter moving target and a 2.29°-diameter destination point). Discussion A relatively large moving target can resist the landmark attraction effect in spatial orientation, and the influence of object size on spatial orientation may originate from differences in cognitive resource consumption. The present study enriches the interaction theory of the processing of object characteristics and motion characteristics and provides new ideas for the application of eye movement technology in the examination of spatial orientation ability.
Collapse
Affiliation(s)
- Tianqi Yang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Lin Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Hui Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xiuchao Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yahong Li
- Central Theater Command Air Force Hospital of PLA, Datong, China
| | - Yaning Guo
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Shengjun Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|
21
|
Hong TY, Yang CJ, Cheng LK, Li WC, Tseng WYI, Yeh TC, Yu HY, Chen LF, Hsieh JC. Enhanced white matter fiber tract of the cortical visual system in visual artists: implications for creativity. Front Neurosci 2023; 17:1248266. [PMID: 37946727 PMCID: PMC10631786 DOI: 10.3389/fnins.2023.1248266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
Introduction This study aimed to examine the white matter characteristics of visual artists (VAs) in terms of visual creativity and the structural connectivity within the cortical visual system. Methods Diffusion spectrum imaging was utilized to examine the changes in white matter within the cortical visual system of a group of VAs (n = 25) in comparison to a group of healthy controls matched for age and education (n = 24). To assess the integrity of white matter and its relationship with visual creativity, we conducted a comprehensive analysis using region-based and track-specific tractographic examinations. Results Our study uncovered that VAs demonstrated increased normalized quantitative anisotropy in specific brain regions, including the right inferior temporal gyrus and right lateral occipital gyrus, along with the corresponding white matter fiber tracts connecting these regions. These enhancements within the cortical visual system were also found to be correlated with measures of visual creativity obtained through psychological assessments. Discussion The noted enhancement in the white matter within the cortical visual system of VAs, along with its association with visual creativity, is consistent with earlier research demonstrating heightened functional connectivity in the same system among VAs. Our study's findings suggest a link between the visual creativity of VAs and structural alterations within the brain's visual system.
Collapse
Affiliation(s)
- Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Kai Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
Kryklywy JH, Forys BJ, Vieira JB, Quinlan DJ, Mitchell DGV. Dissociating representations of affect and motion in visual cortices. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1322-1345. [PMID: 37526901 PMCID: PMC10545642 DOI: 10.3758/s13415-023-01115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 08/02/2023]
Abstract
While a delicious dessert being presented to us may elicit strong feelings of happiness and excitement, the same treat falling slowly away can lead to sadness and disappointment. Our emotional response to the item depends on its visual motion direction. Despite this importance, it remains unclear whether (and how) cortical areas devoted to decoding motion direction represents or integrates emotion with perceived motion direction. Motion-selective visual area V5/MT+ sits, both functionally and anatomically, at the nexus of dorsal and ventral visual streams. These pathways, however, differ in how they are modulated by emotional cues. The current study was designed to disentangle how emotion and motion perception interact, as well as use emotion-dependent modulation of visual cortices to understand the relation of V5/MT+ to canonical processing streams. During functional magnetic resonance imaging (fMRI), approaching, receding, or static motion after-effects (MAEs) were induced on stationary positive, negative, and neutral stimuli. An independent localizer scan was conducted to identify the visual-motion area V5/MT+. Through univariate and multivariate analyses, we demonstrated that emotion representations in V5/MT+ share a more similar response profile to that observed in ventral visual than dorsal, visual structures. Specifically, V5/MT+ and ventral structures were sensitive to the emotional content of visual stimuli, whereas dorsal visual structures were not. Overall, this work highlights the critical role of V5/MT+ in the representation and processing of visually acquired emotional content. It further suggests a role for this region in utilizing affectively salient visual information to augment motion perception of biologically relevant stimuli.
Collapse
Affiliation(s)
- James H Kryklywy
- Department of Psychology, Lakehead University, Thunder Bay, Canada.
| | - Brandon J Forys
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Joana B Vieira
- Department of Psychology, University of Exeter, Exeter, UK
| | - Derek J Quinlan
- Department of Psychology, Huron University College, London, Canada
- Graduate Brain and Mind Institute, Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Derek G V Mitchell
- Graduate Brain and Mind Institute, Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
- Department of Psychology, University of Western Ontario, London, Canada
- Department of Psychiatry, University of Western Ontario, London, Canada
| |
Collapse
|
23
|
Almeida J, Fracasso A, Kristensen S, Valério D, Bergström F, Chakravarthi R, Tal Z, Walbrin J. Neural and behavioral signatures of the multidimensionality of manipulable object processing. Commun Biol 2023; 6:940. [PMID: 37709924 PMCID: PMC10502059 DOI: 10.1038/s42003-023-05323-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Understanding how we recognize objects requires unravelling the variables that govern the way we think about objects and the neural organization of object representations. A tenable hypothesis is that the organization of object knowledge follows key object-related dimensions. Here, we explored, behaviorally and neurally, the multidimensionality of object processing. We focused on within-domain object information as a proxy for the decisions we typically engage in our daily lives - e.g., identifying a hammer in the context of other tools. We extracted object-related dimensions from subjective human judgments on a set of manipulable objects. We show that the extracted dimensions are cognitively interpretable and relevant - i.e., participants are able to consistently label them, and these dimensions can guide object categorization; and are important for the neural organization of knowledge - i.e., they predict neural signals elicited by manipulable objects. This shows that multidimensionality is a hallmark of the organization of manipulable object knowledge.
Collapse
Affiliation(s)
- Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Stephanie Kristensen
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Daniela Valério
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Fredrik Bergström
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | | | - Zohar Tal
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Jonathan Walbrin
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Hao R, Wang Y, Wang K, Wei A, Zhang W. A multimodal MRI study of functional and structural changes in concomitant exotropia. Exp Ther Med 2023; 26:442. [PMID: 37614419 PMCID: PMC10443055 DOI: 10.3892/etm.2023.12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/19/2023] [Indexed: 08/25/2023] Open
Abstract
The present prospective study aimed to investigate the structural and functional changes in patients with concomitant exotropia using multimodal MRI. A total of 11 adult patients with concomitant exotropia (5 males and 6 females) and 11 healthy adult individuals (5 males and 6 females) were recruited and examined using multimodal MRI techniques. Near and distance exotropia deviation angles were measured. The structrual changes were evaluated using the gray matter volume. Functional reorganization was assessed using the amplitude of low-frequency fluctuation, regional homogeneity and resting-state functional connectivity (FC) on MRI. No significant differences could be found in terms of sex, age or body mass index between the two groups. However, the near and distance exotropia angles were significantly higer in the concomitant exotropia group compared with those in the normal control group (P<0.001). Compared with those in normal individuals, the bilateral thalamus, right middle temporal gyrus (MTG) and right cuneus had significantly reduced gray matter volumes in the concomitant exotropia group (false discovery rate corrected, P<0.05). Reduced FC was found between the bilateral thalamus and the bilateral precuneus, between the right MTG and the right medial superior frontal gyrus in addition to the right precuneus, and between the right cuneus and the right primary sensorimotor cortex (P<0.05, Gaussian random-field corrected) in the concomitant exotropia group compared with that in the normal individuals. In conclusion, the present study indicated that structural and functional reorganization occurs in specific brain regions of patients with concomitant exotropia. These reorganized areas appeared to mainly involve the subcortical structures and related cortices that process visual information.
Collapse
Affiliation(s)
- Rui Hao
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, P.R. China
| | - Yang Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin Key Laboratory of Functional Imaging, Tianjin 300052, P.R. China
| | - Kailei Wang
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, P.R. China
| | - Ang Wei
- Department of Ophthalmology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Nankai Hospital, Tianjin 300102, P.R. China
| | - Wei Zhang
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, P.R. China
| |
Collapse
|
25
|
Gong ZQ, Zuo XN. Connectivity gradients in spontaneous brain activity at multiple frequency bands. Cereb Cortex 2023; 33:9718-9728. [PMID: 37381580 PMCID: PMC10656950 DOI: 10.1093/cercor/bhad238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
The intrinsic organizational structure of the brain is reflected in spontaneous brain oscillations. Its functional integration and segregation hierarchy have been discovered in space by leveraging gradient approaches to low-frequency functional connectivity. This hierarchy of brain oscillations has not yet been fully understood, since previous studies have mainly concentrated on the brain oscillations from a single limited frequency range (~ 0.01-0.1 Hz). In this work, we extended the frequency range and performed gradient analysis across multiple frequency bands of fast resting-state fMRI signals from the Human Connectome Project and condensed a frequency-rank cortical map of the highest gradient. We found that the coarse skeletons of the functional organization hierarchy are generalizable across the multiple frequency bands. Beyond that, the highest integration levels of connectivity vary in the frequency domain across different large-scale brain networks. These findings are replicated in another independent dataset and demonstrated that different brain networks can integrate information at varying rates, indicating the significance of examining the intrinsic architecture of spontaneous brain activity from the perspective of multiple frequency bands.
Collapse
Affiliation(s)
- Zhu-Qing Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Developmental Population Neuroscience Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Developmental Population Neuroscience Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- National Basic Science Data Center, Beijing 100190, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Rubin JJ, Kawahara AY. A framework for understanding post-detection deception in predator-prey interactions. PeerJ 2023; 11:e15389. [PMID: 37377786 PMCID: PMC10292197 DOI: 10.7717/peerj.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 06/29/2023] Open
Abstract
Predators and prey exist in persistent conflict that often hinges on deception-the transmission of misleading or manipulative signals-as a means for survival. Deceptive traits are widespread across taxa and sensory systems, representing an evolutionarily successful and common strategy. Moreover, the highly conserved nature of the major sensory systems often extends these traits past single species predator-prey interactions toward a broader set of perceivers. As such, deceptive traits can provide a unique window into the capabilities, constraints and commonalities across divergent and phylogenetically-related perceivers. Researchers have studied deceptive traits for centuries, but a unified framework for categorizing different types of post-detection deception in predator-prey conflict still holds potential to inform future research. We suggest that deceptive traits can be distinguished by their effect on object formation processes. Perceptual objects are composed of physical attributes (what) and spatial (where) information. Deceptive traits that operate after object formation can therefore influence the perception and processing of either or both of these axes. We build upon previous work using a perceiver perspective approach to delineate deceptive traits by whether they closely match the sensory information of another object or create a discrepancy between perception and reality by exploiting the sensory shortcuts and perceptual biases of their perceiver. We then further divide this second category, sensory illusions, into traits that distort object characteristics along either the what or where axes, and those that create the perception of whole novel objects, integrating the what/where axes. Using predator-prey examples, we detail each step in this framework and propose future avenues for research. We suggest that this framework will help organize the many forms of deceptive traits and help generate predictions about selective forces that have driven animal form and behavior across evolutionary time.
Collapse
Affiliation(s)
- Juliette J. Rubin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Saleki S, Chung YH. Objects from Motion: Moving beyond Static Images with Object Kinematograms. J Neurosci 2023; 43:3986-3988. [PMID: 37258275 PMCID: PMC10255062 DOI: 10.1523/jneurosci.0534-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Affiliation(s)
- Sharif Saleki
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Yong Hoon Chung
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
28
|
Corriveau-Lecavalier N, Barnard LR, Lee J, Dicks E, Botha H, Graff-Radford J, Machulda MM, Boeve BF, Knopman DS, Lowe VJ, Petersen RC, Jack, Jr CR, Jones DT. Deciphering the clinico-radiological heterogeneity of dysexecutive Alzheimer's disease. Cereb Cortex 2023; 33:7026-7043. [PMID: 36721911 PMCID: PMC10233237 DOI: 10.1093/cercor/bhad017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
Dysexecutive Alzheimer's disease (dAD) manifests as a progressive dysexecutive syndrome without prominent behavioral features, and previous studies suggest clinico-radiological heterogeneity within this syndrome. We uncovered this heterogeneity using unsupervised machine learning in 52 dAD patients with multimodal imaging and cognitive data. A spectral decomposition of covariance between FDG-PET images yielded six latent factors ("eigenbrains") accounting for 48% of variance in patterns of hypometabolism. These eigenbrains differentially related to age at onset, clinical severity, and cognitive performance. A hierarchical clustering on the eigenvalues of these eigenbrains yielded four dAD subtypes, i.e. "left-dominant," "right-dominant," "bi-parietal-dominant," and "heteromodal-diffuse." Patterns of FDG-PET hypometabolism overlapped with those of tau-PET distribution and MRI neurodegeneration for each subtype, whereas patterns of amyloid deposition were similar across subtypes. Subtypes differed in age at onset and clinical severity where the heteromodal-diffuse exhibited a worse clinical picture, and the bi-parietal had a milder clinical presentation. We propose a conceptual framework of executive components based on the clinico-radiological associations observed in dAD. We demonstrate that patients with dAD, despite sharing core clinical features, are diagnosed with variability in their clinical and neuroimaging profiles. Our findings support the use of data-driven approaches to delineate brain-behavior relationships relevant to clinical practice and disease physiology.
Collapse
Affiliation(s)
| | | | - Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Gurariy G, Randall R, Greenberg AS. Neuroimaging evidence for the direct role of auditory scene analysis in object perception. Cereb Cortex 2023; 33:6257-6272. [PMID: 36562994 PMCID: PMC10183742 DOI: 10.1093/cercor/bhac501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Auditory Scene Analysis (ASA) refers to the grouping of acoustic signals into auditory objects. Previously, we have shown that perceived musicality of auditory sequences varies with high-level organizational features. Here, we explore the neural mechanisms mediating ASA and auditory object perception. Participants performed musicality judgments on randomly generated pure-tone sequences and manipulated versions of each sequence containing low-level changes (amplitude; timbre). Low-level manipulations affected auditory object perception as evidenced by changes in musicality ratings. fMRI was used to measure neural activation to sequences rated most and least musical, and the altered versions of each sequence. Next, we generated two partially overlapping networks: (i) a music processing network (music localizer) and (ii) an ASA network (base sequences vs. ASA manipulated sequences). Using Representational Similarity Analysis, we correlated the functional profiles of each ROI to a model generated from behavioral musicality ratings as well as models corresponding to low-level feature processing and music perception. Within overlapping regions, areas near primary auditory cortex correlated with low-level ASA models, whereas right IPS was correlated with musicality ratings. Shared neural mechanisms that correlate with behavior and underlie both ASA and music perception suggests that low-level features of auditory stimuli play a role in auditory object perception.
Collapse
Affiliation(s)
- Gennadiy Gurariy
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 8701 W Watertown Plank Rd, Milwaukee, WI 53233, United States
| | - Richard Randall
- School of Music and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Adam S Greenberg
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 8701 W Watertown Plank Rd, Milwaukee, WI 53233, United States
| |
Collapse
|
30
|
Navarro-Guerrero N, Toprak S, Josifovski J, Jamone L. Visuo-haptic object perception for robots: an overview. Auton Robots 2023. [DOI: 10.1007/s10514-023-10091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractThe object perception capabilities of humans are impressive, and this becomes even more evident when trying to develop solutions with a similar proficiency in autonomous robots. While there have been notable advancements in the technologies for artificial vision and touch, the effective integration of these two sensory modalities in robotic applications still needs to be improved, and several open challenges exist. Taking inspiration from how humans combine visual and haptic perception to perceive object properties and drive the execution of manual tasks, this article summarises the current state of the art of visuo-haptic object perception in robots. Firstly, the biological basis of human multimodal object perception is outlined. Then, the latest advances in sensing technologies and data collection strategies for robots are discussed. Next, an overview of the main computational techniques is presented, highlighting the main challenges of multimodal machine learning and presenting a few representative articles in the areas of robotic object recognition, peripersonal space representation and manipulation. Finally, informed by the latest advancements and open challenges, this article outlines promising new research directions.
Collapse
|
31
|
Wamain Y, Garric C, Lenoble Q. Dynamics of low-pass-filtered object categories: A decoding approach to ERP recordings. Vision Res 2023; 204:108165. [PMID: 36584582 DOI: 10.1016/j.visres.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Rapid analysis of low spatial frequencies (LSFs) in the brain conveys the global shape of the object and allows for rapid expectations about the visual input. Evidence has suggested that LSF processing differs as a function of the semantic category to identify. The present study sought to specify the neural dynamics of the LSF contribution to the rapid object representation of living versus non-living objects. In this EEG experiment, participants had to categorize an object displayed at different spatial frequencies (LSF or non-filtered). Behavioral results showed an advantage for living versus non-living objects and a decrease in performance with LSF pictures of pieces of furniture only. Moreover, despite a difference in classification performance between LSF and non-filtered pictures for living items, the behavioral performance was maintained, which suggests that classification under our specific condition can be based on LSF information, in particular for living items.
Collapse
Affiliation(s)
- Yannick Wamain
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France.
| | - Clémentine Garric
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Quentin Lenoble
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| |
Collapse
|
32
|
Hong TY, Yang CJ, Shih CH, Fan SF, Yeh TC, Yu HY, Chen LF, Hsieh JC. Enhanced intrinsic functional connectivity in the visual system of visual artist: Implications for creativity. Front Neurosci 2023; 17:1114771. [PMID: 36908805 PMCID: PMC9992720 DOI: 10.3389/fnins.2023.1114771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction This study sought to elucidate the cognitive traits of visual artists (VAs) from the perspective of visual creativity and the visual system (i.e., the most fundamental neural correlate). Methods We examined the local and long-distance intrinsic functional connectivity (FC) of the visual system to unravel changes in brain traits among VAs. Twenty-seven university students majoring in visual arts and 27 non-artist controls were enrolled. Results VAs presented enhanced local FC in the right superior parietal lobule, right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule, left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which appears to be associated with visual creativity. Discussion The visual creativity of VAs was correlated with strength of intrinsic functional connectivity in the visual system. Learning-induced neuroplasticity as a trait change observed in VAs can be attributed to the macroscopic consolidation of consociated neural circuits that are engaged over long-term training in the visual arts and aesthetic experience. The consolidated network can be regarded as virtuoso-specific neural fingerprint.
Collapse
Affiliation(s)
- Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Fen Fan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
33
|
Wang L, Hu Z, Chen H, Sheng X, Qin R, Shao P, Yang Z, Yao W, Zhao H, Xu Y, Bai F. Applying Retinal Vascular Structures Characteristics Coupling with Cortical Visual System in Alzheimer's Disease Spectrum Patients. Brain Sci 2023; 13:brainsci13020339. [PMID: 36831883 PMCID: PMC9954049 DOI: 10.3390/brainsci13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Cortical visual system dysfunction is closely related to the progression of Alzheimer's Disease (AD), while retinal vascular structures play an important role in the integrity of the function of the visual network and are a potential biomarker of AD. This study explored the association between the cortical visual system and retinal vascular structures in AD-spectrum patients, and it established a screening tool to detect preclinical AD based on these parameters identified in a retinal examination. A total of 42 subjects were enrolled and were distributed into two groups: 22 patients with cognitive impairment and 20 healthy controls. All participants underwent neuropsychological tests, optical coherence tomography angiography and resting-state fMRI imaging. Seed-based functional connectivity analysis was used to construct the cortical visual network. The association of functional connectivity of the cortical visual system and retinal vascular structures was further explored in these subjects. This study found that the cognitive impairment group displayed prominently decreased functional connectivity of the cortical visual system mainly involving the right inferior temporal gyrus, left supramarginal gyrus and right postcentral gyrus. Meanwhile, we observed that retinal vascular structure characteristics deteriorated with the decline in functional connectivity in the cortical visual system. Our study provided novel insights into the aberrant cortical visual system in patients with cognitive impairment that strongly emphasized the critical role of retinal vascular structure characteristics, which could be used as potential biomarkers for diagnosing and monitoring the progression of AD.
Collapse
Affiliation(s)
- Lianlian Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Xiaoning Sheng
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital of the Affiliated Hospital of Nanjing University Medical School, the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: ; Tel.: +86-25-83105960
| |
Collapse
|
34
|
Canário NS, Jorge LP, Santana IJ, Castelo-Branco MS. Hemispheric Patterns of Recruitment of Object Processing Regions in Early Alzheimer's Disease: A Study Along the Entire Ventral Stream. J Alzheimers Dis 2023; 91:1151-1164. [PMID: 36565110 PMCID: PMC9912740 DOI: 10.3233/jad-220055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Investigation of neural response patterns along the entire network of functionally defined object recognition ventral stream regions in Alzheimer's disease (AD) is surprisingly lacking. OBJECTIVE We aimed to investigate putative functional reorganization along a wide-ranging network of known regions in the ventral visual stream in mild AD. METHODS Overall we investigated 6 regions of interest (5 of which were not investigated before), in 19 AD patients and 19 controls, in both hemispheres along the ventral visual stream: Fusiform Face Area, Fusiform Body Area, Extrastriate Body Area, Lateral Occipital Cortex, Parahippocampal Place Area, and Visual Word Form Area, while assessing object recognition performance. RESULTS We found group differences in dprime measures for all object categories, corroborating generalized deficits in object recognition. Concerning neural responses, we found region dependent group differences respecting a priori expected Hemispheric asymmetries. Patients showed significantly decreased BOLD responses in the right hemisphere-biased Fusiform Body Area, and lower left hemisphere responses in the Visual Word Form Area (with a priori known left hemispheric bias), consistent with deficits in body shape and word/pseudoword processing deficits. This hemispheric dominance related effects were preserved when controlling for performance differences. Whole brain analysis during the recognition task showed enhanced activity in AD group of left dorsolateral prefrontal cortex, left cingulate gyrus, and in the posterior cingulate cortex- a hotspot of amyloid-β accumulation. CONCLUSION These findings demonstrate region dependent respecting hemispheric dominance patterns activation changes in independently localized selective regions in mild AD, accompanied by putative compensatory activity of frontal and cingular networks.
Collapse
Affiliation(s)
- Nádia S. Canário
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,
Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Lília P. Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,
Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Isabel J. Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,
Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Miguel S. Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,
Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Correspondence to: M. Castelo-Branco, MD, PhD, Faculdade de Medicina, Polo de Ciências da Saúde da Universidade de Coimbra, Azinhaga de Santa Comba, Celas 3000-548, Coimbra, Portugal. Tel.: +351 239488514; E-mail:
| |
Collapse
|
35
|
The Spatiotemporal Neural Dynamics of Object Recognition for Natural Images and Line Drawings. J Neurosci 2023; 43:484-500. [PMID: 36535769 PMCID: PMC9864561 DOI: 10.1523/jneurosci.1546-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both. However, other work has proposed that representations of drawings and natural images become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while human participants (female and male) viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions in occipital, ventral-temporal, and posterior parietal cortex for all types of depiction, yet with smaller effects at higher levels of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category information from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analysis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall stronger representation for photographs. Together, our results demonstrate broad commonalities in the neural dynamics of object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recognition of natural object images and abstract drawings.SIGNIFICANCE STATEMENT When we see a line drawing, we effortlessly recognize it as an object in the world despite its simple and abstract style. Here we asked to what extent this correspondence in perception is reflected in the brain. To answer this question, we measured how neural processing of objects depicted as photographs and line drawings with varying levels of detail (from natural images to abstract line drawings) evolves over space and time. We find broad commonalities in the spatiotemporal dynamics and the neural representations underlying the perception of photographs and even abstract drawings. These results indicate a shared basic mechanism supporting recognition of drawings and natural images.
Collapse
|
36
|
Ayzenberg V, Simmons C, Behrmann M. Temporal asymmetries and interactions between dorsal and ventral visual pathways during object recognition. Cereb Cortex Commun 2023; 4:tgad003. [PMID: 36726794 PMCID: PMC9883614 DOI: 10.1093/texcom/tgad003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Despite their anatomical and functional distinctions, there is growing evidence that the dorsal and ventral visual pathways interact to support object recognition. However, the exact nature of these interactions remains poorly understood. Is the presence of identity-relevant object information in the dorsal pathway simply a byproduct of ventral input? Or, might the dorsal pathway be a source of input to the ventral pathway for object recognition? In the current study, we used high-density EEG-a technique with high temporal precision and spatial resolution sufficient to distinguish parietal and temporal lobes-to characterise the dynamics of dorsal and ventral pathways during object viewing. Using multivariate analyses, we found that category decoding in the dorsal pathway preceded that in the ventral pathway. Importantly, the dorsal pathway predicted the multivariate responses of the ventral pathway in a time-dependent manner, rather than the other way around. Together, these findings suggest that the dorsal pathway is a critical source of input to the ventral pathway for object recognition.
Collapse
Affiliation(s)
- Vladislav Ayzenberg
- Neuroscience Institute and Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Claire Simmons
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Neuroscience Institute and Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
38
|
Lv X, Chu M, Liu Y, Jing D, Liu L, Cui Y, Wang Y, Jiang D, Song W, Yang C, Wu L. Neurofunctional Correlates of Activities of Daily Living in Patients with Posterior Cortical Atrophy. J Alzheimers Dis 2023; 93:295-305. [PMID: 36970906 DOI: 10.3233/jad-221229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Research on posterior cortical atrophy (PCA) has focused on cognitive decline, especially visual processing deficits. However, few studies have examined the impact of PCA on activities of daily living (ADL) and the neurofunctional and neuroanatomic bases of ADL. OBJECTIVE To identify brain regions associated with ADL in PCA patients. METHODS A total of 29 PCA patients, 35 typical Alzheimer's disease (tAD) patients, and 26 healthy volunteers were recruited. Each subject completed an ADL questionnaire that included basic and instrumental subscales (BADL and IADL, respectively), and underwent hybrid magnetic resonance imaging and 18F fluorodeoxyglucose positron emission tomography. Voxel-wise regression multivariable analysis was conducted to identify specific brain regions associated with ADL. RESULTS General cognitive status was similar between PCA and tAD patients; however, the former had lower total ADL scores and BADL and IADL scores. All three scores were associated with hypometabolism in bilateral parietal lobes (especially bilateral superior parietal gyri) at the whole-brain level, PCA-related hypometabolism level, and PCA-specific hypometabolism level. A cluster that included the right superior parietal gyrus showed an ADL×group interaction effect that was correlated with the total ADL score in the PCA group (r = -0.6908, p = 9.3599e-5) but not in the tAD group (r = 0.1006, p = 0.5904). There was no significant association between gray matter density and ADL scores. CONCLUSION Hypometabolism in bilateral superior parietal lobes contributes to a decline in ADL in patients with PCA and can potentially be targeted by noninvasive neuromodulatory interventions.
Collapse
Affiliation(s)
- Xuedan Lv
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Sixth Hospital, Beijing, China
| | - Donglai Jing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Rongcheng People's Hospital, Hebei, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Sartin S, Ranzini M, Scarpazza C, Monaco S. Cortical areas involved in grasping and reaching actions with and without visual information: An ALE meta-analysis of neuroimaging studies. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100070. [PMID: 36632448 PMCID: PMC9826890 DOI: 10.1016/j.crneur.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
The functional specialization of the ventral stream in Perception and the dorsal stream in Action is the cornerstone of the leading model proposed by Goodale and Milner in 1992. This model is based on neuropsychological evidence and has been a matter of debate for almost three decades, during which the dual-visual stream hypothesis has received much attention, including support and criticism. The advent of functional magnetic resonance imaging (fMRI) has allowed investigating the brain areas involved in Perception and Action, and provided useful data on the functional specialization of the two streams. Research on this topic has been quite prolific, yet no meta-analysis so far has explored the spatial convergence in the involvement of the two streams in Action. The present meta-analysis (N = 53 fMRI and PET studies) was designed to reveal the specific neural activations associated with Action (i.e., grasping and reaching movements), and the extent to which visual information affects the involvement of the two streams during motor control. Our results provide a comprehensive view of the consistent and spatially convergent neural correlates of Action based on neuroimaging studies conducted over the past two decades. In particular, occipital-temporal areas showed higher activation likelihood in the Vision compared to the No vision condition, but no difference between reach and grasp actions. Frontal-parietal areas were consistently involved in both reach and grasp actions regardless of visual availability. We discuss our results in light of the well-established dual-visual stream model and frame these findings in the context of recent discoveries obtained with advanced fMRI methods, such as multivoxel pattern analysis.
Collapse
Affiliation(s)
- Samantha Sartin
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | | | - Cristina Scarpazza
- Department of General Psychology, University of Padua, Italy,IRCCS San Camillo Hospital, Venice, Italy
| | - Simona Monaco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy,Corresponding author. CIMeC - Center for Mind/Brain Sciences, University of Trento, Via delle Regole 101, 38123, Trento, Italy.
| |
Collapse
|
40
|
He H, Zhuo Y, He S, Zhang J. The transition from invariant to action-dependent visual object representation in human dorsal pathway. Cereb Cortex 2022; 32:5503-5511. [PMID: 35165684 DOI: 10.1093/cercor/bhac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/12/2022] [Accepted: 01/13/2021] [Indexed: 01/25/2023] Open
Abstract
The human brain can efficiently process action-related visual information, which supports our ability to quickly understand and learn others' actions. The visual information of goal-directed action is extensively represented in the parietal and frontal cortex, but how actions and goal-objects are represented within this neural network is not fully understood. Specifically, which part of this dorsal network represents the identity of goal-objects? Is such goal-object information encoded at an abstract level or highly interactive with action representations? Here, we used functional magnetic resonance imaging with a large number of participants (n = 94) to investigate the neural representation of goal-objects and actions when participants viewed goal-directed action videos. Our results showed that the goal-directed action information could be decoded across much of the dorsal pathway, but in contrast, the invariant goal-object information independent of action was mainly localized in the early stage of dorsal pathway in parietal cortex rather than the down-stream areas of the parieto-frontal cortex. These results help us to understand the relationship between action and goal-object representations in the dorsal pathway, and the evolution of interactive representation of goal-objects and actions along the dorsal pathway during goal-directed action observation.
Collapse
Affiliation(s)
- HuiXia He
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yan Zhuo
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, 320 Yueyang Road, Shanghai 20031, China
| | - Sheng He
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, 320 Yueyang Road, Shanghai 20031, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jiedong Zhang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
41
|
Ayzenberg V, Behrmann M. Does the brain's ventral visual pathway compute object shape? Trends Cogn Sci 2022; 26:1119-1132. [PMID: 36272937 PMCID: PMC11669366 DOI: 10.1016/j.tics.2022.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
A rich behavioral literature has shown that human object recognition is supported by a representation of shape that is tolerant to variations in an object's appearance. Such 'global' shape representations are achieved by describing objects via the spatial arrangement of their local features, or structure, rather than by the appearance of the features themselves. However, accumulating evidence suggests that the ventral visual pathway - the primary substrate underlying object recognition - may not represent global shape. Instead, ventral representations may be better described as a basis set of local image features. We suggest that this evidence forces a reevaluation of the role of the ventral pathway in object perception and posits a broader network for shape perception that encompasses contributions from the dorsal pathway.
Collapse
Affiliation(s)
- Vladislav Ayzenberg
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Marlene Behrmann
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Psychology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; The Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
42
|
Snipes S, Krugliakova E, Meier E, Huber R. The Theta Paradox: 4-8 Hz EEG Oscillations Reflect Both Sleep Pressure and Cognitive Control. J Neurosci 2022; 42:8569-8586. [PMID: 36202618 PMCID: PMC9665934 DOI: 10.1523/jneurosci.1063-22.2022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022] Open
Abstract
Human electroencephalographic (EEG) oscillations characterize specific behavioral and vigilance states. The frequency of these oscillations is typically sufficient to distinguish a given state; however, theta oscillations (4-8 Hz) have instead been found in near-opposite conditions of drowsiness during sleep deprivation and alert cognitive control. While the latter has been extensively studied and is often referred to as "frontal midline theta," (fmTheta) the former has been investigated far less but is considered a marker for sleep pressure during wake. In this study we investigated to what extent theta oscillations differed during cognitive tasks and sleep deprivation. We measured high-density EEG in 18 young healthy adults (nine female) performing six tasks under three levels of sleep deprivation. We found both cognitive load and sleep deprivation increased theta power in medial prefrontal cortical areas; however, sleep deprivation caused additional increases in theta in many other, predominantly frontal, areas. The sources of sleep deprivation theta (sdTheta) were task dependent, with a visual-spatial task and short-term memory (STM) task showing the most widespread effects. Notably, theta was highest in supplementary motor areas during passive music listening, and highest in the inferior temporal cortex (responsible for object recognition) during a spatial game. Furthermore, while changes in task performance were correlated with increases in theta during sleep deprivation, this relationship was not specific to the EEG of the same task and did not survive correction for multiple comparisons. Altogether, these results suggest that both during sleep deprivation and cognition theta oscillations may preferentially occur in cortical areas not involved in ongoing behavior.SIGNIFICANCE STATEMENT Electroencephalographic (EEG) research in sleep has often remained separate from research in cognition. This has led to two incompatible interpretations of the function of theta brain oscillations (4-8 Hz): that they reflect local sleep events during sleep deprivation, or that they reflect cognitive processing during tasks. With this study, we found no fundamental differences between theta oscillations during cognition and theta during sleep deprivation that would suggest different functions. Instead, our results indicate that in both cases, theta oscillations are generated by cortical areas not required for ongoing behavior. Therefore, at least in humans, theta may reflect either cortical disengagement or inhibition.
Collapse
Affiliation(s)
- Sophia Snipes
- Child Development Center, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Elena Krugliakova
- Child Development Center, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
| | - Elias Meier
- Child Development Center, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zürich, University of Zürich, 8032 Zürich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
43
|
Mocz V, Vaziri-Pashkam M, Chun M, Xu Y. Predicting Identity-Preserving Object Transformations in Human Posterior Parietal Cortex and Convolutional Neural Networks. J Cogn Neurosci 2022; 34:2406-2435. [PMID: 36122358 PMCID: PMC9988239 DOI: 10.1162/jocn_a_01916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous research shows that, within human occipito-temporal cortex (OTC), we can use a general linear mapping function to link visual object responses across nonidentity feature changes, including Euclidean features (e.g., position and size) and non-Euclidean features (e.g., image statistics and spatial frequency). Although the learned mapping is capable of predicting responses of objects not included in training, these predictions are better for categories included than those not included in training. These findings demonstrate a near-orthogonal representation of object identity and nonidentity features throughout human OTC. Here, we extended these findings to examine the mapping across both Euclidean and non-Euclidean feature changes in human posterior parietal cortex (PPC), including functionally defined regions in inferior and superior intraparietal sulcus. We additionally examined responses in five convolutional neural networks (CNNs) pretrained with object classification, as CNNs are considered as the current best model of the primate ventral visual system. We separately compared results from PPC and CNNs with those of OTC. We found that a linear mapping function could successfully link object responses in different states of nonidentity transformations in human PPC and CNNs for both Euclidean and non-Euclidean features. Overall, we found that object identity and nonidentity features are represented in a near-orthogonal, rather than complete-orthogonal, manner in PPC and CNNs, just like they do in OTC. Meanwhile, some differences existed among OTC, PPC, and CNNs. These results demonstrate the similarities and differences in how visual object information across an identity-preserving image transformation may be represented in OTC, PPC, and CNNs.
Collapse
|
44
|
Silvestre D, Miseros M, Faubert J, Tullo D, Bertone A. Development of static and dynamic perception for luminance- and texture-defined information from school-ages to adulthood. Vision Res 2022; 200:108103. [PMID: 35870287 DOI: 10.1016/j.visres.2022.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/25/2023]
Abstract
Few studies have assessed the visual development of static and dynamic information processing at different levels of processing during typical development from the school-age years to adulthood. The implication of non-visual factors on visual development, such as cognitive (e.g., IQ) and attentional abilities, has yet to be systematically assessed with regard to spanning such a large age range. To address these voids, 203 typically-developing participants (aged 6 to 31 years) identified the orientation or direction of a static or moving grating defined by either luminance- or texture-contrast. An adaptive staircase procedure was used to measure contrast sensitivity in all four conditions. Cognitive (Wechsler IQ) and attentional ability (CPT-3) were also measured for all participants. Different developmental rates of contrast sensitivity were found between static and dynamic conditions when defined by more complex, texture-defined information, with the difference in sensitivity starting after the age of 9.71 years. However, static and dynamic profiles for luminance-defined information developed similarly with age. In addition, IQ did not correlate with nor predict the sensitivity across any condition. These results suggest age significantly explains the variance in the developmental profiles of contrast sensitivity above and beyond non-visual factors such as IQ and the CPT-3 attentional scores. Moreover, the neural pathways processing static and dynamic visual information continue to develop through late childhood and adolescence for the processing of texture-defined information only.
Collapse
Affiliation(s)
- Daphné Silvestre
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada.
| | - Margarita Miseros
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada
| | - Jocelyn Faubert
- Faubert Lab, École d'optométrie, Université de Montréal, Canada
| | - Domenico Tullo
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada
| | - Armando Bertone
- Perceptual Neuroscience Laboratory for Autism and Development, McGill University, Canada
| |
Collapse
|
45
|
May E, Arach P, Kishiki E, Geneau R, Maehara G, Sukhai M, Hamm LM. Learning to see after early and extended blindness: A scoping review. Front Psychol 2022; 13:954328. [PMID: 36389599 PMCID: PMC9648338 DOI: 10.3389/fpsyg.2022.954328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 10/03/2023] Open
Abstract
Purpose If an individual has been blind since birth due to a treatable eye condition, ocular treatment is urgent. Even a brief period of visual deprivation can alter the development of the visual system. The goal of our structured scoping review was to understand how we might better support children with delayed access to ocular treatment for blinding conditions. Method We searched MEDLINE, Embase and Global Health for peer-reviewed publications that described the impact of early (within the first year) and extended (lasting at least 2 years) bilateral visual deprivation. Results Of 551 reports independently screened by two authors, 42 studies met our inclusion criteria. Synthesizing extracted data revealed several trends. The data suggests persistent deficits in visual acuity, contrast sensitivity, global motion, and visual-motor integration, and suspected concerns for understanding complex objects and faces. There is evidence for resilience in color perception, understanding of simple shapes, discriminating between a face and non-face, and the perception of biological motion. There is currently insufficient data about specific (re)habilitation strategies to update low vision services, but there are several insights to guide future research in this domain. Conclusion This summary will help guide the research and services provision to help children learn to see after early and extended blindness.
Collapse
Affiliation(s)
- Eloise May
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | | - Robert Geneau
- Kilimanjaro Centre for Community Ophthalmology, Moshi, Tanzania
- Division of Ophthalmology, University of Cape Town, Cape Town, South Africa
| | - Goro Maehara
- Department of Human Sciences, Kanagawa University, Yokohama, Japan
| | - Mahadeo Sukhai
- Accessibility, Research and International Affairs, Canadian National Institute for the Blind, Toronto, ON, Canada
- Department of Ophthalmology, Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Lisa M. Hamm
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Zhang S, Chavoshnejad P, Li X, Guo L, Jiang X, Han J, Wang L, Li G, Wang X, Liu T, Razavi MJ, Zhang S, Zhang T. Gyral peaks: Novel gyral landmarks in developing macaque brains. Hum Brain Mapp 2022; 43:4540-4555. [PMID: 35713202 PMCID: PMC9491295 DOI: 10.1002/hbm.25971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Cerebral cortex development undergoes a variety of processes, which provide valuable information for the study of the developmental mechanism of cortical folding as well as its relationship to brain structural architectures and brain functions. Despite the variability in the anatomy-function relationship on the higher-order cortex, recent studies have succeeded in identifying typical cortical landmarks, such as sulcal pits, that bestow specific functional and cognitive patterns and remain invariant across subjects and ages with their invariance being related to a gene-mediated proto-map. Inspired by the success of these studies, we aim in this study at defining and identifying novel cortical landmarks, termed gyral peaks, which are the local highest foci on gyri. By analyzing data from 156 MRI scans of 32 macaque monkeys with the age spanned from 0 to 36 months, we identified 39 and 37 gyral peaks on the left and right hemispheres, respectively. Our investigation suggests that these gyral peaks are spatially consistent across individuals and relatively stable within the age range of this dataset. Moreover, compared with other gyri, gyral peaks have a thicker cortex, higher mean curvature, more pronounced hub-like features in structural connective networks, and are closer to the borders of structural connectivity-based cortical parcellations. The spatial distribution of gyral peaks was shown to correlate with that of other cortical landmarks, including sulcal pits. These results provide insights into the spatial arrangement and temporal development of gyral peaks as well as their relation to brain structure and function.
Collapse
Affiliation(s)
- Songyao Zhang
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Poorya Chavoshnejad
- Department of Mechanical EngineeringState University of New York at BinghamtonNew YorkUSA
| | - Xiao Li
- School of Information TechnologyNorthwest UniversityXi'anChina
| | - Lei Guo
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Xi Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Junwei Han
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Li Wang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gang Li
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Xianqiao Wang
- College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensGeorgiaUSA
| | - Mir Jalil Razavi
- Department of Mechanical EngineeringState University of New York at BinghamtonNew YorkUSA
| | - Shu Zhang
- Center for Brain and Brain‐Inspired Computing Research, Department of Computer ScienceNorthwestern Polytechnical UniversityXi'anChina
| | - Tuo Zhang
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
47
|
Wang X, Lu L, Liao M, Wei H, Chen X, Huang X, Liu L, Gong Q. Abnormal cortical morphology in children and adolescents with intermittent exotropia. Front Neurosci 2022; 16:923213. [PMID: 36267233 PMCID: PMC9577327 DOI: 10.3389/fnins.2022.923213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate cortical differences, age-related cortical differences, and structural covariance differences between children with intermittent exotropia (IXT) and healthy controls (HCs) using high-resolution magnetic resonance imaging (MRI). Methods Sixteen IXT patients and 16 HCs underwent MRI using a 3-T MR scanner. FreeSurfer software was used to obtain measures of cortical volume, thickness, and surface area. Group differences in cortical thickness, volume and surface area were examined using a general linear model with intracranial volume (ICV), age and sex as covariates. Then, the age-related cortical differences between the two groups and structural covariance in abnormal morphometric changes were examined. Results Compared to HCs, IXT patients demonstrated significantly decreased surface area in the left primary visual cortex (PVC), and increased surface area in the left inferior temporal cortex (ITC). We also found increased cortical thickness in the left orbitofrontal cortex (OFC), right middle temporal cortex (MT), and right inferior frontal cortex (IFC). No significant differences were found in cortical volume between the two groups. There were several negative correlations between neuroanatomic measurements and age in the HC group that were not observed in the IXT group. In addition, we identified altered patterns of structural correlations across brain regions in patients with IXT. Conclusion To our knowledge, this study is the first to characterize the cortical morphometry of the children and adolescents with IXT. Based on our results, children and adolescents with IXT exhibited significant alterations in the PVC and association cortices, different cortical morphometric development patterns, and disrupted structural covariance across brain regions.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Liao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohang Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqi Huang,
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Optometry and Vision Sciences, West China Hospital, Sichuan University, Chengdu, China
- Longqian Liu,
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Parra LA, Díaz DEM, Ramos F. Computational framework of the visual sensory system based on neuroscientific evidence of the ventral pathway. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Wang S, Fang L, Miao G, Li Z, Rao B, Cheng H. Atypical cortical thickness and folding of language regions in Chinese nonsyndromic cleft lip and palate children after speech rehabilitation. Front Neurol 2022; 13:996459. [PMID: 36203989 PMCID: PMC9531957 DOI: 10.3389/fneur.2022.996459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Even after palatoplasty and speech rehabilitation, patients with cleft lip and palate (CLP) remain to produce pronunciation errors. We hypothesized that nonsyndromic CLP (NSCLP) after speech rehabilitation had structural abnormalities in language-related brain regions. This study investigates structural patterns in NSCLP children after speech rehabilitation using surface-based morphometry (SBM) analysis. Methods Forty-two children with NSCLP and 42 age- and gender-matched healthy controls were scanned for 3D T1-weighted images on a 3T MRI scanner. After reconstructing each brain surface, we computed SBM parameters and assessed between-group differences using two-sample t-tests and permutation tests (5,000 times). Then, we assessed the relationship between the SBM parameters and the Chinese language clear degree scale (CLCDS) using Pearson's correlation analysis. Result The speech-rehabilitated children with NSCLP showed lower cortical thickness and higher gyrification index mainly involving left language-related brain regions (permutation tests, p < 0.05). Furthermore, the lower cortical thickness of the left parahippocampal gyrus was positively correlated with CLCDS scores (r = 0.370, p = 0.017) in patients with NSCLP. Conclusion The SBM analysis showed that the structural abnormalities of speech-rehabilitated children with NSCLP mainly involved language-related brain regions, especially the dominant cerebral hemisphere. The structural abnormalities of the cortical thickness and folding in the language-related brain regions might be the neural mechanisms of speech errors in NSCLP children after speech rehabilitation. The cortical thickness of the parahippocampal gyrus may be a biomarker to evaluate pronunciation function.
Collapse
Affiliation(s)
- Shi Wang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Fang
- Department of Nuclear Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guofu Miao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhichao Li
- Department of Rheumatism Immunology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhichao Li
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Bo Rao
| | - Hua Cheng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Hua Cheng
| |
Collapse
|
50
|
Dubbelde D, Shomstein S. Mugs and Plants: Object Semantic Knowledge Alters Perceptual Processing With Behavioral Ramifications. Psychol Sci 2022; 33:1695-1707. [PMID: 36044640 DOI: 10.1177/09567976221097497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neural processing of objects with action associations recruits dorsal visual regions more than the neural processing of objects without such associations. We hypothesized that because the dorsal and ventral visual pathways have differing proportions of magno- and parvocellular input, there should be behavioral differences in perceptual tasks between manipulable and nonmanipulable objects. This hypothesis was tested in college-age adults across five experiments (Ns = 26, 26, 30, 25, and 25) using a gap-detection task, suited to the spatial resolution of parvocellular processing, and an object-flicker-discrimination task, suited to the temporal resolution of magnocellular processing. Directly predicted from the cellular composition of each pathway, a strong nonmanipulable-object advantage was observed in gap detection, and a small manipulable-object advantage was observed in flicker discrimination. Additionally, these effects were modulated by reducing object recognition through inversion and by suppressing magnocellular processing using red light. These results establish perceptual differences between objects dependent on semantic knowledge.
Collapse
Affiliation(s)
- Dick Dubbelde
- Department of Psychological and Brain Sciences, The George Washington University
| | - Sarah Shomstein
- Department of Psychological and Brain Sciences, The George Washington University
| |
Collapse
|