1
|
Tsai SY, Tai CH, Lee YY. Use of Transcranial Magnetic Stimulation to Probe Neuroplasticity and Predict Gait Performance After Treadmill Training in Parkinson's Disease. Mov Disord 2024. [PMID: 39739544 DOI: 10.1002/mds.30100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Reduced step length is a hallmark of gait disturbance in people with Parkinson's disease (PD). Although treadmill training is effective for improving step length, the associated neural mechanisms have not been fully investigated. Moreover, exploring the baseline neurophysiological predictors for step length improvement after training could facilitate personalized gait rehabilitation for PD. OBJECTIVE The aim of this study was to investigate the neuroplastic changes in corticomotor excitability after treadmill training and to explore whether baseline neurophysiological measures could predict step length improvement in PD. METHODS Data from 61 participants with idiopathic PD who completed 12 treadmill training sessions were included. Gait performances and corticomotor excitability measured by transcranial magnetic stimulation (TMS) were obtained at baseline, postintervention, and 1-month follow-up. TMS outcomes included motor-evoked potentials, cortical silent period (CSP), intracortical facilitation (ICF), and short-interval intracortical inhibition (SICI). General estimating equation analysis and principal-component analyses were used to determine the neuroplastic changes induced by training, and multiple linear regression analysis was performed to explore the baseline TMS predictors for step length improvement at 1-month follow-up. RESULTS After treadmill training, SICI and CSP significantly increased and shared an emerging relationship. Regression analysis showed that female sex and greater baseline ICF and SICI were significant predictors of step length improvement at the follow-up. CONCLUSIONS This study advanced the understanding of neuroplastic changes induced by treadmill training in PD and showed that preserved SICI and ICF were predictors for lasting step length improvement after training. Future studies could investigate other influential factors for treadmill training in PD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Si-Yu Tsai
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Physical Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Jia K, Wang M, Steinwurzel C, Ziminski JJ, Xi Y, Emir U, Kourtzi Z. Recurrent inhibition refines mental templates to optimize perceptual decisions. SCIENCE ADVANCES 2024; 10:eado7378. [PMID: 39083601 PMCID: PMC11290482 DOI: 10.1126/sciadv.ado7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Translating sensory inputs to perceptual decisions relies on building internal representations of features critical for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid (GABA)-mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized perceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions and adaptive behavior.
Collapse
Affiliation(s)
- Ke Jia
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Mengxin Wang
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | | | - Joseph J. Ziminski
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Yinghua Xi
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Uzay Emir
- Purdue University School of Health Sciences, West Lafayette, IN 47906, USA
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
3
|
Kim H, Kornman PT, Kweon J, Wassermann EM, Wright DL, Li J, Brown JC. Combined effects of pharmacological interventions and intermittent theta-burst stimulation on motor sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604878. [PMID: 39211172 PMCID: PMC11361068 DOI: 10.1101/2024.07.24.604878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Drugs that modulate N-methyl-D-aspartate (NMDA) or γ-Aminobutyric acid type A (GABA A ) receptors can shed light on their role in synaptic plasticity mechanisms underlying the effects of non-invasive brain stimulation. However, research on the combined effects of these drugs and exogenous stimulation on motor learning is limited. This study aimed to investigate the effects of pharmacological interventions combined with intermittent theta-burst stimulation (iTBS) on human motor learning. Nine right-handed healthy subjects (mean age ± SD: 31.56 ± 12.96 years; 6 females) participated in this double-blind crossover study. All participants were assigned to four drug conditions in a randomized order: (1) D-cycloserine (partial NMDA receptor agonist), (2) D-cycloserine + dextromethorphan (NMDA receptor agonist + antagonist), (3) lorazepam (GABA A receptor agonist), and (4) placebo (identical microcrystalline cellulose capsule). After drug intake, participants practiced the 12-item keyboard sequential task as a baseline measure. Two hours after drug intake, iTBS was administered at the primary motor cortex. Following iTBS, the retention test was performed in the same manner as the baseline measure. Our findings revealed that lorazepam combined with iTBS impaired motor learning during the retention test. Future studies are still needed for a better understanding of the mechanisms through which TMS may influence human motor learning.
Collapse
|
4
|
Tamaki M, Yamada T, Barnes-Diana T, Wang Z, Watanabe T, Sasaki Y. First-night effect reduces the beneficial effects of sleep on visual plasticity and modifies the underlying neurochemical processes. Sci Rep 2024; 14:14388. [PMID: 38909129 PMCID: PMC11193735 DOI: 10.1038/s41598-024-64091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024] Open
Abstract
Individuals experience difficulty falling asleep in a new environment, termed the first night effect (FNE). However, the impact of the FNE on sleep-induced brain plasticity remains unclear. Here, using a within-subject design, we found that the FNE significantly reduces visual plasticity during sleep in young adults. Sleep-onset latency (SOL), an indicator of the FNE, was significantly longer during the first sleep session than the second session, confirming the FNE. We assessed performance gains in visual perceptual learning after sleep and increases in the excitatory-to-inhibitory neurotransmitter (E/I) ratio in early visual areas during sleep using magnetic resonance spectroscopy and polysomnography. These parameters were significantly smaller in sleep with the FNE than in sleep without the FNE; however, these parameters were not correlated with SOL. These results suggest that while the neural mechanisms of the FNE and brain plasticity are independent, sleep disturbances temporarily block the neurochemical process fundamental for brain plasticity.
Collapse
Affiliation(s)
- Masako Tamaki
- Cognitive Somnology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Saitama, 351-0106, Japan
- RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Tyler Barnes-Diana
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Zhiyan Wang
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, 190 Thayer Street, 1821, Providence, RI, 02912, USA.
| |
Collapse
|
5
|
van der Plas M, Failla A, Robertson EM. Neuroscience: Memory modification without catastrophe. Curr Biol 2024; 34:R281-R284. [PMID: 38593772 DOI: 10.1016/j.cub.2024.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Adaptive behaviour is supported by changes in neuronal networks. Insight into maintaining these memories - preventing their catastrophic loss - despite further network changes occurring due to novel learning is provided in a new study.
Collapse
Affiliation(s)
- Mircea van der Plas
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Alberto Failla
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
6
|
Tamaki M, Yamada T, Barnes-Diana T, Wang Z, Watanabe T, Sasaki Y. First-night effect reduces the beneficial effects of sleep on visual plasticity and modifies the underlying neurochemical processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576529. [PMID: 38328250 PMCID: PMC10849493 DOI: 10.1101/2024.01.21.576529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Individuals experience difficulty falling asleep in a new environment, termed the first night effect (FNE). However, the impact of the FNE on sleep-induced brain plasticity remains unclear. Here, using a within-subject design, we found that the FNE significantly reduces visual plasticity during sleep in young adults. Sleep-onset latency (SOL), an indicator of the FNE, was significantly longer during the first sleep session than the second session, confirming the FNE. We assessed performance gains in visual perceptual learning after sleep and increases in the excitatory-to-inhibitory neurotransmitter (E/I) ratio in early visual areas during sleep using magnetic resonance spectroscopy and polysomnography. These parameters were significantly smaller in sleep with the FNE than in sleep without the FNE; however, these parameters were not correlated with SOL. These results suggest that while the neural mechanisms of the FNE and brain plasticity are independent, sleep disturbances temporarily block the neurochemical process fundamental for brain plasticity.
Collapse
|
7
|
Tan Q, Sasaki Y, Watanabe T. Geometric-relationship specific transfer in visual perceptual learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570648. [PMID: 38106111 PMCID: PMC10723461 DOI: 10.1101/2023.12.07.570648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Visual perceptual learning (VPL) is defined as long-term improvement on a visual task as a result of visual experience. In many cases, the improvement is highly specific to the location where the target is presented, which refers to location specificity. In the current study, we investigated the effect of a geometrical relationship between the trained location and an untrained location on transfer of VPL. We found that significant transfer occurs either diagonally or along a line passing the fixation point. This indicates that whether location specificity or location transfer occurs at least partially depends on the geometrical relationship between trained location and an untrained location.
Collapse
|