1
|
Mohamed HRH, El-Shamy S, Abdelgayed SS, Albash R, El-Shorbagy H. Modulation efficiency of clove oil nano-emulsion against genotoxic, oxidative stress, and histological injuries induced via titanium dioxide nanoparticles in mice. Sci Rep 2024; 14:7715. [PMID: 38565575 PMCID: PMC10987579 DOI: 10.1038/s41598-024-57728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) have found wide applications in medical and industrial fields. However, the toxic effect of various tissues is still under study. In this study, we evaluated the toxic effect of TiO2-NP on stomach, liver, and kidney tissues and the amelioration effect of clove oil nanoemulsion (CLV-NE) against DNA damage, oxidative stress, pathological changes, and the apoptotic effect of TiO2-NPs. Four groups of male mice were subjected to oral treatment for five consecutive days including, the control group, the group treated with TiO2-NPs (50 mg/kg), the group treated with (CLV-NE) (5% of the MTD), and the group treated with TiO2-NPs plus CLV-NE. The results revealed that the treatment with TiO2-NPs significantly caused DNA damage in the liver, stomach, and kidney tissues due to increased ROS as indicated by the reduction of the antioxidant activity of SOD and Gpx and increased MDA level. Further, abnormal histological signs and apoptotic effect confirmed by the significant elevation of p53 expression were reported after TiO2-NPs administration. The present data reported a significant improvement in the previous parameters after treatment with CLV-NE. These results showed the collaborative effect of the oils and the extra role of nanoemulsion in enhancing antioxidant effectiveness that enhances its disperse-ability and further promotes its controlled release. One could conclude that CLV-NE is safe and can be used as a powerful antioxidative agent to assess the toxic effects of the acute use of TiO2-NPs.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sawsan El-Shamy
- College of Oral and Dental Surgery, Misr University for Science and Technology, 6th of October, Giza, Egypt
| | - Sherein S Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine Cairo University Giza, Giza, Egypt
| | - Rofida Albash
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Misr University for Science and Technology, 6th of October, Giza, Egypt
| | - Haidan El-Shorbagy
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
- Faculty of Biotechnology, October University for Modern Science and Arts, 6th October, Giza, Egypt.
| |
Collapse
|
2
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
3
|
He X, Lu Q. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application. Adv Colloid Interface Sci 2024; 324:103086. [PMID: 38244533 DOI: 10.1016/j.cis.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) is renowned for its exceptionally high-volume fraction of internal phase, leading to flocculated yet deformed emulsion droplets and unique rheological behaviors such as shear-thinning property, viscoelasticity, and thixotropic recovery. Alongside the inherent features of regular emulsion systems, such as large interfacial area and well-mixture of two immiscible liquids, the HIPPEs have been emerging as building blocks to construct three-dimensional (3D) scaffolds with customized structures and programmable functions using an extrusion-based 3D printing technique, making 3D-printed HIPPE-based scaffolds attract widespread interest from various fields such as food science, biotechnology, environmental science, and energy transfer. Herein, the recent advances in preparing suitable HIPPEs as 3D printing inks for various applied fields are reviewed. This work begins with the stabilization mechanism of HIPPEs, followed by introducing the origin of their distinctive rheological behaviors and strategies to adjust the rheological behaviors to prepare more eligible HIPPEs as printing inks. Then, the compatibility between extrusion-based 3D printing and HIPPEs as building blocks was discussed, followed by a summary of the potential applications using 3D-printed HIPPE-based scaffolds. Finally, limitations and future perspectives on preparing HIPPE-based materials using extrusion-based 3D printing were presented.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Rahmani-Manglano NE, Guadix EM, Yesiltas B, Prieto C, Lagaron JM, Jacobsen C, García-Moreno PJ. Non-emulsion-based encapsulation of fish oil by coaxial electrospraying assisted by pressurized gas enhances the oxidative stability of a capsule-fortified salad dressing. Food Chem 2024; 431:137157. [PMID: 37611360 DOI: 10.1016/j.foodchem.2023.137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
The influence of the encapsulation technology (spray-drying, mono- or coaxial electrospraying assisted by pressurized gas, EAPG) and the oil load (13, 26 or 39 wt%) on the oxidative stability of: i) fish oil-loaded capsules, and ii) capsule-fortified salad dressings were investigated. The highest encapsulation efficiency (EE > 83%) was achieved by the emulsion-based encapsulation methods (e.g., spray-drying and monoaxial EAPG), irrespective of the oil load. Nonetheless, monoaxially EAPG capsules were the most oxidized during storage due to their increased surface-to-volume ratio. On the contrary, non-emulsion-based coaxial EAPG resulted in low lipid oxidation after processing and subsequent storage. The oxidative stability of the capsule-fortified salad dressings correlated well with that of the encapsulates, with the dressing fortified with the coaxially EAPG capsules showing significantly lower levels of oxidation. Our results show that the fortification approach (e.g., emulsion or non-emulsion-based delivery systems) significantly influenced the oxidative stability of the enriched food matrix.
Collapse
Affiliation(s)
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, Granada, Spain
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Valencia, Spain
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Valencia, Spain
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
5
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
6
|
Varona E, García-Moreno PJ, Gregersen Echers S, Olsen TH, Marcatili P, Guardiola F, Overgaard MT, Hansen EB, Jacobsen C, Yesiltas B. Antioxidant peptides from alternative sources reduce lipid oxidation in 5% fish oil-in-water emulsions (pH 4) and fish oil-enriched mayonnaise. Food Chem 2023; 426:136498. [PMID: 37295051 DOI: 10.1016/j.foodchem.2023.136498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Bioinformatics tools were used to predict radical scavenging and metal chelating activities of peptides derived from abundant potato, seaweed, microbial, and spinach proteins. The antioxidant activity was evaluated in 5% oil-in-water emulsions (pH4) and best-performing peptides were tested in mayonnaise and compared with EDTA. Emulsion physical stability was intact. The peptide DDDNLVLPEVYDQD showed the highest protection against oxidation in both emulsions by retarding the formation of oxidation products and depletion of tocopherols during storage, but it was less efficient than EDTA when evaluated in mayonnaise. In low-fat emulsions, formation of hydroperoxides was reduced 4-folds after 5 days compared to control. The concentration effect of the peptide was confirmed in mayonnaise at the EDTA equimolar concentration. The second-best performing peptides were NNKWVPCLEFETEHGFVYREHH in emulsion and AGDWLIGDR in mayonnaise. In general, the peptide efficacy was higher in low-fat emulsions. Results demonstrated that peptide negative net charge was important for chelating activity.
Collapse
Affiliation(s)
- Elisa Varona
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Department of Chemical Engineering, University of Granada, Spain
| | | | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francesc Guardiola
- Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Sadeghian SF, Majdinasab M, Nejadmansouri M, Hosseini SMH. Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions. ULTRASONICS SONOCHEMISTRY 2023; 92:106277. [PMID: 36571883 PMCID: PMC9803954 DOI: 10.1016/j.ultsonch.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4 and 25 °C. Nanoemulsions with relatively similar average droplet size were prepared by HPH and/or US. An increase in droplet size was observed over time. Lower storage temperature and fabrication by US increased Ostwald ripening rate. Higher storage temperature and fabrication by US decreased the centrifugal stability of nanoemulsions. CEO revealed better antioxidant properties than PPE. The oxidative stability was evaluated by determining secondary oxidation products, and fatty acids profile. The absence of antioxidant, fabrication by US, and higher storage temperature decreased the oxidative stability of nanoemulsions. The results of this study might be helpful in controlling the oxidation of FNEs during long-term storage and in designing functional foods and beverages.
Collapse
Affiliation(s)
- Seyede Farnaz Sadeghian
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Maryam Nejadmansouri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
8
|
Rodríguez-Cortina A, Rodríguez-Cortina J, Hernández-Carrión M. Obtention of Sacha Inchi ( Plukenetia volubilis Linneo) Seed Oil Microcapsules as a Strategy for the Valorization of Amazonian Fruits: Physicochemical, Morphological, and Controlled Release Characterization. Foods 2022; 11:foods11243950. [PMID: 36553691 PMCID: PMC9777982 DOI: 10.3390/foods11243950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Sacha inchi seed oil (SIO) is a promising ingredient for the development of functional foods due to its large amount of high-value compounds; however, it is prone to oxidation. This work aimed to obtain SIO microcapsules using conventional and ultrasound probe homogenization and using spray- and freeze-drying technologies as effective approaches to improve the long-term stability of functional compounds. The application of ultrasound probe homogenization improved the rheological and emulsifying properties and decreased the droplet size and interfacial tension of emulsions. The microcapsules obtained by both drying technologies had low moisture (1.64-1.76) and water activity (0.03-0.11) values. Spray-dried microcapsules showed higher encapsulation efficiency (69.90-70.18%) compared to freeze-dried ones (60.02-60.16%). Thermogravimetric analysis indicated that heat protection was assured, enhancing the shelf-life. Results suggest that both drying technologies are considered effective tools to produce stable microcapsules. However, spray-drying technology is positioned as a more economical alternative to freeze-drying.
Collapse
Affiliation(s)
- Aureliano Rodríguez-Cortina
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Jader Rodríguez-Cortina
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria—Agrosavia, Mosquera 250047, Colombia
| | - María Hernández-Carrión
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: ; Tel.: +57-1339-49-49 (ext. 1802)
| |
Collapse
|
9
|
A Solid Self-Emulsifying Formulation for the Enhanced Solubility, Release and Digestion of Apigenin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Li G, Xu J, Wang H, Jiang L, Wang H, Zhang Y, Jin H, Fan Z, Xu J, Zhao Q. Physicochemical Antioxidative and Emulsifying Properties of Soybean Protein Hydrolysates Obtained with Dissimilar Hybrid Nanoflowers. Foods 2022; 11:foods11213409. [PMID: 36360021 PMCID: PMC9653765 DOI: 10.3390/foods11213409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the changes in the structure and properties of soybean protein after hydrolysis using two types of hybrid nanoflowers (alcalase@Cu3(PO4)2•3H2O (ACHNs) and dispase@Cu3(PO4)2•3H2O (DCHNs)) and examined the basic properties and oxidative stability of hydrolyzed soybean protein emulsions. The formations of the two hybrid nanoflowers were first determined using a scanning electron microscope, transmission electron microscope, and Fourier infrared spectroscopy. The structure and functional properties of soybean protein treated with hybrid nanoflowers were then characterized. The results indicated that the degree of hydrolysis (DH) of the ACHNs hydrolysates was higher than that of the DCHNs for an identical reaction time. Soybean protein hydrolysates treated with two hybrid nanoflowers showed different fluorescence and circular dichroism spectra. The solubility of the hydrolysates was significantly higher (p < 0.05) than that of the soybean protein (SPI) at all pH values tested (2.0−10.0)*: at the same pH value, the maximum solubility of ACHNs hydrolysates and DCHNs hydrolysates was increased by 46.2% and 42.2%, respectively. In addition, the ACHNs hydrolysates showed the highest antioxidant activity (DPPH IC50 = 0.553 ± 0.009 mg/mL, ABTS IC50 = 0.219 ± 0.019 mg/mL, and Fe2+ chelating activity IC50 = 40.947 ± 3.685 μg/mL). The emulsifying activity index of ACHNs and DCHNs hydrolysates reached its maximum after hydrolysis for 120 min at 61.38 ± 0.025 m2/g and 54.73 ± 0.75 m2/g, respectively. It was concluded that the two hydrolysates have better solubility and antioxidant properties, which provides a theoretical basis for SPI product development. More importantly, the basic properties and oxidative stability of the soybean-protein-hydrolysates oil-in-water emulsions were improved. These results show the importance of proteins hydrolyzed by hybrid nanoflowers as emulsifiers and antioxidants in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Geng Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huiwen Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Coastal Research and Extension Center, Mississippi State University, Starkville, MS 39762, USA
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi 154007, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| | - Qingshan Zhao
- Experimental Practice and Demonstration Center, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| |
Collapse
|
11
|
Development of Saturated Fat Replacers: Conventional and Nano-Emulsions Stabilised by Lecithin and Hydroxylpropyl Methylcellulose. Foods 2022; 11:foods11162536. [PMID: 36010537 PMCID: PMC9407586 DOI: 10.3390/foods11162536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
The combination of two emulsifiers, lecithin and hydroxypropyl methylcellulose (HPMC), into emulsions is an interesting strategy to design fat replacers in food matrices. The objective of this study was to investigate the effect of HPMC type and concentration on the formation, stability, and microstructure of conventional emulsions and nanoemulsions. Two different types of HPMC with low and high content of methyl and hydroxypropyl groups (HPMC-L and HPMC-H) were evaluated. The results showed that the molecular structure and concentration of HPMC play a major role in the viscoelastic behaviour, the gelation temperature, and the strength of gel formed. The firmness and work of shear of HPMC solutions increased significantly (p < 0.05) with increasing concentration. HPMC-L illustrated a more stable gel structure than the HPMC-H solution. Nanoemulsions showed lower moduli values, firmness, and work of shear than conventional emulsions due to the influence of high-pressure homogenization. A combination of lecithin and HPMC improved the physical and lipid oxidative stability of the emulsions, presenting a lower creaming index and thiobarbituric acid reactive substances (TBARS). In conclusion, HPMC-L at 2% w/w could be a suitable type and concentration combined with lecithin to formulate a saturated fat replacer that could mimic butter technological performance during food manufacturing operations.
Collapse
|
12
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
13
|
Li J, Niu L, Yu J, Wang F, Li X, Huang Y, Liu Y. Effects of frozen temperature and multiple freeze‐thaw cycles on gel structure, protein and lipid oxidation and formation of advanced glycation end‐products in unwashed silver carp surimi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiayi Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Lihong Niu
- School of Food Engineering Ludong University Yantai 264025 Shandong China
| | - Jian Yu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
14
|
Effect of alkyl chain length on the antioxidant activity of alkylresorcinol homologs in low-moisture crackers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Feng J, Berton-Carabin CC, Fogliano V, Schroën K. Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Gamma irradiation on moisture migration and lipid degradation of Micropterus salmoides meat. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Costa M, Losada-Barreiro S, Vicente A, Bravo-Díaz C, Paiva-Martins F. Unexpected Antioxidant Efficiency of Chlorogenic Acid Phenolipids in Fish Oil-in-Water Nanoemulsions: An Example of How Relatively Low Interfacial Concentrations Can Make Antioxidants to Be Inefficient. Molecules 2022; 27:molecules27030861. [PMID: 35164119 PMCID: PMC8838834 DOI: 10.3390/molecules27030861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
Selecting effective antioxidants is challenging since their efficiency in inhibiting lipid oxidation depends on the rate constants of the chemical reactions involved and their concentration at the reaction site, i.e., at the interfacial region. Accumulation of antioxidants at the interface of emulsions is key to modulate their efficiency in inhibiting lipid oxidation but its control was not well understood, especially in emulsions. It can be optimized by modifying the physicochemical properties of antioxidants or the environmental conditions. In this work, we analyze the effects of surfactant concentration, droplet size, and oil to water ratio on the effective interfacial concentration of a set of chlorogenic acid (CGA) esters in fish oil-in-water (O/W) emulsions and nanoemulsions and on their antioxidant efficiency. A well-established pseudophase kinetic model is used to determine in the intact emulsified systems the effective concentrations of the antioxidants (AOs). The relative oxidative stability of the emulsions is assessed by monitoring the formation of primary oxidation products with time. Results show that the concentration of all AOs at the interfacial region is much higher (20–90 fold) than the stoichiometric one but is much lower than those of other phenolipid series such as caffeic or hydroxytyrosol derivatives. The main parameter controlling the interfacial concentration of antioxidants is the surfactant volume fraction, ΦI, followed by the O/W ratio. Changes in the droplet sizes (emulsions and nanoemulsions) have no influence on the interfacial concentrations. Despite the high radical scavenging capacity of CGA derivatives and their being concentrated at the interfacial region, the investigated AOs do not show a significant effect in inhibiting lipid oxidation in contrast with what is observed using other series of homologous antioxidants with similar reactivity. Results are tentatively interpreted in terms of the relatively low interfacial concentrations of the antioxidants, which may not be high enough to make the rate of the inhibition reaction faster than the rate of radical propagation.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
- Department of Physical Chemistry, Faculty of Chemistry, Universidade de Vigo, 36200 Vigo, Spain;
| | - António Vicente
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, Universidade de Vigo, 36200 Vigo, Spain;
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.C.); (S.L.-B.)
- Correspondence:
| |
Collapse
|
18
|
Effect of Co-Encapsulated Natural Antioxidants with Modified Starch on the Oxidative Stability of β-Carotene Loaded within Nanoemulsions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-Carotene (vitamin A precursor) and α-tocopherol, the utmost energetic form of vitamin E (VE), are known to be fat-soluble vitamins (FSVs) and essential nutrients needed to enhance the growth and metabolic functions of the human body. Their deficiencies are linked to numerous chronic disorders. Loading of FSVs within nanoemulsions could increase their oxidative stability and solubility. In this research, VE and β-Carotene (BC) were successfully co-entrapped within oil-in-water nanoemulsions of carrier oils, including tuna fish oil (TFO) and medium-chain triglycerides (MCTs), stabilized by modified starch and Tween-80. These nanoemulsions and free carrier oils loaded with vitamins were stored for over one month to investigate the impact of storage circumstances on their physiochemical characteristics. Entrapped bioactive compounds inside the nanoemulsions and bare oil systems showed a diverse behavior in terms of oxidation. A more deficiency of FSVs was found at higher temperatures that were more noticeable in the case of BC. VE behaved like an antioxidant to protect BC in MCT-based nanoemulsions, whereas it could not protect BC perfectly inside the TFO-loaded nanoemulsions. However, cinnamaldehyde (CIN) loading significantly enhanced the oxidative stability and FSVs retention in each nanoemulsion. Purity gum ultra (PGU)-based nanoemulsions comprising FSVs and CIN presented a greater BC retention (42.3%) and VE retention (90.1%) over one-month storage at 40 °C than Twee 80. The superior stability of PGU is accredited to the OSA-MS capabilities to produce denser interfacial coatings that can protect the entrapped compounds from the aqueous phase. This study delivers valuable evidence about the simultaneous loading of lipophilic bioactive compounds to enrich functional foods.
Collapse
|
19
|
Uchiyama H, Asai S, Nakanishi A, Tandia M, Kadota K, Tozuka Y. Applicability of transglycosylated stevia for oil-in-water submicron emulsions by high-pressure homogenization. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Sayaka Asai
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | | | | | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
20
|
Matos J, Afonso C, Cardoso C, Serralheiro ML, Bandarra NM. Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 2021; 10:1458. [PMID: 34202539 PMCID: PMC8306745 DOI: 10.3390/foods10071458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga Isochrysis galbana has great potential for the food industry as a functional ingredient, given its richness in ω3 long chain-polyunsaturated fatty acids (LC-PUFAs), with high contents of oleic, linoleic, alpha-linolenic acid (ALA), stearidonic, and docosahexaenoic (DHA) acids. This study focuses on the formulation of a functional food by the incorporation of 2% (w/w) of I. galbana freeze-dried biomass and 2% (w/w) of I. galbana ethyl acetate lipidic extract in solid natural yogurts preparation. In the functional yogurt enriched with microalgal biomass, the ω3 LC-PUFA's content increased (to 60 mg/100 g w/w), specifically the DHA content (9.6 mg/100 g ww), and the ω3/ω6 ratio (augmented to 0.8). The in vitro digestion study showed a poor bioaccessibility of essential ω3 LC-PUFAs, wherein linoleic acid (18:2 ω6) presented a bioaccessibility inferior to 10% and no DHA or eicosapentaenoic acid (EPA) was detected in the bioaccessible fraction of the functional yogurts, thus indicating a low accessibility of lipids during digestion. Notwithstanding, when compared to the original yogurt, an added value novel functional yogurt with DHA and a higher ω3 LC-PUFAs content was obtained. The functional yogurt enriched with I. galbana can be considered important from a nutritional point of view and a suitable source of essential FAs in the human diet. However, this needs further confirmation, entailing additional investigation into bioavailability through in vivo assays.
Collapse
Affiliation(s)
- Joana Matos
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Maria L. Serralheiro
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
21
|
Chaijan M, Srirattanachot K, Nisoa M, Cheong L, Panpipat W. Practical use of
β
‐carotene‐loaded nanoemulsion as a functional colorant in sausages made from goat meat surimi‐like material. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| | - Kesinee Srirattanachot
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| | - Mudtorlep Nisoa
- School of Science Walailak University Nakhon Si Thammarat80161Thailand
| | - Ling‐Zhi Cheong
- Department of Food Science and Engineering School of Marine Science Ningbo University Ningbo315211China
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence Department of Food Science and Innovation School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat80161Thailand
| |
Collapse
|
22
|
Golmakani M, Dorostkar E, Keramat M. Common Kilka oil and its primary and secondary oxidative dynamics stabilized by different variants of clove essential oil. GRASAS Y ACEITES 2021. [DOI: 10.3989/gya.0802192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this study was to investigate the properties of clove essential oil extracted by different microwave-assisted methods and to evaluate its effects on the stability of common Kilka oil. Each of these methods was hypothesized to yield a clove essential oil that would have a distinguishable composition and effect when added to common Kilka oil by maintaining its oxidative stability. The oxidation of common Kilka oil was examined by accelerated oxidation using the active oxygen method and Rancimat test. The clove essential oil extracted by microwave-assisted hydrodistillation showed the highest induction period according to the active oxygen method (16.56 h) and the Rancimat induction period (3.64 h) in common Kilka oil and its antioxidant activity was comparable to that of BHT (16.59 h and 4.34 h, respectively) and tocopheryl acetate (16.30 h and 4.02 h, respectively). Furthermore, the microwaveassisted hydrodistillation method resulted in the amount of eugenol that exhibited the highest antioxidant capacity for preserving PUFA in common Kilka oil. Ultimately, clove essential oil can become an efficient natural antioxidant for the oxidative stability of common Kilka oil.
Collapse
|
23
|
The Effect of Microfluidization Pressure and Tocopherol Content on the Retention of Vitamin A in Oil-In-Water Emulsions. Foods 2021; 10:foods10030504. [PMID: 33652847 PMCID: PMC7996912 DOI: 10.3390/foods10030504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
This work investigates the oxidative stability of vitamin A encapsulated in oil-in-water emulsions, which were prepared by using a microfluidizer. All emulsions were prepared with a fixed content of vitamin A (525 µM), corn oil (10%), water (90%), and whey protein (2%), but varying two main factors: the microfluidizer pressure (10, 50, 100, 200 MPa) and the amount of α-tocopherol (0, 0.25, 0.50, 1.00 mg/g). The content of vitamin A before and after the microfluidization process, and during the subsequent five weeks of storage at 40 °C were determined by HPLC-DAD. The results of the analysis of variance performed either on the data obtained before and after the microfluidization process or during the storage showed that the highest stability of vitamin A was obtained with the highest content of α-tocopherol and with an applied pressure between 100 and 200 MPa. The highest stability was explained by the smaller particle size of the resulting oil droplets. However, high pressures (200 MPa) showed a negative effect on vitamin A retention. These results could be useful for future formulations of retinoids.
Collapse
|
24
|
Comparison of Different Protein Emulsifiers on Physicochemical Properties of β-Carotene-Loaded Nanoemulsion: Effect on Formation, Stability, and In Vitro Digestion. NANOMATERIALS 2021; 11:nano11010167. [PMID: 33440816 PMCID: PMC7826833 DOI: 10.3390/nano11010167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
Abstract
In this study, β-carotene-loaded nanoemulsions are emulsified using four biomacromolecular proteins-peanut protein isolate (PPI), soy protein isolate (SPI), rice bran protein isolate (RBPI), and whey protein isolate (WPI)-in order to explore their emulsion stability and in vitro digestion characteristics. All four nanoemulsions attained high encapsulation levels (over 90%). During the three-stage in vitro digestion model (including oral, gastric, and small intestine digestion phases), the PPI-emulsified nanoemulsion showed the highest lipolysis rates (117.39%) and bioaccessibility (37.39%) among the four nanoemulsions. Moreover, the PPI-emulsified nanoemulsion (with the smallest droplet size) also demonstrated the highest stability during storage and centrifugation, while those for the RBPI-emulsified nanoemulsion (with the largest droplet size) were the lowest. In addition, all four nanoemulsions showed superior oxidation stability when compared with the blank control of corn oil. The oxidation rates of the PPI- and WPI-stabilized groups were slower than the other two groups.
Collapse
|
25
|
Elder AS, Coupland JN, Elias RJ. Effect of alkyl chain length on the antioxidant activity of alkylresorcinol homologues in bulk oils and oil-in-water emulsions. Food Chem 2021; 346:128885. [PMID: 33429298 DOI: 10.1016/j.foodchem.2020.128885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/17/2023]
Abstract
The antioxidant cut-off theory details the importance of fine-tuning antioxidant hydrophobicity to optimize antioxidant effectiveness for a given food system; however, previous research has utilized synthetic antioxidant homologues which fail to align with the food industry's demand for natural ingredients. Alkylresorcinols represent a natural homologous series of phenolipid antioxidants. The antioxidant activities of individual alkylresorcinol homologues were investigated in bulk oils and oil-in-water emulsions. In oils, antioxidant activity decreased as alkyl chain length increased and there was no effect on rate of loss. In emulsions, optimum antioxidant activity was observed at intermediate alkyl chain length (C21:0) and longer homologues were lost more rapidly. Radical scavenging capacity decreased as alkyl chain length increased but alkylresorcinols were unable to chelate iron. This suggests that intrinsic properties (e.g. radical scavenging capacity) are responsible for the antioxidant activity of alkylresorcinols in oils while physicochemical phenomena (e.g. partitioning) drive antioxidant activity of alkylresorcinols in emulsions.
Collapse
Affiliation(s)
- Andrew S Elder
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - John N Coupland
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - Ryan J Elias
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
26
|
Ma N, Gao Q, Li X, Xu D, Yuan Y, Cao Y. Enhancing the physicochemical stability and digestibility of DHA emulsions by encapsulation of DHA droplets in caseinate/alginate honeycomb-shaped microparticles. Food Funct 2020; 11:2080-2093. [PMID: 32129355 DOI: 10.1039/c9fo02947h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Docosahexaenoic acid (DHA) was encapsulated in caseinate/alginate microparticles by adjusting the pH based on the electrostatic complexation, in order to improve the physicochemical stability and digestibility of single caseinate-stabilized DHA emulsions. In this study, relatively stable honeycomb-shaped DHA microparticles were formed by electrostatic complexation between positively charged caseinate-coated DHA droplets, caseinate and negatively charged alginate at pH 4.5. The zeta-potential, particle size, size distribution, physical stability, microstructure, DHA oxidation and free fatty acids (FFA) release rate in a simulated gastrointestinal tract (GIT) model were determined. Dynamic light scattering (DLS) and confocal laser scanning microscopy (CLSM) measurements indicated that DHA microparticles had a particle size (1521.00 ± 39.15 nm) significantly larger than that of caseinate-stabilized DHA emulsions (243.23 ± 4.51 nm). The microparticles were much more stable near the isoelectric point (pI) of the adsorbed proteins compared with the single emulsions according to the original transmissions of LUMiSizer. The cryo-scanning electron microscopy (Cryo-SEM) images also showed that the microparticles formed a specific honeycomb-shaped network structure with more uniform distribution and without aggregation. The incorporation of DHA droplets into caseinate/alginate microparticles significantly ameliorated their chemical stability. GIT studies showed that the digestion of DHA microparticles was enhanced which was due to more open loose structures compared with the large-scale close-knit aggregation of DHA emulsion droplets. This study may provide useful information for the stabilization of functional food components and rational design of nutraceutical delivery systems.
Collapse
Affiliation(s)
- Ningning Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Qianru Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Yingmao Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| |
Collapse
|
27
|
A review of recent progress on high internal-phase Pickering emulsions in food science. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Li HL, Yu YH, Xiong GQ, Liao T, Zu XY. Cobalt-60 and electron beam irradiation-induced lipid oxidation in largemouth bass (Micropterus salmoides). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4612-4617. [PMID: 32418235 DOI: 10.1002/jsfa.10521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/29/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Irradiation can cause lipid oxidation of fish. This study aimed to examine the effect of radiation (method, dose and dose rate) on the acid value (AV), peroxide value (PV), thiobarbituric acid reactive substances (TBARS) content and fatty acid profile of fresh and freeze-dried largemouth bass flesh. RESULTS AV, PV and TBARS presented a dose-dependent increase in fish meat for both cobalt-60 (60 Co) and electron beam (EB) irradiation. With a 6 kGy dose of radiation, all measured indices in the 60 Co group were significantly higher than those in the EB group (P < 0.05 or P < 0.01). With a 3 kGy dose of radiation, AV, PV and TBARS in the 200 Gy min-1 dose rate group were significantly lower than those in the 2 and 80 Gy min-1 groups (P < 0.05). After 60 Co irradiation, AV, PV and TBARS in most fresh samples were significantly higher than those in freeze-dried samples (P < 0.01). And 60 Co irradiation decreased the unsaturated fatty acid (UFA) content in fresh samples and increased the UFA content in freeze-dried samples. Our study indicated that 60 Co irradiation, particularly at a low dose rate, accelerated lipid oxidation in fish meat. A large amount of muscle moisture enhances the amount of UFA loss in fish meat during 60 Co irradiation. CONCLUSIONS A low dose (3 kGy) of EB irradiation, a high dose rate (200 Gy min-1 ) of 60 Co irradiation or freeze-drying treatment can alleviate the lipid oxidation of largemouth bass meat. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai-Lan Li
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ying-Hui Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Quan Xiong
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tao Liao
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiao-Yan Zu
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
29
|
Phelps KJ, Drouillard JS, O'Quinn TG, Houser TA, Gonzalez JM. Effects of supplementing docosahexaenoic acid-rich microalgae and antioxidants on beef longissimus lumborum steak color stability and sensory characteristics . Transl Anim Sci 2020;4:txaa135. [PMID: 32775965 PMCID: PMC7399536 DOI: 10.1093/tas/txaa135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine the effects of four microalgae and antioxidant feeding regimens on beef longissimus lumborum color stability and palatability. Steers were blocked by weight and randomly assigned to one of four dietary treatments fed during a 45-d feeding period. Treatments (n = 10 per treatment) consisted of a control diet (CON) and control diet plus 100 g∙steer−1∙d−1 microalgae (ALGAE), ALGAE plus antioxidants (103 IU/d vitamin E and Sel-Plex) fed throughout feeding (AOX), and AOX fed for the final 10 d of finishing (LATE). The longissimus lumborum muscle was removed, aged for 14 d, and fabricated into steaks for objective and subjective color and palatability analyses. There were treatment × day of display interactions for a* value and steak surface metmyoglobin percentage (P < 0.01). There were no treatment differences through day 4 of display for a* value (P > 0.16) and day 5 of display for surface metmyoglobin (P > 0.10). By day 10 of display, ALGAE steaks had a smaller a* value than all other treatments (P < 0.01). Steaks from AOX steers had a greater (P < 0.01) a* value than CON steaks, whereas both a* values did not differ from LATE steaks (P > 0.19). By the end of display, ALGAE steaks had more metmyoglobin than the other treatments (P < 0.01). Steaks from AOX steers had less metmyoglobin than CON and LATE steaks (P < 0.04), which did not differ (P > 0.25). Treatment did not affect trained panel ratings (P > 0.15); however, treatment did affect (P < 0.01) off-flavor intensity. Steaks from ALGAE and AOX steers had greater off-flavor ratings than CON steaks (P < 0.03), but did not differ (P = 0.10). Steaks from LATE steers did not differ in off-flavor ratings from the other treatments (P > 0.07). Use of antioxidants improved color stability of steaks from microalgae fed steers; however, panelists still detected off-flavors.
Collapse
Affiliation(s)
| | - James S Drouillard
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Travis G O'Quinn
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| | - Terry A Houser
- Department of Animal Science, Iowa State University, Ames, IA
| | - John M Gonzalez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| |
Collapse
|
30
|
Yatsenko O, Yushchenko N, Kuzmyk U, Pasichnyi V, Kochubei-Lytvynenko O, Frolova N, Korablova O, Mykoliv I, Voitsekhivskyi V. Research of milk fat oxidation processes during storage of butter pastes. POTRAVINARSTVO 2020. [DOI: 10.5219/1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic quality indicators studied: acidity, peroxide, anisidine value and integrated value of complete fat oxidation. Butter paste was selected as a reference, consisting of butter, skim milk powder and fat-soluble emulsifiers. Peroxide value during storage at the temperature of (4 ±2 °С) for the first 4 days did not exceed 5.0 1/2 О mmol.kg-1, on the 15th day fat peroxide value of butter paste with milk-vegetable protein exceeded permissible limits that is indicative of milk fat contamination. At the temperature of (-3 ±1 °С) butter paste fat couldn't be qualified as fresh when storing during 15 days, peroxide value exceeds permissible limits on the 25th day of storage. Rising of the peroxide value above 5 1/2 О mmol.kg-1 was detected on the 25th day of storage, exceeding of threshold value was on the 45th day. It was established that rate of oxidation processes in butter pastes with vegetable protein is the highest among all studied samples in each particular control and observation point. It was determined that the rate of secondary lipid oxidation depends on the storage temperature and is observed when storing butter paste samples at a temperature of (-3 ±1 °С) on the 10th day, (-24 ±2 °С) – on the 30th day of storage. Acid value did not exceed recommended limits (2.5 °K) and was on average – 2.3 °K when storing butter paste during 10 days at a temperature of (4 ±2 °С); 2.1 °K during 20 days at the temperature of (-3 ±1 °С), 2.4 °K during 40 days at the temperature of (-24 ±2 °С). In view of obtained results of fat phase stability evaluation of studied butter pastes, the following storage maximum time is recommended: at the temperature of (4 ±2 °С) ‒ 7 days, at the temperature of (-3 ±1 °С) – 15 days, at the temperature of (-26 ±2 °С) ‒ 30 days.
Collapse
|
31
|
|
32
|
Simultaneous use of low methylesterified citrus pectin and EDTA as antioxidants in linseed/sunflower oil-in-water emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Varma RR, Pandya JG, Sharma J, Pathak C, Patel MN. DNA interaction, in vivo and in vitro cytotoxicity, reactive oxygen species, lipid peroxidation of -N, S donor Re(I) metal complexes. Mol Divers 2020; 25:687-699. [PMID: 32006296 DOI: 10.1007/s11030-020-10040-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
N, S donor ligands (L1-L5){L1-L5 = 1,5-bis(4-chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole (L1), 1-(4-bromophenyl)-5-(4-chlorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole (L2), 5-(4-chlorophenyl)-3-(thiophen-2-yl)-1-(p-tolyl)-4,5-dihydro-1H-pyrazole (L3), 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole (L4), 5-(4-chlorophenyl)-1-(4-nitrophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole (L5)} were synthesized by Claisen-Schmidt condensation and characterized by spectrometric methods. The complexes (I-V) were synthesized by ligand combination followed by metal chelation. The binding of the rhenium complexes to Herrin sperm DNA was monitored by UV spectroscopy and viscosity measurements. The groove binding was suggested as the most possible mode, and the Kb values of the complexes were calculated. The mode of interaction was furthermore confirmed by molecular docking. Brine shrimp lethality and Saccharomyces cerevisiae cytotoxicity against the eukaryotic and prokaryotic cells showed the toxic nature of the synthesized compounds. All compounds were found active against S. cerevisiae, which was confirmed by increased ROS production, and DNA damage as compared to untreated yeast cell culture. The oxidative harm to cell structures was affirmed by lipid peroxidation. An antimicrobial study was carried out by estimating minimum inhibitory concentration against two Gram-positive and three Gram-negative bacteria. All complexes show good antiproliferative activity against the HCT 116 cell line. All synthesized complexes are biologically more active than the corresponding ligands.
Collapse
Affiliation(s)
- Reena R Varma
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India
| | - Juhee G Pandya
- B. R. Doshi School of Bioscience, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India
| | - Jyoti Sharma
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Chandramani Pathak
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388 120, India.
| |
Collapse
|
34
|
Ma D, Huang Q, Wu Y, Chen J, Lu X, McClements DJ, Wang Y. Encapsulation of emulsions by a novel delivery system of fluid core–hard shell biopolymer particles to retard lipid oxidation. Food Funct 2020; 11:5788-5798. [DOI: 10.1039/d0fo00725k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal delivery systems could be designed to retard lipid oxidation in foods, thereby extending their shelf-lives and improving their nutritional quality.
Collapse
Affiliation(s)
- Da Ma
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Qiqi Huang
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Yuli Wu
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- National R&D Center for Freshwater Fish Processing
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis
- Jinan University
- Zhuhai 519070
- China
| | - Xuanxuan Lu
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | | | - Yong Wang
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Guangdong International Joint Research Center for Oilseeds Biorefinery
| |
Collapse
|
35
|
Jin H, Liu C, Zhang S, Guo Z, Li J, Zhao Q, Zhang Y, Xu J. Comparison of protein hydrolysates against their native counterparts in terms of structural and antioxidant properties, and when used as emulsifiers for curcumin nanoemulsions. Food Funct 2020; 11:10205-10218. [DOI: 10.1039/d0fo01830a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stability and in vitro digestion of nanoemulsions stabilized by natural protein hydrolysates (PPI, SPI and WPI) are discussed.
Collapse
Affiliation(s)
- Hua Jin
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Chang Liu
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Shenyi Zhang
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Zhuanzhuan Guo
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Jishu Li
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| | - Qingshan Zhao
- Laboratory Management Office
- Northeast Agricultural University
- Harbin 150030
- China
| | - Yan Zhang
- Coastal Research and Extension Center
- Mississippi State University
- USA
| | - Jing Xu
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- China
| |
Collapse
|
36
|
Xia Q, Akanbi TO, Li R, Wang B, Yang W, Barrow CJ. Lipase-catalysed synthesis of palm oil-omega-3 structured lipids. Food Funct 2019; 10:3142-3149. [PMID: 31157352 DOI: 10.1039/c9fo00668k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this work, Candida antarctica lipase A was applied to selectively remove saturated fatty acids from palm oil to prepare palm oil acylglycerol concentrate (POAC), where palmitic acid decreased from 40.0 to 28.7% and oleic acid increased from 40.0 to 50.5% after 3 h of hydrolysis. Lipozyme RMIM from Rhizomucor miehei was then used to incorporate either alpha linolenic acid (ALA) or eicosapentaenoic acid (EPA) into the resulting POAC. Optimum omega-3 incorporation was achieved when POAC to omega-3 ratio was 6 : 3, reaction temperature was 40 °C and reaction time was 18 h. Under these conditions, the ALA content in the separated ALA incorporated structured lipid (POAC-ALA) was 27.1%, and the EPA content in the EPA incorporated structured lipids (POAC-EPA) was 30.9%. The formed structured lipids had lower levels of saturated fatty acids, and significantly lower melting points, in both cases below 8 °C. The enzymatic process developed produces new structured lipids, with lower saturated fat and higher omega-3, with potential as a healthy palm oil derived lipid ingredient.
Collapse
Affiliation(s)
- Qiuyu Xia
- Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, P.R China
| | | | | | | | | | | |
Collapse
|
37
|
Yesiltas B, Torkkeli M, Almásy L, Dudás Z, Wacha AF, Dalgliesh R, García-Moreno PJ, Sørensen ADM, Jacobsen C, Knaapila M. Interfacial structure of 70% fish oil-in-water emulsions stabilized with combinations of sodium caseinate and phosphatidylcholine. J Colloid Interface Sci 2019; 554:183-190. [PMID: 31299546 DOI: 10.1016/j.jcis.2019.06.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/20/2019] [Accepted: 06/30/2019] [Indexed: 11/28/2022]
Abstract
We report on the structural evaluation of high fat fish oil-in-water emulsions emulsified with sodium caseinate (CAS) and phosphatidylcholine (PC). The microemulsions contained 70% (w/w) fish oil with 1.05-1.4% (w/w) CAS and 0.4-1.75% (w/w) PC and were studied by the combination of light scattering together with small-angle X-ray and neutron scattering (SAXS/SANS). Aqueous CAS forms aggregates having a denser core of about 100 kDa and less dense shell about 400 kDa with the hard sphere diameter of 20.4 nm. PC appears as multilayers whose coherence length spans from 40 to 100 nm. PC monolayer separates oil and water phases. Moreover, 80% CAS particles are loosely bound to the interface but are not forming continuous coverage. The distance between aggregated CAS particles in microemulsion is increased compared to CAS aggregates in pure CAS-in-water system. PC multilayers become larger in the presence of oil-water interface compared to the pure PC mixtures. Bilayers become larger with increasing PC concentration. This study forms a structural base for the combination of CAS and PC emulsifiers forming a well-defined thin and dense PC layer together with thick but less dense CAS layer, which is assumed to explain its better oxidative stability compared to single emulsifiers.
Collapse
Affiliation(s)
- Betül Yesiltas
- Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Mika Torkkeli
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - László Almásy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, 1525 Budapest, Hungary; State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zoltán Dudás
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, 1525 Budapest, Hungary
| | - András Ferenc Wacha
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Hungarian Academy of Sciences, 1525 Budapest, Hungary
| | - Robert Dalgliesh
- Rutherford Appleton Laboratory, ISIS Facility, Chilton OX11 0QX, UK
| | - Pedro J García-Moreno
- Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ann-Dorit M Sørensen
- Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Matti Knaapila
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
38
|
Chemical Composition, Total Phenolic Content, and Antioxidant Activities of the Essential Oils of the Leaves and Fruit Pulp of Annona muricata L. (Soursop) from Ghana. Biochem Res Int 2019; 2019:4164576. [PMID: 31565436 PMCID: PMC6745133 DOI: 10.1155/2019/4164576] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/17/2022] Open
Abstract
Annona muricata, also called soursop, is widespread in many tropical countries, and various parts of the plant have been shown to possess very good pharmacological properties. This work evaluated the chemical composition and antioxidant activities of essential oils obtained from the fruit pulp and leaves of soursop. Essential oils were obtained via hydrodistillation and characterized by gas chromatography-mass spectrometry. Antioxidant potential was evaluated via the phosphomolybdenum, hydrogen peroxide scavenging, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assays. In the leaf essential oil, a total of 31 compounds were identified with δ-cadinene (22.58%) and α-muurolene (10.64%) being the most abundant. Thirty-two compounds were identified in the fruit pulp essential oil with Ç-sitosterol (19.82%) and 2-hydroxy-1-(hydroxymethyl) ethyl ester (13.48%) being present in high amounts. Both essential oils showed very good total antioxidant capacities (49.03 gAAE/100 g and 50.88 gAAE/100 g for fruit pulp and leaf essential oils, respectively). The IC50 values from the DPPH assay were 244.8 ± 3.2 μg/mL for leaf essential oil and 512 ± 5.1 μg/mL for the fruit pulp essential oil. At 1 mg/mL, hydrogen peroxide scavenged was below 50% for both leaf and fruit pulp essential oils, indicating moderate activity. These results suggest possible application of the essential oils of Annona muricata in food preservation and processing.
Collapse
|
39
|
Dima C, Dima S. Water-in-oil-in-water double emulsions loaded with chlorogenic acid: release mechanisms and oxidative stability. J Microencapsul 2019; 35:584-599. [PMID: 30557070 DOI: 10.1080/02652048.2018.1559246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chlorogenic acid (CA) is a natural compound used as an antioxidant in the preparation of food, drugs, and cosmetics. Due to their low stability and bioavailability, many researchers have studied the encapsulation of CA in various delivery colloidal systems. The aim of this study was to evaluate the stability of water-in-oil-in-water (W/O/W) double emulsions loaded with CA and its antioxidant capacity. For this purpose, CA-W/O/W double emulsions were prepared using Span 80 and lecithin as lipophilic emulsifiers, and Tween 20 as a hydrophilic emulsifier. The influence of nature of lipophilic emulsifiers, the presence of chitosan (CH) in the internal and external aqueous phases, pH, temperature and the storage time of W/O/W double emulsions were also investigated. Depending on the preparation conditions, the W/O/W double emulsions showed the droplet size in the range 9.13 ± 0.55 μm-38.21 ± 1.87 μm, the creaming index 34%-78% and the efficiency encapsulation 79.45 ± 1.5%-88.13 ± 1.9%. Zeta potential values were negative for the W/O/W double emulsion without CH (-36.8 ± 2.02mV; -27.3 ± 1.75mV) and positive for the W/O/W double emulsions with CH in the external aqueous phase (+6.5 ± 0.42mV; 28.6 ± 0.92mV). The study of the release of CA from W/O/W double emulsions has highlighted two mechanisms: one based on the coalescence between the water inner droplets or between the oil globules as well as a diffusion releasing mechanism. The oxidative stability parameters of the W/O/W double emulsions, such as the peroxide value (POV) and the conjugated diene content (CD) were measured.
Collapse
Affiliation(s)
- Cristian Dima
- a Faculty of Food Science and Engineering , "Dunarea de Jos" University of Galati , Galati , Romania
| | - Stefan Dima
- b Faculty of Science and Environment , "Dunarea de Jos" University of Galati , Galati , Romania
| |
Collapse
|
40
|
Pernin A, Bosc V, Soto P, Le Roux E, Maillard M. Lipid Oxidation in Oil‐in‐Water Emulsions Rich in Omega‐3: Effect of Aqueous Phase Viscosity, Emulsifiers, and Antioxidants. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aurélia Pernin
- Ingénierie Procédés AlimentsAgroParisTech, INRAUniversité Paris‐Saclay1 avenue des Olympiades91300 MassyFrance
| | - Véronique Bosc
- Ingénierie Procédés AlimentsAgroParisTech, INRAUniversité Paris‐Saclay1 avenue des Olympiades91300 MassyFrance
| | - Paola Soto
- Ingénierie Procédés AlimentsAgroParisTech, INRAUniversité Paris‐Saclay1 avenue des Olympiades91300 MassyFrance
| | - Even Le Roux
- Ingénierie Procédés AlimentsAgroParisTech, INRAUniversité Paris‐Saclay1 avenue des Olympiades91300 MassyFrance
| | - Marie‐Noëlle Maillard
- Ingénierie Procédés AlimentsAgroParisTech, INRAUniversité Paris‐Saclay1 avenue des Olympiades91300 MassyFrance
| |
Collapse
|
41
|
Rohfritsch Z, Schafer O, Giuffrida F. Analysis of Oxidative Carbonyl Compounds by UPLC-High-Resolution Mass Spectrometry in Milk Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3511-3520. [PMID: 30813718 DOI: 10.1021/acs.jafc.9b00674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Long-chain polyunsaturated fatty acids are highly susceptible to lipid oxidation which causes undesirable odors and flavors in food. We present the development, validation, and application of a semiquantitative screening method to monitor volatile and nonvolatile carbonyl compounds generated from lipids oxidation after 7-(diethylamino)-2-oxochromene-3-carbohydrazide (CHH) derivatization using liquid chromatography high-resolution mass spectrometry. An inclusion list containing eligible compounds was used in full scan mode to identify potential oxidative markers. In an antioxidants study using lecithin and tocopherols, the proposed method was successfully used to monitor the docosahexaenoic acid (DHA)-specific oxidative markers in a model milk powder system enriched with fish oils. The results showed that lecithin inhibits oxidation by reducing the peroxidation rate, while δ-tocopherol delays the oxidation with distinct induction periods. Here, we explore the optimum concentration of soy lecithin and δ-tocopherol needed to limit lipid oxidation in a complex food matrix such as milk powder.
Collapse
Affiliation(s)
- Zhen Rohfritsch
- Nestlé Research , Vers-chez-les-Blanc, 1000 Lausanne 26 , Switzerland
| | - Olivier Schafer
- Nestlé Research , Vers-chez-les-Blanc, 1000 Lausanne 26 , Switzerland
| | | |
Collapse
|
42
|
Therapeutic bullfrog oil-based nanoemulsion for oral application: Development, characterization and stability. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:33-48. [PMID: 31259715 DOI: 10.2478/acph-2019-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 01/19/2023]
Abstract
The aim of this study was to develop, optimize, and characterize a stable therapeutic bullfrog oil based nanoemulsion for oral application using a rational experimental design approach. The optimized oral nanoemulsion contained 0.2 % sodium benzoate and 0.02 % propyl-paraben as preservatives; 0.1 % sucralose and 0.4 % acesulfam K as sweeteners and 0.1 % tutti-frutti as flavoring to mask the unpleasant organoleptic characteristics of bullfrog oil. The oral O/W-nanoemulsion showed the droplet size, PDI, zeta potential, and pH of 410 ± 8 nm, 0.20 ± 0.02, -38 ± 2.5 mV, and 6.43 ± 0.05, respectively. The optimized oral nanoemulsion showed a milky single-phase and optimal physical stability at 25 °C for 90 days. Indeed, higher oxidation induction time and lower formation of peroxides in the oral nanoemulsion were responsible for improving its stability. A therapeutic delivery system containing bullfrog oil for oral application was successfully developed and optimized with ideal thermo-oxidative stability.
Collapse
|
43
|
Xia Q, Akanbi TO, Wang B, Li R, Yang W, Barrow CJ. Investigating the Mechanism for the Enhanced Oxidation Stability of Microencapsulated Omega-3 Concentrates. Mar Drugs 2019; 17:md17030143. [PMID: 30823458 PMCID: PMC6471227 DOI: 10.3390/md17030143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Enzymatically concentrated anchovy oil (concentrate) is known to be much less stable than unconcentrated anchovy oil. However, we previously showed that concentrate surprisingly forms more stable microcapsules, when produced by complex coacervation, than does unconcentrated anchovy oil. Here we investigate the mechanism of this unexpected stability. We also investigate whether or not incorporation of concentrate can be used as an additive to improve the stability of unconcentrated anchovy oil microcapsules. Results showed that microcap stability increased as the amount of added concentrate increased. Decreased emulsion droplet size, lower positively charged zeta potential, and higher surface hydrophobicity were observed in the oil/water (O/W) emulsion, with the incorporation of concentrate in the oil phase, compared with the unconcentrated anchovy oil O/W emulsion. Both the decreased zeta potential and the increased hydrophobicity of concentrate in the mixed oil phase may improve droplet agglomeration, leading to enhanced oxidative stability of the concentrate-containing microcapsules. Decreased repulsive forces between droplets result in a more compact structure, thicker outer shell, and smoother surface, resulting in enhanced oxidation stability of the concentrate-containing microcapsules.
Collapse
Affiliation(s)
- Qiuyu Xia
- Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Taiwo O Akanbi
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217, Australia.
| | - Bo Wang
- Nu-Mega Ingredients Pty Ltd., Brisbane, QLD 4113, Australia.
| | - Rui Li
- Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217, Australia.
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217, Australia.
| |
Collapse
|
44
|
Hermund D, Jacobsen C, Chronakis IS, Pelayo A, Yu S, Busolo M, Lagaron JM, Jónsdóttir R, Kristinsson HG, Akoh CC, García‐Moreno PJ. Stabilization of Fish Oil‐Loaded Electrosprayed Capsules with Seaweed and Commercial Natural Antioxidants: Effect on the Oxidative Stability of Capsule‐Enriched Mayonnaise. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ditte Hermund
- Division of Food Technology, National Food Institute, Technical University of DenmarkKongens Lyngby 2800Denmark
| | - Charlotte Jacobsen
- Division of Food Technology, National Food Institute, Technical University of DenmarkKongens Lyngby 2800Denmark
| | - Ioannis S. Chronakis
- Division of Food Technology, National Food Institute, Technical University of DenmarkKongens Lyngby 2800Denmark
| | - Andres Pelayo
- Division of Food Technology, National Food Institute, Technical University of DenmarkKongens Lyngby 2800Denmark
| | - Sen Yu
- Division of Food Technology, National Food Institute, Technical University of DenmarkKongens Lyngby 2800Denmark
| | - María Busolo
- Novel Materials and Nanotechnology Group, IATA‐CSICValencia 46980Spain
- Bioinicia S.L.Valencia 46980Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, IATA‐CSICValencia 46980Spain
| | | | | | - Casimir C. Akoh
- Division of Food Technology, National Food Institute, Technical University of DenmarkKongens Lyngby 2800Denmark
- Department of Food Science and Technology, University of GeorgiaAthens 30602GAUSA
| | - Pedro J. García‐Moreno
- Division of Food Technology, National Food Institute, Technical University of DenmarkKongens Lyngby 2800Denmark
| |
Collapse
|
45
|
Martinović N, Poklar Ulrih N, Abramovič H. Sinapic Acid and its Derivatives Increase Oxidative Stability in Different Model Lipid Systems. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Neda Martinović
- Biotechnical Faculty, University of LjubljanaSI‐1111 LjubljanaSlovenia
| | | | - Helena Abramovič
- Biotechnical Faculty, University of LjubljanaSI‐1111 LjubljanaSlovenia
| |
Collapse
|
46
|
Yi J, Ning J, Zhu Z, Cui L, Decker EA, McClements DJ. Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Jacobsen C, Sørensen ADM, Holdt SL, Akoh CC, Hermund DB. Source, Extraction, Characterization, and Applications of Novel Antioxidants from Seaweed. Annu Rev Food Sci Technol 2019; 10:541-568. [PMID: 30673506 DOI: 10.1146/annurev-food-032818-121401] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Driven by a general demand for clean labels on food and cosmetic products, these industries are currently searching for efficient natural antioxidants to replace synthetic antioxidants. Seaweed contains several compounds with antioxidative properties (phlorotannins, pigments, tocopherols, and polysaccharides). It is possible to extract these compounds via different extraction techniques, which are discussed in this review. Among the abovementioned compounds, phlorotannins are probably the most important in terms of the antioxidative potential of seaweed extracts. We review how the different antioxidative compounds can be characterized. We discuss the current knowledge of the relationship between phlorotannin's structure and antioxidant properties in in vitro studies as well as in food systems. Concerning food systems, most studies on the antioxidative effect of seaweed extracts have been performed with extracts prepared from Fucus vesiculosus, despite the fact that this species is less available than other species, such as Ascophyllum nodosum, which also has high phlorotannin content.
Collapse
Affiliation(s)
- Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Ann-Dorit M Sørensen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Susan L Holdt
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Casimir C Akoh
- Food Science and Technology, University of Georgia, Athens, Georgia 30602, USA
| | - Ditte B Hermund
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
48
|
Yesiltas B, García-Moreno PJ, Sørensen ADM, Anankanbil S, Guo Z, Jacobsen C. Effects of Modified DATEMs with Different Alkyl Chain Lengths on Improving Oxidative and Physical Stability of 70% Fish Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12512-12520. [PMID: 30398857 DOI: 10.1021/acs.jafc.8b04091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The objective of this study was to produce oxidatively and physically stable 70% fish oil-in-water emulsions by combined use of sodium caseinate (CAS), commercial diacetyl tartaric acid esters of mono- and diglycerides (DATEM), and modified DATEM. First, the optimal formula was determined using DATEM and CAS. Subsequently, modified DATEMs (DATEM C12 and DATEM C14) were designed for investigating both the effects of different alkyl chain lengths and caffeic acid conjugation to the emulsifier on physical and oxidative stability of the emulsions. Emulsions produced with modified DATEMs showed better oxidative stability compared with emulsion using commercial DATEM plus an equivalent amount of free caffeic acid, confirming the advantage of having antioxidant covalently attached to the emulsifier. Results indicated that DATEM_C14 replaced more CAS compared with DATEM_C12 from the interface in 70% fish oil-in-water emulsion. Emulsions produced with DATEM_C14 had significantly decreased amounts of primary and secondary oxidation products compared with emulsions using DATEM_C12.
Collapse
Affiliation(s)
- Betül Yesiltas
- National Food Institute , Technical University of Denmark , DK-2800 Lyngby , Denmark
| | - Pedro J García-Moreno
- National Food Institute , Technical University of Denmark , DK-2800 Lyngby , Denmark
| | - Ann-Dorit M Sørensen
- National Food Institute , Technical University of Denmark , DK-2800 Lyngby , Denmark
| | | | - Zheng Guo
- Department of Engineering , Aarhus University , 8000 Aarhus , Denmark
| | - Charlotte Jacobsen
- National Food Institute , Technical University of Denmark , DK-2800 Lyngby , Denmark
| |
Collapse
|
49
|
Pernin A, Dubois-Brissonnet F, Roux S, Masson M, Bosc V, Maillard MN. Phenolic compounds can delay the oxidation of polyunsaturated fatty acids and the growth of Listeria monocytogenes: structure-activity relationships. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5401-5408. [PMID: 29675999 DOI: 10.1002/jsfa.9082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/11/2018] [Accepted: 04/13/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phenolic compounds present a potential solution to ensure food quality and safety. Indeed, they can limit oxidation reactions and bacterial growth in food products. Although their antioxidant mechanisms of action are well known, their antibacterial ones are less well understood, especially in light of their chemical structures. The aim of this study was first to quantify both aspects of a series of natural phenolic compounds and then link these activities to their chemical structure. RESULTS We evaluated antioxidant activity by measuring the capacity of phenolic compounds to delay free linoleic acid oxidation caused by the action of a hydrophilic azo-radical initiator (AAPH). We evaluated antibacterial activity by measuring the growth inhibition of Listeria monocytogenes and determining the non-inhibitory and minimum inhibitory concentrations for each compound. Compounds with ortho-diphenolic structures were the best antioxidants, whereas those belonging to the simple phenol category were the best antibacterial compounds. CONCLUSION The physico-chemical properties of the compounds influenced both activities but not in the same way. The chemical environment of the phenolic group and the presence of delocalization structures are the most important parameters for antioxidant activity, whereas the partition coefficient, logP, is one of the most important factors involved in antibacterial activity. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aurélia Pernin
- Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Stéphanie Roux
- Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| | - Marine Masson
- Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| | - Véronique Bosc
- Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| | - Marie-Noëlle Maillard
- Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, Massy, France
| |
Collapse
|
50
|
El‐Hadad SS, Tikhomirova NA. Physicochemical properties and oxidative stability of butter oil supplemented with corn oil and dihydroquercetin. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sameh Sobhy El‐Hadad
- Dairy Science Department National Research Centre Giza Egypt
- Moscow State University of Food Production Moscow Russia
| | | |
Collapse
|