1
|
Zia H, Murray H, Hofsommer M, Barreto AM, Pavon-Vargas D, Puzovic A, Gędas A, Rincon S, Gössinger M, Slatnar A. Comparing the impact of conventional and non-conventional processing technologies on water-soluble vitamins and color in strawberry nectar - a pilot scale study. Food Chem 2025; 463:141078. [PMID: 39243612 DOI: 10.1016/j.foodchem.2024.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
A comprehensive comparison was conducted on the effect of conventional thermal processing (TT), high-pressure processing (HP), pulse electric field (PF), and ohmic heating (OH) on water-soluble vitamins and color retention in strawberry nectar. The ascorbic acid (AA) content increased by 15- and 9-fold after TT and OH treatment, respectively, due to rupturing of cells under heat stress and release of intracellular AA. Dehydroascorbic acid (DHA) content did not change considerably after TT and PF treatment but significantly decreased after HP and OH treatment. TT treatment offered the highest total vitamin C retention. The B vitamins remained largely unchanged after processing, with the highest loss of 34 % for riboflavin in OH-treated samples. All the technologies resulted in similar color retention after processing. The study concludes with a standardized comparison of mainstream preservation technologies using pilot-scale equipment. Such an approach significantly increases the applicability of the results presented in the study.
Collapse
Affiliation(s)
- Hassan Zia
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany; University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| | - Helen Murray
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Mikko Hofsommer
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany
| | | | - Darío Pavon-Vargas
- University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy.; CFT S.P.A, Via Paradigna, 94/a, 43122 Parma, Italy
| | - Alema Puzovic
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| | - Astrid Gędas
- University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sebastian Rincon
- INRAE, Avignon University, UMR408 SQPOV, F-84000, Avignon, France
| | - Manfred Gössinger
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Ana Slatnar
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Ćurko N, Perić K, Vukušić Pavičić T, Balbino S, Tomašević M, Iveković D, Radojčić Redovniković I, Kovačević Ganić K. Effect of Pulsed Electric Field Pretreatment on the Concentration of Lipophilic and Hydrophilic Compounds in Cold-Pressed Grape Seed Oil Produced from Wine Waste. Foods 2024; 13:2299. [PMID: 39063383 PMCID: PMC11276571 DOI: 10.3390/foods13142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pretreatment of grape pomace seeds with a pulsed electric field (PEF) was applied to improve the extraction yield of cold-pressed grape seed oil. The effects of different PEF conditions, electric field intensities (12.5, 14.0 and 15.6 kV/cm), and durations (15 and 30 min) on the oil chemical composition were also studied. All PEF pretreatments significantly increased the oil yield, flow rate and concentration of total sterols (p < 0.05). In addition, similar trends were observed for total tocochromanols and phenolic compounds, except for PEF pretreatment under the mildest conditions (12.5 kV/cm, 15 min) (p < 0.05). Notably, the application of 15.6 kV/cm for 30 min resulted in the highest relative increase in oil yield and flow rate (29.6% and 56.5%, respectively) and in the concentrations of total tocochromanols, nonflavonoids, and flavonoids (22.1%, 60.2% and 81.5%, respectively). In addition, the highest relative increase in the concentration of total sterols (25.4%) was achieved by applying 12.5 kV/cm for 30 min. The fatty acid composition of the grape seed oil remained largely unaffected by the PEF pretreatments. These results show that PEF pretreatment effectively improves both the yield and the bioactive properties of cold-pressed grape seed oil.
Collapse
Affiliation(s)
| | | | | | - Sandra Balbino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Ć.); (K.P.); (T.V.P.); (M.T.); (D.I.); (I.R.R.); (K.K.G.)
| | | | | | | | | |
Collapse
|
4
|
Abedi E, Kaveh S, Mohammad Bagher Hashemi S. Structure-based modification of a-amylase by conventional and emerging technologies: Comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chem 2024; 437:137903. [PMID: 37931423 DOI: 10.1016/j.foodchem.2023.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
α-Amylase is an endo-enzyme that catalyzes the hydrolysis of starch into shorter oligosaccharides. α-Amylase plays a crucial role in various industries. Manipulated α-amylases are of particular interest due to their remarkable amylolysis efficiency and thermostability for large-scale biotechnological processes. The retained catalytic activity of enzymes is decreased according to extreme pH, temperature, pressure, and chemical reagents. Broad industrial applications of α-amylases need special properties such as stability against temperature, pH, and chelators, and also attain reusability, desirable enzymatic activity, efficiency, and selectivity. Considering the biotechnological importance of α-amylase, its high stability is the most critical challenge for its economic viability. Therefore, improving its functionality and stability recently gained much interest. To achieve this purpose, various emerging technologies in combination with conventional methods on α-Amylases with different sources have been conducted. The present review is an attempt to summarize the effect of various conventional methods and emerging technologies employed to date on α-amylase secondary structure, thermal stability, and performance.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Shima Kaveh
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
5
|
López-Gámez G, Del Pino-García R, López-Bascón MA, Verardo V. From feed to functionality: Unravelling the nutritional composition and techno-functional properties of insect-based ingredients. Food Res Int 2024; 178:113985. [PMID: 38309922 DOI: 10.1016/j.foodres.2024.113985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
In recent years, there has been a growing interest in using insects as a sustainable resource for biorefinery processes. This emerging field aims to convert insect biomass into valuable products while minimizing waste. The integration of emerging green technologies and the efficient extraction of high-value compounds from insects offer promising avenues for addressing the growing demand for sustainable food production and resource utilization. The review examines the impact of dietary modifications on the nutritional profile of insects. It highlights the potential for manipulating insect feed to optimize protein quality, amino acid profile, lipid content and fatty acid composition. Additionally, innovative green processing technologies such as ultrasound, high pressure processing, pulsed electric fields, cold plasma and enzymatic hydrolysis are discussed for their ability to enhance the extraction and techno-functional properties of insect-based ingredients. The review finds that dietary modifications can impact the nutritional composition of insects, allowing the customization of their nutrient content. By optimizing the insect feed, it is possible to increase the quantity and improve the quality of essential nutrients like proteins or lipids in the derived ingredients. Moreover, alternative processing technologies can improve the techno-functional properties (e.g., solubility, water and oil holding capacities, among others) of insect-based ingredients by modifying proteins' conformation. By harnessing these strategies, researchers and industry professionals can unlock the full potential of insects as a sustainable and nutritional food source, paving the way for innovative insect-based food products.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - Raquel Del Pino-García
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - María Asunción López-Bascón
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain.
| | - Vito Verardo
- Research and Development of Functional Food Center (CIDAF), Avda. del Conocimiento, 37, 18016 Granada, Spain; Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain; Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda. Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
6
|
Zhang D, Jiang K, Luo H, Zhao X, Yu P, Gan Y. Replacing animal proteins with plant proteins: Is this a way to improve quality and functional properties of hybrid cheeses and cheese analogs? Compr Rev Food Sci Food Saf 2024; 23:e13262. [PMID: 38284577 DOI: 10.1111/1541-4337.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/27/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
The growing emphasis on dietary health has facilitated the development of plant-based foods. Plant proteins have excellent functional attributes and health-enhancing effects and are also environmentally conscientious and animal-friendly protein sources on a global scale. The addition of plant proteins (including soy protein, pea protein, zein, nut protein, and gluten protein) to diverse cheese varieties and cheese analogs holds the promise of manufacturing symbiotic products that not only have reduced fat content but also exhibit improved protein diversity and overall quality. In this review, we summarized the utilization and importance of various plant proteins in the production of hybrid cheeses and cheese analogs. Meanwhile, classification and processing methods related to these cheese products were reviewed. Furthermore, the impact of different plant proteins on the microstructure, textural properties, physicochemical attributes, rheological behavior, functional aspects, microbiological aspects, and sensory characteristics of both hybrid cheeses and cheese analogs were discussed and compared. Our study explores the potential for the development of cheeses made from full/semi-plant protein ingredients with greater sustainability and health benefits. Additionally, it further emphasizes the substantial chances for scholars and developers to investigate the optimal processing methods and applications of plant proteins in cheeses, thereby improving the market penetration of plant protein hybrid cheeses and cheese analogs.
Collapse
Affiliation(s)
- Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kai Jiang
- School of Resources and Civil Engineering, No, rtheastern University, Shenyang, Liaoning, China
| | - Hui Luo
- Laboratory of Oncology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaorui Zhao
- Differentiated & Biofunctional Food, Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Peng Yu
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiming Gan
- Plant Sciences, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
7
|
Majid I, Khan S, Aladel A, Dar AH, Adnan M, Khan MI, Mahgoub Awadelkareem A, Ashraf SA. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2157492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ishrat Majid
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Shafat Khan
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Alanoud Aladel
- Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Arras, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
8
|
Chemat A, Song M, Li Y, Fabiano-Tixier AS. Shade of Innovative Food Processing Techniques: Potential Inducing Factors of Lipid Oxidation. Molecules 2023; 28:8138. [PMID: 38138626 PMCID: PMC10745320 DOI: 10.3390/molecules28248138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
With increasing environmental awareness and consumer demand for high-quality food products, industries are strongly required for technical innovations. The use of various emerging techniques in food processing indeed brings many economic and environmental benefits compared to conventional processes. However, lipid oxidation induced by some "innovative" processes is often "an inconvenient truth", which is scarcely mentioned in most studies but should not be ignored for the further improvement and optimization of existing processes. Lipid oxidation poses a risk to consumer health, as a result of the possible ingestion of secondary oxidation products. From this point of view, this review summarizes the advance of lipid oxidation mechanism studies and mainly discloses the shade of innovative food processing concerning lipid degradation. Sections involving a revisit of classic three-stage chain reaction, the advances of polar paradox and cut-off theories, and potential lipid oxidation factors from emerging techniques are described, which might help in developing more robust guidelines to ensure a good practice of these innovative food processing techniques in future.
Collapse
Affiliation(s)
- Aziadé Chemat
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| | - Mengna Song
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Anne-Sylvie Fabiano-Tixier
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| |
Collapse
|
9
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
10
|
Tian HH, Huang XH, Qin L. Insights into application progress of seafood processing technologies and their implications on flavor: a review. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 37788446 DOI: 10.1080/10408398.2023.2263893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seafood tends to be highly vulnerable to spoilage and deterioration due to biochemical reactions and microbial contaminations, which requires appropriate processing technologies to improve or maintain its quality. Flavor, as an indispensable aspect reflecting the quality profile of seafood and influencing the final choice of consumers, is closely related to the processing technologies adopted. This review gives updated information on traditional and emerging processing technologies used in seafood processing and their implications on flavor. Traditional processing technologies, especially thermal treatment, effectively deactivate microorganisms to enhance seafood safety and prolong its shelf life. Nonetheless, these methods come with limitations, including reduced processing efficiency, increased energy consumption, and alterations in flavor, color, and texture due to overheating. Emerging processing technologies like microwave heating, infrared heating, high pressure processing, cold plasma, pulsed electric field, and ultrasound show alternative effects to traditional technologies. In addition to deactivating microorganisms and extending shelf life, these technologies can also safeguard the sensory quality of seafood. This review discusses emerging processing technologies in seafood and covers their principles, applications, developments, advantages, and limitations. In addition, this review examines the potential synergies that can arise from combining certain processing technologies in seafood processing.
Collapse
Affiliation(s)
- He-He Tian
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lei Qin
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
11
|
Abril B, Bou R, García-Pérez JV, Benedito J. Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification. Foods 2023; 12:foods12101940. [PMID: 37238758 DOI: 10.3390/foods12101940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Meat processing involves different transformations in the animal muscle after slaughtering, which results in changes in tenderness, aroma and colour, determining the quality of the final meat product. Enzymatic glycolysis, proteolysis and lipolysis play a key role in the conversion of muscle into meat. The accurate control of enzymatic reactions in meat muscle is complicated due to the numerous influential factors, as well as its low reaction rate. Moreover, exogenous enzymes are also used in the meat industry to produce restructured products (transglutaminase), to obtain bioactive peptides (peptides with antioxidant, antihypertensive and gastrointestinal activity) and to promote meat tenderization (papain, bromelain, ficin, zingibain, cucumisin and actinidin). Emerging technologies, such as ultrasound (US), pulsed electric fields (PEF), moderate electric fields (MEF), high-pressure processing (HPP) or supercritical CO2 (SC-CO2), have been used to intensify enzymatic reactions in different food applications. This review aims to provide an overview of the enzymatic reactions taking place during the processing of meat products, how they could be intensified by using emerging technologies and envisage potential applications.
Collapse
Affiliation(s)
- Blanca Abril
- Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ricard Bou
- Food Safety and Functionality Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA, Monells, Girona), 17121 Girona, Spain
| | - Jose V García-Pérez
- Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jose Benedito
- Department of Food Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
12
|
Masztalerz K, Dróżdż T, Nowicka P, Wojdyło A, Kiełbasa P, Lech K. The Effect of Nonthermal Pretreatment on the Drying Kinetics and Quality of Black Garlic. Molecules 2023; 28:962. [PMID: 36770627 PMCID: PMC9920204 DOI: 10.3390/molecules28030962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Black garlic is obtained from regular garlic (Allium sativum L.) through the aging process and consequently gains many health-promoting properties, including antidiabetic and antioxidant. However, the material is still prone to microbiological deterioration and requires a long time to dry due to its properties. Therefore, this study aimed to investigate the effect of various drying methods on the quality of black garlic as well as determine the influence of selected nonthermal pretreatments on the drying kinetics and quality of black garlic, which is especially important in the case of the materials that are difficult to dry. The Weibull model was chosen to describe drying kinetics. Additionally, color, water activity together with antioxidant activity, phenolic compounds, and antidiabetic potential were determined. This study found that the application of a pulsed electric field (PEF), a constant electric field (CEF) as well as a magnetic field (MF) significantly reduced the time of drying (by 32, 40, and 24 min for a PEF, a CEF, and a MF, respectively, compared to combined drying without the pretreatment), and resulted in high antidiabetic potential. However, the highest content of phenolic compounds (1123.54 and 1125.36 mg/100 g dm for VMD125 and CD3h-VMD, respectively) and antioxidant capacity (ABTS = 6.05 and 5.06 mmol Trolox/100 g dm for VMD500 and CD6h-VMD, respectively) were reported for black garlic treated by vacuum-microwave drying and combined convective pre-drying followed by vacuum-microwave drying. Overall, the nonthermal pretreatment decreased the time of drying and showed very good efficiency in maintaining the antidiabetic potential of black garlic, especially in the case of the materials pretreated by a constant electric field (IC50 = 99 and 56 mg/mL, for α-amylase and α-glucosidase, respectively).
Collapse
Affiliation(s)
- Klaudia Masztalerz
- Institute of Agricultural Engineering, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland
| | - Tomasz Dróżdż
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 b, 30-149 Krakow, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Kiełbasa
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 b, 30-149 Krakow, Poland
| | - Krzysztof Lech
- Institute of Agricultural Engineering, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland
| |
Collapse
|
13
|
Shorstkii I, Mounassar EHA, Bindrich U, Heinz V, Aganovic K. Influence of High Hydrostatic Pressure and Pulsed Electric Field Treatment on Moisture Absorption of Wheat Grains. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ivan Shorstkii
- Kuban State Technological University Advanced Technologies and New Materials Laboratory Moskovskaya 2 350072 Krasnodar Russian Federation
| | - Emad Hussein Ali Mounassar
- Kuban State Technological University Advanced Technologies and New Materials Laboratory Moskovskaya 2 350072 Krasnodar Russian Federation
| | - Ute Bindrich
- DIL German Institute of Food Technologies e.V. Professor-von-Klitzing-Straße 7 49610 Quakenbrück Germany
| | - Volker Heinz
- DIL German Institute of Food Technologies e.V. Professor-von-Klitzing-Straße 7 49610 Quakenbrück Germany
| | - Kemal Aganovic
- DIL German Institute of Food Technologies e.V. Professor-von-Klitzing-Straße 7 49610 Quakenbrück Germany
| |
Collapse
|
14
|
Changes in Starch In Vitro Digestibility and Properties of Cassava Flour Due to Pulsed Electric Field Processing. Foods 2022; 11:foods11223714. [PMID: 36429307 PMCID: PMC9689122 DOI: 10.3390/foods11223714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The research aimed to investigate the effect of pulsed electric field (PEF) treatment on cassava flour at mild intensities (1, 2, and 4 kV/cm) combined with elevated levels of specific energy input (250−500 kJ/kg). Influences on starch digestibility, morphological characteristics, birefringence, short-range order and thermal properties were evaluated. Application of PEF at energy input no greater than 250 kJ/kg had negligible influence on the different starch digestion fractions of cassava flour but raised the rapidly digestible starch fraction at a combined electric field strength >1 kV/cm and energy input >350 kJ/kg. Morphological evaluation revealed that at this PEF combination, cassava starch’s external structure was consistently altered with swelling and disintegration, albeit some granules remained intact. Consequently, this led to disruption in the internal crystalline structure, supported by progressive loss of birefringence and significantly lower absorbance ratio at 1047/1022 cm−1. These physical and microstructural changes of the inherent starch promoted the shift in gelatinization temperatures to a higher temperature and reduced the gelatinization enthalpy. The study demonstrated that PEF can be utilized to change the starch fraction of cassava flour, which is driven by electric field strength and specific energy input, causing changes in the starch-related properties leading to increased digestibility.
Collapse
|
15
|
Modupalli N, Krisshnan A, C K S, D V C, Natarajan V, Koidis A, Rawson A. Effect of novel combination processing technologies on extraction and quality of rice bran oil. Crit Rev Food Sci Nutr 2022; 64:1911-1933. [PMID: 36106441 DOI: 10.1080/10408398.2022.2119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice bran, a primary by-product from the rice processing industries, containing 10-15% oil, attracts significant attention from consumers due to its many health-promoting effects. The extraction methodology used is one of the most critical factors affecting the quality and yield of oil from rice bran. Using solvents is the current commercial process for rice bran oil extraction, which has its setbacks. It is challenging and expensive, and there is a risk of traces of solvent residue in the oil. Emerging combination extraction technologies offer zero to minimal solvent residues or chemical deformation while considering increasing environmental and energy footprint. Emerging combination processing technologies include new-age methods like supercritical fluid extraction, sub-critical fluid extraction, ultrasound-assisted enzymatic extraction, ohmic heating, and microwave-assisted extraction. These techniques have been reported to extract oil from rice bran, improving extraction efficiency and quality. These techniques demonstrate solid prospects for future applications. The present review discusses and compares these emerging technologies for oil extraction from rice bran commercially.
Collapse
Affiliation(s)
- Nikitha Modupalli
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Anitha Krisshnan
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Sunil C K
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Chidanand D V
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | | | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ashish Rawson
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| |
Collapse
|
16
|
Buitimea-Cantúa GV, Rico-Alderete IA, Rostro-Alanís MDJ, Welti-Chanes J, Escobedo-Avellaneda ZJ, Soto-Caballero MC. Effect of High Hydrostatic Pressure and Pulsed Electric Fields Processes on Microbial Safety and Quality of Black/Red Raspberry Juice. Foods 2022; 11:foods11152342. [PMID: 35954108 PMCID: PMC9368702 DOI: 10.3390/foods11152342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Black and red raspberries are fruits with a high phenolic and vitamin C content but are highly susceptible to deterioration. The effect of high hydrostatic pressure (HHP 400−600 MPa/CUT-10 min) and pulsed electric fields (PEF, frequency 100−500 Hz, pulse number 100, electric field strength from 11.3 to 23.3 kV/cm, and specific energy from 19.7 to 168.4 kJ/L) processes on black/red raspberry juice was studied. The effect on the inactivation of microorganisms and pectin methylesterase (PME) activity, physicochemical parameters (pH, acidity, total soluble solids (°Brix), and water activity (aw)), vitamin C and phenolic compounds content were also determined. Results reveal that all HHP-treatments produced the highest (p < 0.05) log-reduction of molds (log 1.85 to 3.72), and yeast (log 3.19), in comparison with PEF-treatments. Increments in pH, acidity, and TSS values attributed to compounds’ decompartmentalization were found. PME activity was partially inactivated by HHP-treatment at 600 MPa/10 min (22% of inactivation) and PEF-treatment at 200 Hz/168.4 kJ/L (19% of inactivation). Increment in vitamin C and TPC was also observed. The highest increment in TPC (79% of increment) and vitamin C (77% of increment) was observed with PEF at 200 Hz/168.4 kJ/L. The putative effect of HHP and PEF on microbial safety, enzyme inactivation, and phytochemical retention is also discussed in detail. In conclusion, HHP and PEF improve phytochemical compounds’ content, microbial safety, and quality of black/red raspberry juice.
Collapse
Affiliation(s)
- Génesis V. Buitimea-Cantúa
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Iván Alejandro Rico-Alderete
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc 31510, Chihuahua, Mexico
| | - Magdalena de Jesús Rostro-Alanís
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Jorge Welti-Chanes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Zamantha J. Escobedo-Avellaneda
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
- Correspondence: (Z.J.E.-A.); (M.C.S.-C.)
| | - Mayra Cristina Soto-Caballero
- Facultad de Ciencias Agrotecnologicas, Universidad Autonoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc 31510, Chihuahua, Mexico
- Correspondence: (Z.J.E.-A.); (M.C.S.-C.)
| |
Collapse
|
17
|
Vlčko T, Rathod NB, Kulawik P, Ozogul Y, Ozogul F. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:275-339. [PMID: 36064295 DOI: 10.1016/bs.afnr.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant-derived bioactive compounds have been extensively studied and used within food industry for the last few decades. Those compounds have been used to extend the shelf-life and improve physico-chemical and sensory properties on food products. They have also been used as nutraceuticals due to broad range of potential health-promoting properties. Unlike the synthetic additives, the natural plant-derived compounds are more acceptable and often regarded as safer by the consumers. This chapter summarizes the extraction methods and sources of those plant-derived bioactives as well as recent findings in relation to their health-promoting properties, including cardio-protective, anti-diabetic, anti-inflammatory, anti-carcinogenic, immuno-modulatory and neuro-protective properties. In addition, the impact of applying those plant-derived compounds on seafood products is also investigated by reviewing the recent studies on their use as anti-microbial, anti-oxidant, coloring and flavoring agents as well as freshness indicators. Moreover, the current limitations of the use of plant-derived bioactive compounds as well as future prospects are discussed. The discoveries show high potential of those compounds and the possibility to apply on many different seafood. The compounds can be applied as individual while more and more studies are showing synergetic effect when those compounds are used in combination providing new important research possibilities.
Collapse
Affiliation(s)
- Tomáš Vlčko
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak Agriculture University in Nitra, Nitra, Slovakia
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Maharashtra, India
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
18
|
Taha A, Casanova F, Šimonis P, Stankevič V, Gomaa MAE, Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022; 11:foods11111556. [PMID: 35681305 PMCID: PMC9180040 DOI: 10.3390/foods11111556] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins' structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions.
Collapse
Affiliation(s)
- Ahmed Taha
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (F.C.); (A.S.)
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
- Correspondence: (F.C.); (A.S.)
| |
Collapse
|
19
|
Qiu S, Abbaspourrad A, Padilla-Zakour OI. Prevention of the Retrogradation of Glutinous Rice Gel and Sweetened Glutinous Rice Cake Utilizing Pulsed Electric Field during Refrigerated Storage. Foods 2022; 11:foods11091306. [PMID: 35564029 PMCID: PMC9103319 DOI: 10.3390/foods11091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pulsed electric field (PEF) processing is an emerging non-thermal technology that shows the potential to improve food quality and maintain stability. However, the attributes and retrogradation properties of food products made of PEF-treated rice grains are still unknown. In the current study, glutinous rice gels (GR-G) and sweetened glutinous rice cakes (GR-C) made of PEF-treated rice grains were prepared and investigated during 14 days of storage at 4 °C. The hardness values of both the GR-G and GR-C-control samples, respectively, increased from 690 g to 1423 g and from 720 g to 1096 g; the adhesiveness values of the GR-G-control and GR-C-control samples decreased to the range of −7.2 g s to −10.0 g s during storage. PEF-treated samples (3 kV/cm, 400 pulses) resulted in preventing effects against retrogradation, resembling the original textural values of the freshly prepared control samples. The high intensity of imposed PEF treatment (300–400 pulses) significantly reduced the gelatinization enthalpy values of both GR samples to 0.3–0.7 J/g. The diffraction patterns of PEF-treated GR samples were analogous to the amorphous peak of fresh-made rice gel. FTIR results indicated that PEF-treated rice grains presented fewer crystalline regions and a lesser extent of the organized double helices after refrigerated storage.
Collapse
|
20
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
21
|
Delso C, Berzosa A, Sanz J, Álvarez I, Raso J. Two-Step PEF Processing for Enhancing the Polyphenol Concentration and Decontaminating a Red Grape Juice. Foods 2022; 11:621. [PMID: 35206097 PMCID: PMC8871114 DOI: 10.3390/foods11040621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
This study's aim is to evaluate Pulsed Electric Fields (PEF) technology as an alternative method for the processing of red grape juice. For this purpose, two PEF treatments were applied: first to grapes for polyphenol enrichment of the juice, and subsequently for microbial decontamination of the obtained juice. Juice obtained from PEF-treated grapes (5 kV/cm, 63.4 kJ/kg) had the polyphenol content 1.5-fold higher and colour intensity two times higher of control juices by spectrophotometric measurement (p ≤ 0.05). A subsequent decontamination treatment by PEF (17.5 kV/cm and 173.6 kJ/kg) achieved inactivation of the present microbiota (yeasts, moulds, and vegetative mesophilic bacteria) below detection level (<30 CFU/mL). Furthermore, PEF-treated juices were microbiologically stable up to 45 days, even at abusive refrigeration storage temperatures (10 °C). PEF juice quality and sensory characteristics were similar to a fresh juice; they were neither affected by the PEF decontamination treatment, nor by storage time and temperature. Results obtained in this study demonstrate the considerable potential of PEF for the production of a polyphenol-enriched and microbially stabilized red grape juice as a unique and sustainable alternative for the juice industry, while avoiding enzymatic and heat treatments.
Collapse
Affiliation(s)
| | | | | | | | - Javier Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (C.D.); (A.B.); (J.S.); (I.Á.)
| |
Collapse
|
22
|
Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even though food by-products have many negative financial and environmental impacts, they contain a considerable quantity of precious bioactive compounds such as polyphenols. The recovery of these compounds from food wastes could diminish their adverse effects in different aspects. For doing this, various nonthermal and conventional methods are used. Since conventional extraction methods may cause plenty of problems, due to their heat production and extreme need for energy and solvent, many novel technologies such as microwave, ultrasound, cold plasma, pulsed electric field, pressurized liquid, and ohmic heating technology have been regarded as alternatives assisting the extraction process. This paper highlights the competence of mild technologies in the recovery of polyphenols from food by-products, the effect of these technologies on polyphenol oxidase, and the application of the recovered polyphenols in the food industry.
Collapse
|
23
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
24
|
Emerging Non-Thermal Technologies for the Extraction of Grape Anthocyanins. Antioxidants (Basel) 2021; 10:antiox10121863. [PMID: 34942965 PMCID: PMC8698441 DOI: 10.3390/antiox10121863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Anthocyanins are flavonoid pigments broadly distributed in plants with great potential to be used as food colorants due to their range of colors, innocuous nature, and positive impact on human health. However, these molecules are unstable and affected by pH changes, oxidation and high temperatures, making it very important to extract them using gentle non-thermal technologies. The use of emerging non-thermal techniques such as High Hydrostatic Pressure (HHP), Ultra High Pressure Homogenization (UHPH), Pulsed Electric Fields (PEFs), Ultrasound (US), irradiation, and Pulsed Light (PL) is currently increasing for many applications in food technology. This article reviews their application, features, advantages and drawbacks in the extraction of anthocyanins from grapes. It shows how extraction can be significantly increased with many of these techniques, while decreasing extraction times and maintaining antioxidant capacity.
Collapse
|
25
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Ahmed Z, Faisal Manzoor M, Hussain A, Hanif M, Zia-Ud-Din, Zeng XA. Study the impact of ultra-sonication and pulsed electric field on the quality of wheat plantlet juice through FTIR and SERS. ULTRASONICS SONOCHEMISTRY 2021; 76:105648. [PMID: 34182313 PMCID: PMC8250445 DOI: 10.1016/j.ultsonch.2021.105648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 08/01/2023]
Abstract
Pulsed electric field (PEF) and Ultrasound (US) are commonly used in food processing. We investigated the combined impact of pulsed electric field (PEF) and ultrasound (US) on the wheat plantlet juice. When compared with the individual treatments, the highest values of total phenolics, total flavonoids, chlorophyll, ORAC assay, and DPPH activities were obtained using the combined (US + PEF) methods. The US + PEF significantly decreased the peroxidase and polyphenol oxidase activities from 0.87 to 0.27 Abs min-1 and 0.031-0.016 Abs min-1. Also, the synergistic application significantly lowered the yeast and mold (3.92 to 2.11 log CFU/mL), E. coli/Coliform (1.95 to 0.96 log CFU/mL), and aerobics (4.41 to 2.01 log CFU/mL). Furthermore, Fourier Transform Infrared (FT-IR) and surface-enhanced Raman spectroscopy (SERS) was used to analyzing juice quality. Gold nanoparticles (AuNPs) were used as the SERS substrates, which provided stronger Raman peaks for the samples treated with US + PEF methods. The FT-IR analysis showed significant enhancement of the nutritional molecules. The enhanced quality of wheat plantlet juice combined with lower yeast and mold suggests the suitability of integrated methods for further research and applications.
Collapse
Affiliation(s)
- Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Department of Agriculture and Food Science, Karakorum International University, Gilgit, Pakistan
| | - Muddasir Hanif
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zia-Ud-Din
- Department of Human Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
27
|
PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R. Pulsed electric field treatment strategies to increase bioaccessibility of phenolic and carotenoid compounds in oil-added carrot purees. Food Chem 2021; 364:130377. [PMID: 34153602 DOI: 10.1016/j.foodchem.2021.130377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/15/2022]
Abstract
The impact of pulsed electric fields (PEF) and their combination with a thermal treatment on the bioaccessibility of phenolic and carotenoid compounds in oil-added carrot puree (5 %) was investigated. Fractions of such puree were differently treated: subjected to PEF (5 pulses of 3.5 kV cm-1) (PEF); thermally treated (70 °C for 10 min) (T) or first PEF treated and then thermally treated (PEF/T). Purees were in vitro digested, carotenoid and phenolic content and bioaccessibility were determined. Likewise, quality attributes and microstructure were analyzed. Generally, treatments did not affect carotenoid content and quality attributes, whereas phenolic content dramatically decreased after PEF. Nevertheless, all treatments enhanced both compounds bioaccessibilities, which were trebled in PEF-treated purees. Particle size reduction may suggest that microstructural changes could be responsible of bioaccessibility increases. Therefore, PEF could be a feasible treatment to enhance phenolic and carotenoid bioaccessibility without altering quality attributes of carrot-based puree.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Pedro Elez-Martínez
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology, Agrotecnio Center, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
29
|
López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R. Enhancing carotenoid and phenolic contents in plant food matrices by applying non-thermal technologies: Bioproduction vs improved extractability. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Ozkan G, Stübler AS, Aganovic K, Dräger G, Esatbeyoglu T, Capanoglu E. Retention of polyphenols and vitamin C in cranberrybush purée (Viburnum opulus) by means of non-thermal treatments. Food Chem 2021; 360:129918. [PMID: 34051454 DOI: 10.1016/j.foodchem.2021.129918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022]
Abstract
The effects of high pressure processing (HPP; 200-600 MPa for 5 or 15 min) and pulsed electric field (PEF; 3 kV/cm, 5-15 kJ/kg) treatment on physicochemical properties (conductivity, pH and total soluble solids content), bioactive compounds (vitamin C, total phenolic (TPC), total flavonoid (TFC), total anthocyanin (TAC) and chlorogenic acid contents), antioxidant capacities (DPPH and CUPRAC assays) and polyphenol oxidase (PPO) activity of cranberrybush purée were evaluated immediately after processing. The results were compared to an untreated purée. According to the results, conductivity increased significantly after PEF (15 kJ/kg) treatment. PEF and HPP treatments resulted in a better retention of bioactive compounds (increase in TPC in the range of ~4-11% and ~10-14% and TFC in the range of ~1-5% and ~6-8% after HPP and PEF, respectively) and antioxidant activity (as measured with CUPRAC method) compared to untreated sample. HPP reduced residual enzyme activity of PPO comparatively better than PEF.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Anna-Sophie Stübler
- German Institute of Food Technologies DIL e.V., Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Kemal Aganovic
- German Institute of Food Technologies DIL e.V., Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
31
|
Technology offers sustainable nutrition solutions. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1002/fsat.3501_8.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants (Basel) 2021; 10:antiox10030417. [PMID: 33803305 PMCID: PMC8001921 DOI: 10.3390/antiox10030417] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
There is a growing consumer preference for high quality extra virgin olive oil (EVOO) with health-promoting and sensory properties that are associated with a higher content of phenolic and volatile compounds. To meet this demand, several novel and emerging technologies are being under study to be applied in EVOO production. This review provides an update of the effect of emerging technologies (pulsed electric fields, high pressure, ultrasound, and microwave treatment), compared to traditional EVOO extraction, on yield, quality, and/or content of some minor compounds and bioactive components, including phenolic compounds, tocopherols, chlorophyll, and carotenoids. In addition, the consumer acceptability of EVOO is discussed. Finally, the application of these emerging technologies in the valorization of olive mill wastes, whose generation is of concern due to its environmental impact, is also addressed.
Collapse
|
33
|
|
34
|
Nowosad K, Sujka M, Pankiewicz U, Kowalski R. The application of PEF technology in food processing and human nutrition. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:397-411. [PMID: 33564198 PMCID: PMC7847884 DOI: 10.1007/s13197-020-04512-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022]
Abstract
During the last decades, many novel techniques of food processing have been developed in response to growing demand for safe and high quality food products. Nowadays, consumers have high expectations regarding the sensory quality, functionality and nutritional value of products. They also attach great importance to the use of environmentally-friendly technologies of food production. The aim of this review is to summarize the applications of PEF in food technology and, potentially, in production of functional food. The examples of process parameters and obtained effects for each application have been presented.
Collapse
Affiliation(s)
- Karolina Nowosad
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Monika Sujka
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Urszula Pankiewicz
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
35
|
Electric stimulation promotes growth, mineral uptake, and antioxidant accumulation in kale (Brassica oleracea var. acephala). Bioelectrochemistry 2020; 138:107727. [PMID: 33429155 DOI: 10.1016/j.bioelechem.2020.107727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 01/25/2023]
Abstract
Several studies have demonstrated that electric treatment has a positive effect, respectively, on germination, root growth and post-harvest quality. Nevertheless, there is still a lack of research on the effect of electric treatment on growth characteristics and quality of whole plants. Here, we explored the effect of electric fields on two cultivars of kale (Brassica oleracea var. acephala). Three levels of electric current (10, 50, and 100 mA) were applied to the nutrient solution of hydroponically grown plants for three weeks. Kale plants subjected to the electric fields, particularly 50 mA, had higher fresh and dry weights than the control. The absence of an electric field in a Faraday cage caused a significant decrease in shoot and root growth compared with the natural electric field (control). Electrostimulation enhanced nutrient uptake by activating root hair formation and active ion transport. Plants grown under 50 mA contained 72% more calcium, 57% more total phenolic compounds, and had a 70% greater antioxidant capacity than the control. This work provides foundational information regarding the effects of electrical stimulus on plants, which could enable the development of innovative culture technologies to improve crop yields and quality.
Collapse
|
36
|
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - Novel perspectives on food and potential health implications. Food Res Int 2020; 137:109709. [PMID: 33233283 DOI: 10.1016/j.foodres.2020.109709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/29/2022]
Abstract
Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. The biological function of a protein depends on its tridimensional structure/conformation, and latest research evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, aggregation and interaction patterns. This review aims at bringing together these recent findings as well as providing novel perspectives about how EF can shape the behavior of proteins towards the development of innovative foods, aiming at consumers' health and wellbeing.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zita Avelar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís Machado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Understanding the impact of moderate-intensity pulsed electric fields (MIPEF) on structural and functional characteristics of pea, rice and gluten concentrates. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02554-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAimThe effect of moderate-intensity pulsed electric fields (MIPEF) was evaluated on vegetable protein concentrates from pea, rice, and gluten.MethodsFive percent (w/w) suspensions of protein concentrates (pH 5 and 6) were exposed to up to 60,000 MIPEF pulses at 1.65 kV/cm. Both structural modifications (absorbance at 280 nm, free sulfhydryl groups, FT-IR-spectra) and functional properties (solubility, water and oil holding capacity, foamability) were analyzed.ResultsMIPEF was able to modify protein structure by inducing unfolding, intramolecular rearrangement, and formation of aggregates. However, these effects were strongly dependent on protein nature and pH. In the case of rice and pea samples, structural changes were associated with negligible modifications in functional properties. By contrast, noticeable changes in these properties were observed for gluten samples, especially after exposure to 20,000 pulses. In particular, at pH 6, an increase in water and oil holding capacity of gluten was detected, while at pH 5, its solubility almost doubled.ConclusionThese results suggest the potential of MIPEF to steer structure of proteins and enhance their technological functionality.
Collapse
|
38
|
Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Peng K, Koubaa M, Bals O, Vorobiev E. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Res Int 2020; 137:109544. [DOI: 10.1016/j.foodres.2020.109544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
|
40
|
Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res Int 2020; 137:109715. [PMID: 33233287 DOI: 10.1016/j.foodres.2020.109715] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
With the improvement of living standards, growing consumer demand for high-quality and natural foods has led to the development of new mild processes to enhance or replace conventional thermal and chemical methods for food processing. Pulsed electric fields (PEF) is an emerging and promising non-thermal food processing technology, which is ongoing from laboratory and pilot plant level to the industrial level. Chinese researchers have made tremendous advances in the potential applications of PEF for processing a wide range of food commodities over the last few years, which contributes to the current understanding and development of PEF technology. The objective of this paper is to conduct a systematic review on the achievements of PEF technology used for food processing in China and the corresponding processing principles. Research on the applicability of PEF in food processing suggests that PEF can be used alone or in combination with other methods, not only to inactivate microorganisms and extract active constituents, but also to modify biomacromolecules, enhance chemical reactions and accelerate the aging of fermented foods, which are mainly related to permeabilization of biomembranes, occurrence of electrochemical and electrolytic reactions, polarization and realignment of molecules, and reduction of activation energy of chemical reactions induced by PEF treatments. In addition, some of the most important challenges for the successful implementation of large-scale industrial applications of PEF technology in the food industry are discussed. The results bring out the benefits of both researchers and the industry.
Collapse
|
41
|
Yildiz S, Pokhrel PR, Unluturk S, Barbosa-Cánovas GV. Changes in Quality Characteristics of Strawberry Juice After Equivalent High Pressure, Ultrasound, and Pulsed Electric Fields Processes. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09250-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. ScientificWorldJournal 2020; 2020:6792069. [PMID: 32908461 PMCID: PMC7474796 DOI: 10.1155/2020/6792069] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/20/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023] Open
Abstract
The flavonoids are compounds synthesized by plants, and they have properties such as antioxidant, anticancer, anti-inflammatory, and antibacterial, among others. One of the most important bioactive properties of flavonoids is their antioxidant effect. Synthetic antioxidants have side toxic effects whilst natural antioxidants, such as flavonoids from natural sources, have relatively low toxicity. Therefore, it is important to incorporate flavonoids derived from natural sources in several products such as foods, cosmetics, and drugs. For this reason, there is currently a need to extract flavonoids from plant resources. In this review are described the most important parameters involved in the extraction of flavonoids by unconventional methods such as ultrasound, pressurized liquid extraction, mechanochemical, high hydrostatic pressure, supercritical fluid, negative pressure cavitation, intensification of vaporization by decompression to the vacuum, microwave, infrared, pulsed electric field, high-voltage electrical discharges, and enzyme-assisted extraction. There are no unified operation conditions to achieve high yields and purity. Notwithstanding, progress has been achieved in the development of more advanced and environmentally friendly methods of extraction. Although in literature are found important advances, a complete understanding of the extraction process in each of the unconventional techniques is needed to determine the thermodynamic and kinetic mechanisms that govern each of the techniques.
Collapse
|
43
|
Wang L, Wang J, Wen D. Devices with Tuneable Resistance Switching Characteristics Based on a Multilayer Structure of Graphene Oxide and Egg Albumen. NANOMATERIALS 2020; 10:nano10081491. [PMID: 32751364 PMCID: PMC7466537 DOI: 10.3390/nano10081491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
We used graphene oxide (GO) and egg albumen (EA) to fabricate bipolar resistance switching devices with indium tin oxide (ITO)/GO/EA/GO/Aluminum (Al) and ITO/EA/Al structures. The experimental results show that these ITO/GO/EA/GO/Al and ITO/EA/Al bio-memristors exhibit rewritable flash memory characteristics. Comparisons of ITO/GO/EA/GO/Al devices with 0.05 ωt %, 0.5 ωt %, and 2 ωt % GO in the GO layers and the ITO/EA/Al device show that the ON/OFF current ratio of these devices increases as the GO concentration decreases. Among these devices, the highest switching current ratio is 1.87 × 103. Moreover, the RESET voltage decreases as the GO concentration decreases, which indicates that GO layers with different GO concentrations can be adopted to adjust the ON/OFF current ratio and the RESET voltage. When the GO concentration is 0.5 ωt %, the device can be switched more than 200 times. The retention times of all the devices are longer than 104 s.
Collapse
Affiliation(s)
- Lu Wang
- Correspondence: ; Tel.: +86-188-4502-5666
| | | | | |
Collapse
|
44
|
Etzbach L, Stolle R, Anheuser K, Herdegen V, Schieber A, Weber F. Impact of Different Pasteurization Techniques and Subsequent Ultrasonication on the In Vitro Bioaccessibility of Carotenoids in Valencia Orange ( Citrus sinensis (L.) Osbeck) Juice. Antioxidants (Basel) 2020; 9:E534. [PMID: 32570987 PMCID: PMC7346171 DOI: 10.3390/antiox9060534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of traditional pasteurization (low pasteurization, conventional pasteurization, hot filling) and alternative pasteurization (pulsed electric fields, high pressure processing), followed by ultrasonication on the carotenoid content, carotenoid profile, and on the in vitro carotenoid bioaccessibility of orange juice were investigated. There was no significant difference in the total carotenoid content between the untreated juice (879.74 µg/100 g juice) and all pasteurized juices. Significantly lower contents of violaxanthin esters were found in the high thermally-treated juices (conventional pasteurization, hot filling) compared to the untreated juice, owing to heat-induced epoxy-furanoid rearrangement. The additional ultrasonication had almost no effects on the carotenoid content and profile of the orange juices. However, the in vitro solubilization and the micellarization efficiency were strongly increased by ultrasound, the latter by approximately 85.3-159.5%. Therefore, among the applied processing techniques, ultrasonication might be a promising technology to enhance the in vitro bioaccessibility of carotenoids and, thus, the nutritional value of orange juice.
Collapse
Affiliation(s)
- Lara Etzbach
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| | - Ruth Stolle
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| | - Kerstin Anheuser
- Eckes-Granini Group GmbH, Ludwig-Eckes-Platz 1, D-55268 Nieder-Olm, Germany; (K.A.); (V.H.)
| | - Volker Herdegen
- Eckes-Granini Group GmbH, Ludwig-Eckes-Platz 1, D-55268 Nieder-Olm, Germany; (K.A.); (V.H.)
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany; (L.E.); (R.S.); (A.S.)
| |
Collapse
|
45
|
Katariya P, Arya S, Pandit A. Novel, non-thermal hydrodynamic cavitation of orange juice: Effects on physical properties and stability of bioactive compounds. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Impact of Processing Factors on Quality of Frozen Vegetables and Fruits. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09216-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractIn this paper I review the production of frozen vegetables and fruits from a chain perspective. I argue that the final quality of the frozen product still can be improved via (a) optimization of the complete existing production chain towards quality, and/or (b) introduction of some promising novel processing technology. For this optimization, knowledge is required how all processing steps impact the final quality. Hence, first I review physicochemical and biochemical processes underlying the final quality, such as water holding capacity, ice crystal growth and mechanical damage. Subsequently, I review how each individual processing step impacts the final quality via these fundamental physicochemical and biochemical processes. In this review of processing steps, I also review the potential of novel processing technologies. The results of our literature review are summarized via a causal network, linking processing steps, fundamental physicochemical and biochemical processes, and their correlation with final product quality. I conclude that there is room for optimization of the current production chains via matching processing times with time scales of the fundamental physicochemical and biochemical processes. Regarding novel processing technology, it is concluded in general that they are difficult to implement in the context of existing production chains. I do see the potential for novel processing technology combined with process intensification, incorporating the blanching pretreatment—but which involves quite a change of the production chain.
Collapse
|
47
|
Grape Must Processed by Pulsed Electric Fields: Effect on the Inoculation and Development of Non-Saccharomyces Yeasts. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02458-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
49
|
Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109778] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Li DD, Tao Y, Shi YN, Han YB, Yang N, Xu XM. Effect of re-acetylation on the acid hydrolysis of chitosan under an induced electric field. Food Chem 2020; 309:125767. [DOI: 10.1016/j.foodchem.2019.125767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023]
|