1
|
Magurany KA, English JC, Cox KD. Application of the threshold of toxicological concern (TTC) in the evaluation of drinking water contact chemicals. Toxicol Mech Methods 2023:1-17. [PMID: 38031359 DOI: 10.1080/15376516.2023.2279041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The Threshold of Toxicological Concern (TTC) is an approach for assessing the safety of chemicals with low levels of exposure for which limited toxicology data are available. The original TTC criteria were derived for oral exposures from a distributional analysis of a dataset of 613 chemicals that identified 5th percentile no observed effect level (NOEL) values grouped within three tiers of compounds having specific structural functional groups and/or toxic potencies known as Cramer I, II and III classifications. Subsequent assessments of the TTC approach have established current thresholds to be scientifically robust. While the TTC has gained acknowledgment and acceptance by many regulatory agencies and organizations, use of the TTC approach in evaluating drinking water chemicals has been limited. To apply the TTC concept to drinking water chemicals, an exposure-based approach that incorporates the current weight of evidence for the target chemical is presented. Such an approach provides a comparative point of departure to the 5th percentile TTC NOEL using existing data, while conserving the allocation of toxicological resources for quantitative risk assessment to chemicals with greater exposure or toxicity. This approach will be considered for incorporation into NSF/ANSI/CAN 600, a health effects standard used in the safety evaluation of chemicals present in drinking water from drinking water contact additives and materials certified to NSF/ANSI/CAN 60 and 61, respectively.
Collapse
Affiliation(s)
| | | | - Kevin D Cox
- Water Toxics Unit, Michigan Department of Environment, Great Lakes and Energy (EGLE), Lansing, MI, USA
| |
Collapse
|
2
|
Wiesner L, Araya S, Lovsin Barle E. Identifying non-hazardous substances in pharmaceutical manufacturing and setting default Health-Based Exposure Limits (HBELs). J Appl Toxicol 2022; 42:1443-1457. [PMID: 35315528 DOI: 10.1002/jat.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Contract Development and Manufacturing Organizations (CDMOs) that manufacture large, diverse portfolio of chemical and pharmaceutical substances require pragmatic risk-based decisions with respect to the safe carry-over between different chemical entities, as well as for worker protection. Additionally, CDMOs may not have access to primary study data or data is generally lacking for a specific substance. While pharmaceuticals require the establishment of health-based exposure limits (HBELs) (e.g., occupational exposure limits, permitted daily exposure limits), the limits for non-hazardous substances could be set in a protective and pragmatic way by using default values, when internally required. Since there is no aligned definition provided by authorities, nor agreed default values for non-hazardous substances, we provide a decision tree in order to help qualified experts (such as qualified toxicologists) to identify the group of non-hazardous substances and to assign default HBEL values for specific routes of exposure. The non-hazardous substances discussed within this publication are part of the following subgroups: (I) inactive pharmaceutical ingredients, (II) pharmaceutical excipients or cosmetic ingredients, (III) substances Generally Recognized as Safe (GRAS), and (IV) food ingredients, additives and contact materials. The proposed default limit values are 1 mg/m3 for the OEL, and 50 mg/day for the PDE oral and IV (intravenous) route.
Collapse
|
3
|
Focusing Points on FSCJ’s Guideline Recently Established: Risk Assessment of Food Contact Materials. Food Saf (Tokyo) 2022; 10:57-69. [PMID: 35837505 PMCID: PMC9233751 DOI: 10.14252/foodsafetyfscj.d-21-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
|
4
|
Identification of recycled polyethylene and virgin polyethylene based on untargeted migrants. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Patel A, Joshi K, Rose J, Laufersweiler M, Felter SP, Api AM. Bolstering the existing database supporting the non-cancer Threshold of Toxicological Concern values with toxicity data on fragrance-related materials. Regul Toxicol Pharmacol 2020; 116:104718. [DOI: 10.1016/j.yrtph.2020.104718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
|
6
|
Pham LL, Borghoff SJ, Thompson CM. Comparison of threshold of toxicological concern (TTC) values to oral reference dose (RfD) values. Regul Toxicol Pharmacol 2020; 113:104651. [DOI: 10.1016/j.yrtph.2020.104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
|
7
|
Rogiers V, Benfenati E, Bernauer U, Bodin L, Carmichael P, Chaudhry Q, Coenraads PJ, Cronin MT, Dent M, Dusinska M, Ellison C, Ezendam J, Gaffet E, Galli CL, Goebel C, Granum B, Hollnagel HM, Kern PS, Kosemund-Meynen K, Ouédraogo G, Panteri E, Rousselle C, Stepnik M, Vanhaecke T, von Goetz N, Worth A. The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology 2020; 436:152421. [DOI: 10.1016/j.tox.2020.152421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
|
8
|
Mahony C, Bowtell P, Huber M, Kosemund K, Pfuhler S, Zhu T, Barlow S, McMillan DA. Threshold of toxicological concern (TTC) for botanicals - Concentration data analysis of potentially genotoxic constituents to substantiate and extend the TTC approach to botanicals. Food Chem Toxicol 2020; 138:111182. [DOI: 10.1016/j.fct.2020.111182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
|
9
|
Pinter E, Rainer B, Czerny T, Riegel E, Schilter B, Marin-Kuan M, Tacker M. Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the Genotoxic Potential of Food Contact Materials. Foods 2020; 9:foods9020237. [PMID: 32098342 PMCID: PMC7074469 DOI: 10.3390/foods9020237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023] Open
Abstract
Background: Non-targeted screening of food contact materials (FCM) for non-intentionally added substances (NIAS) reveals a great number of unknown and unidentified substances present at low concentrations. In the absence of toxicological data, the application of the threshold of toxicological concern (TTC) or of EU Regulation 10/2011 requires methods able to fulfill safety threshold criteria. In this review, mammalian in vitro genotoxicity assays are analyzed for their ability to detect DNA-damaging substances at limits of biological detection (LOBD) corresponding to the appropriate safety thresholds. Results: The ability of the assays to detect genotoxic effects varies greatly between substance classes. Especially for direct-acting mutagens, the assays lacked the ability to detect most DNA reactive substances below the threshold of 10 ppb, making them unsuitable to pick up potential genotoxicants present in FCM migrates. However, suitability for the detection of chromosomal damage or investigation of other modes of action makes them a complementary tool as part of a standard test battery aimed at giving additional information to ensure safety. Conclusion: improvements are necessary to comply with regulatory thresholds to consider mammalian genotoxicity in vitro assays to assess FCM safety.
Collapse
Affiliation(s)
- Elisabeth Pinter
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
- Correspondence: ; Tel.: +43-1-606-6877-3584
| | - Bernhard Rainer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Benoît Schilter
- Nestlé Research Center, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Manfred Tacker
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| |
Collapse
|
10
|
Reilly L, Serafimova R, Partosch F, Gundert-Remy U, Cortiñas Abrahantes J, Dorne JLM, Kass GE. Testing the thresholds of toxicological concern values using a new database for food-related substances. Toxicol Lett 2019; 314:117-123. [DOI: 10.1016/j.toxlet.2019.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 11/24/2022]
|
11
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández-Jerez AF, Hougaard Bennekou S, Koutsoumanis KP, Machera K, Naegeli H, Nielsen SS, Schlatter JR, Schrenk D, Silano V, Turck D, Younes M, Gundert-Remy U, Kass GEN, Kleiner J, Rossi AM, Serafimova R, Reilly L, Wallace HM. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J 2019; 17:e05708. [PMID: 32626331 PMCID: PMC7009090 DOI: 10.2903/j.efsa.2019.5708] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Scientific Committee confirms that the Threshold of Toxicological Concern (TTC) is a pragmatic screening and prioritisation tool for use in food safety assessment. This Guidance provides clear step-by-step instructions for use of the TTC approach. The inclusion and exclusion criteria are defined and the use of the TTC decision tree is explained. The approach can be used when the chemical structure of the substance is known, there are limited chemical-specific toxicity data and the exposure can be estimated. The TTC approach should not be used for substances for which EU food/feed legislation requires the submission of toxicity data or when sufficient data are available for a risk assessment or if the substance under consideration falls into one of the exclusion categories. For substances that have the potential to be DNA-reactive mutagens and/or carcinogens based on the weight of evidence, the relevant TTC value is 0.0025 μg/kg body weight (bw) per day. For organophosphates or carbamates, the relevant TTC value is 0.3 μg/kg bw per day. All other substances are grouped according to the Cramer classification. The TTC values for Cramer Classes I, II and III are 30 μg/kg bw per day, 9 μg/kg bw per day and 1.5 μg/kg bw per day, respectively. For substances with exposures below the TTC values, the probability that they would cause adverse health effects is low. If the estimated exposure to a substance is higher than the relevant TTC value, a non-TTC approach is required to reach a conclusion on potential adverse health effects.
Collapse
|
12
|
Yang C, Barlow SM, Muldoon Jacobs KL, Vitcheva V, Boobis AR, Felter SP, Arvidson KB, Keller D, Cronin MT, Enoch S, Worth A, Hollnagel HM. Thresholds of Toxicological Concern for cosmetics-related substances: New database, thresholds, and enrichment of chemical space. Food Chem Toxicol 2017; 109:170-193. [DOI: 10.1016/j.fct.2017.08.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
|
13
|
Muncke J, Backhaus T, Geueke B, Maffini MV, Martin OV, Myers JP, Soto AM, Trasande L, Trier X, Scheringer M. Scientific Challenges in the Risk Assessment of Food Contact Materials. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:095001. [PMID: 28893723 PMCID: PMC5915200 DOI: 10.1289/ehp644] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Food contact articles (FCAs) are manufactured from food contact materials (FCMs) that include plastics, paper, metal, glass, and printing inks. Chemicals can migrate from FCAs into food during storage, processing, and transportation. Food contact materials' safety is evaluated using chemical risk assessment (RA). Several challenges to the RA of FCAs exist. OBJECTIVES We review regulatory requirements for RA of FCMs in the United States and Europe, identify gaps in RA, and highlight opportunities for improving the protection of public health. We intend to initiate a discussion in the wider scientific community to enhance the safety of food contact articles. DISCUSSION Based on our evaluation of the evidence, we conclude that current regulations are insufficient for addressing chemical exposures from FCAs. RA currently focuses on monomers and additives used in the manufacture of products, but it does not cover all substances formed in the production processes. Several factors hamper effective RA for many FCMs, including a lack of information on chemical identity, inadequate assessment of hazardous properties, and missing exposure data. Companies make decisions about the safety of some food contact chemicals (FCCs) without review by public authorities. Some chemical migration limits cannot be enforced because analytical standards are unavailable. CONCLUSION We think that exposures to hazardous substances migrating from FCAs require more attention. We recommend a) limiting the number and types of chemicals authorized for manufacture and b) developing novel approaches for assessing the safety of chemicals in FCAs, including unidentified chemicals that form during or after production. https://doi.org/10.1289/EHP644.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation , Zurich, Switzerland
| | - Thomas Backhaus
- Department of Biological & Environmental Sciences, University of Gothenburg , Sweden
| | - Birgit Geueke
- Food Packaging Forum Foundation , Zurich, Switzerland
| | | | | | - John Peterson Myers
- Environmental Health Sciences , Charlottesville, Virginia, USA
- Department of Chemistry, Carnegie Mellon University , Pittsburg, Pennsylvania, USA
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, Massachusetts, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine , New York, New York, USA
| | - Xenia Trier
- DTU Food, Technical University of Denmark , Copenhagen, Denmark (currently at European Environmental Agency, Copenhagen, Denmark )
| | - Martin Scheringer
- Research Centre for Toxic Compounds in the Environment, Masaryk University , Brno, Czech Republic
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology (ETH) , Zurich, Switzerland
| |
Collapse
|
14
|
Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-1006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Recent developments in the risk assessment of chemicals in food and their potential impact on the safety assessment of substances used in food contact materials. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4357] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Zarn JA, Hänggi E, Engeli BE. Impact of study design and database parameters on NOAEL distributions used for toxicological concern (TTC) values. Regul Toxicol Pharmacol 2015; 72:491-500. [DOI: 10.1016/j.yrtph.2015.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
17
|
Lago MA, Rodríguez-Bernaldo de Quirós A, Sendón R, Bustos J, Nieto MT, Paseiro P. Photoinitiators: a food safety review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:779-98. [DOI: 10.1080/19440049.2015.1014866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Feigenbaum A, Pinalli R, Giannetto M, Barlow S. Reliability of the TTC approach: Learning from inclusion of pesticide active substances in the supporting database. Food Chem Toxicol 2015; 75:24-38. [DOI: 10.1016/j.fct.2014.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 08/05/2014] [Accepted: 10/15/2014] [Indexed: 11/15/2022]
|
19
|
Price N, Chaudhry Q. Application of in silico modelling to estimate toxicity of migrating substances from food packaging. Food Chem Toxicol 2014; 71:136-41. [DOI: 10.1016/j.fct.2014.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/28/2022]
|
20
|
Leeman WR, Krul L, Houben GF. Reevaluation of the Munro dataset to derive more specific TTC thresholds. Regul Toxicol Pharmacol 2014; 69:273-8. [DOI: 10.1016/j.yrtph.2014.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
21
|
Internal threshold of toxicological concern values: enabling route-to-route extrapolation. Arch Toxicol 2014; 89:941-8. [DOI: 10.1007/s00204-014-1287-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/28/2014] [Indexed: 01/17/2023]
|
22
|
Price P, Zaleski R, Hollnagel H, Ketelslegers H, Han X. Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:414-21. [DOI: 10.1080/19440049.2013.865145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Biedermann S, Zurfluh M, Grob K, Vedani A, Brüschweiler BJ. Migration of cyclo-diBA from coatings into canned food: Method of analysis, concentration determined in a survey and in silico hazard profiling. Food Chem Toxicol 2013; 58:107-15. [DOI: 10.1016/j.fct.2013.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
|
24
|
Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC). EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2750] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
|