1
|
Delanghe JR, Van Elslande J, Godefroid MJ, Thieuw Barroso AM, De Buyzere ML, Maenhout TM. Colorimetric correcting for sample concentration in stool samples. Clin Chem Lab Med 2025; 63:581-586. [PMID: 39301583 DOI: 10.1515/cclm-2024-0961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES Fecal immunochemical tests (FIT) for hemoglobin are currently considered the screening investigation of choice for colorectal cancer and are worldwide recommended. Similarly, fecal calprotectin is a widely used test for monitoring intestinal inflammation. The pre-analytical issues regarding stool samples have hardly been dealt with and are difficult to solve. Currently, there are no reference analytes available which allow to correct test results for the variable water content of the stool sample. Studies on preanalytics of stool samples have generally focused on sample preparation and sample storage, but generally have paid little attention to the variability in sample hydration and sample composition. METHODS Stercobilin is a stable heme metabolite which is abundant in stool. Stercobilin concentration can be simply assayed in stool extracts using colorimetry (determination of the I index). Serum indices (H, I and L) and bilirubin concentration of fecal extracts were determined on a Atellica Platform (Siemens). RESULTS The inter-individual variation of stercobilin was found to be high. Assaying stercobilin allows to correct for stool sample dilution. The median value of the I-index was used as a reference for correcting the data. Correcting fecal blood results for sample dilution resulted in a significant increase in positive tests (from 9.3 to 11.7 %). For calprotectin, correction resulted in 3.1 % extra positive results and 7.7 % negative results. CONCLUSIONS Except in the case of obstructive jaundice, this correction can be applied. Correcting test results of common fecal analytes like FIT and calprotectin may result in a better tailored test interpretation.
Collapse
|
2
|
Catussi BLC, Lo Turco EG, Pereira DM, Teixeira RMN, Castro BP, Massaia IFD. Metabolomics: Unveiling biological matrices in precision nutrition and health. Clin Nutr ESPEN 2024; 64:314-323. [PMID: 39427750 DOI: 10.1016/j.clnesp.2024.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Precision nutrition, an expanding field at the intersection of nutrition science and personalized medicine, is rapidly evolving with metabolomics integration. Metabolomics, facilitated by advanced technologies like mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, facilitates comprehensive profiling of metabolites across diverse biological samples. From the perspective of health care systems, precision nutrition gains relevance due to the substantial impact of prevalent non-communicable diseases (NCDs) on societal well-being, which is directly linked with dietary habits and eating behavior. Furthermore, biomarker products derived from metabolomics have been utilized in Europe, the USA, and Brazil to understand metabolic dysregulations and tailor diets accordingly. Despite its burgeoning status, metabolomics holds great potential in revolutionizing nutritional science, particularly with the integration of artificial intelligence and machine learning, offering novel insights into personalized dietary interventions and disease prediction. This narrative review emphasizes the transformative impact of metabolomics in precision and delineates avenues for future research and application, paving the way for a more tailored and practical approach to nutrition management.
Collapse
|
3
|
Shah SAUR, Tang B, He D, Hao Y, Ahmad M, Nabi G, McLaughlin R, Wang C, Kou Z, Wang K. Effect of calf separation on gut microbiome and fecal metabolome of mother in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Int Microbiol 2024:10.1007/s10123-024-00613-8. [PMID: 39532805 DOI: 10.1007/s10123-024-00613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Social separation, or the absence of social support, can cause physical and psychological health issues. Social separation is crucial for the welfare of the Yangtze finless porpoise (YFP) in captivity because they face many challenges like frequent social separation, noise from visitors, and animal replacement, which can cause psychological and physiological stress. This research is aimed at assessing the potential negative impacts of social separation on the gut microbiome and metabolome of captive YFP, focusing on the potential imbalances caused by mother-calf separation. The study found that social separation did not alter the alpha and beta diversity of the gut microbes but increased the abundance of disease-associated taxa such as Romboutsia, Terrisporobacter, and Clostridium_sensu_stricto_13 in the MC (mother-calf) group while increasing Paeniclostridium and Clostridium_sensu_stricto_1 associated with host health in the MS (mother-separated) group. The fecal metabolome underwent significant changes during social separation, with stress-associated metabolites like kainic acid, phenethylamine glucuronide, and paxilline upregulated in the MC group and host health-associated metabolites like butyric acid, 6-hydroxyhexanoic acid, and fosinopril downregulated in the MS group. In addition, there was a strong association between the fecal microbiome and the metabolome of captive YFPs. The study enhances our comprehension of the detrimental effects of social separation, which result in disruptions in the gut microbiome and fecal metabolome. The study is aimed at introducing a new method for assessing the health and welfare of endangered mammals in captivity.
Collapse
Affiliation(s)
- Syed Ata Ur Rahman Shah
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| | - Dekui He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- National Aquatic Biological Resource Center, NABRC, Wuhan, 430072, China.
| | - Maaz Ahmad
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Richard McLaughlin
- School of Liberal Arts and Sciences, Gateway Technical College, Kenosha, WI, 53144, USA
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhangbing Kou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
4
|
Sonnega S, Sheriff MJ. Harnessing the gut microbiome: a potential biomarker for wild animal welfare. Front Vet Sci 2024; 11:1474028. [PMID: 39415953 PMCID: PMC11479891 DOI: 10.3389/fvets.2024.1474028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The welfare of wild animal populations is critically important to conservation, with profound implications for ecosystem health, biodiversity, and zoonotic disease transmission. Animal welfare is typically defined as the accumulated affective mental state of an animal over a particular time period. However, the assessment of animal welfare in the wild poses unique challenges, primarily due to the lack of universally applicable biomarkers. This perspective explores the potential role of the gut microbiome, a dynamic and non-invasive biomarker, as a novel avenue for evaluating animal welfare in wild animals. The gut microbiome, through interactions with the host's physiology, behavior, and cognition, offers a promising opportunity to gain insights into the well-being of animals. In this synthesis, we discuss the distinction between fitness and welfare, the complexities of assessing welfare in wild populations, and the linkages between the gut microbiome and aspects of animal welfare such as behavior and cognition. We lastly elucidate how the gut microbiome could serve as a valuable tool for wildlife managers, with the potential to serve as a non-invasive yet informative window into the welfare of wild animals. As this nascent field evolves, it presents unique opportunities to enhance our understanding of the well-being of wild animals and to contribute to the preservation of ecosystems, biodiversity, and human health.
Collapse
Affiliation(s)
- Sam Sonnega
- Department of Biology, UMass Dartmouth, Dartmouth, MA, United States
| | | |
Collapse
|
5
|
Gelambi M, Whitehead SR. Untargeted Metabolomics Reveals Fruit Secondary Metabolites Alter Bat Nutrient Absorption. J Chem Ecol 2024; 50:385-396. [PMID: 38758510 PMCID: PMC11399193 DOI: 10.1007/s10886-024-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The ecological interaction between fleshy fruits and frugivores is influenced by diverse mixtures of secondary metabolites that naturally occur in the fruit pulp. Although some fruit secondary metabolites have a primary role in defending the pulp against antagonistic frugivores, these metabolites also potentially affect mutualistic interactions. The physiological impact of these secondary metabolites on mutualistic frugivores remains largely unexplored. Using a mutualistic fruit bat (Carollia perspicillata), we showed that ingesting four secondary metabolites commonly found in plant tissues affects bat foraging behavior and induces changes in the fecal metabolome. Our behavioral trials showed that the metabolites tested typically deter bats. Our metabolomic surveys suggest that secondary metabolites alter, either by increasing or decreasing, the absorption of essential macronutrients. These behavioral and physiological effects vary based on the specific identity and concentration of the metabolite tested. Our results also suggest that a portion of the secondary metabolites consumed is excreted by the bat intact or slightly modified. By identifying key shifts in the fecal metabolome of a mutualistic frugivore caused by secondary metabolite consumption, this study improves our understanding of the effects of fruit chemistry on frugivore physiology.
Collapse
Affiliation(s)
- Mariana Gelambi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Latham Hall RM 427, 220 Ag Quad Lane, Blacksburg, VA, 24060, USA.
- La Selva Biological Station, Organization for Tropical Studies, Puerto Viejo de Sarapiquí, Heredia Province, Costa Rica.
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Latham Hall RM 427, 220 Ag Quad Lane, Blacksburg, VA, 24060, USA
- La Selva Biological Station, Organization for Tropical Studies, Puerto Viejo de Sarapiquí, Heredia Province, Costa Rica
| |
Collapse
|
6
|
Roncancio-Duque N, García-Ariza JE, Rivera-Franco N, Gonzalez-Ríos AM, López-Alvarez D. Comparison of DNA quantity and quality from fecal samples of mammals transported in ethanol or lysis buffer. One Health 2024; 18:100731. [PMID: 38655016 PMCID: PMC11035093 DOI: 10.1016/j.onehlt.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Using fecal microbial community profiles through sequencing approaches helps to unravel the intimate interplay between health, wellness, and diet in wild animals with their environment. Ensuring the proper preservation of fecal samples before processing is crucial to ensure reliable results. In this study, we evaluated the efficiency of two different preservation methods, considering the following criteria: DNA yield, quality and integrity, and microbial community structure based on Oxford Nanopore amplicon sequencing of the V3-V4 region of bacterial 16S rRNA and protozoa 18S rRNA genes. Eighteen matched pairs of mammalian fecal samples were collected and transported in 99.8% ethanol and lysis buffer; processing occurred between 55 and 461 days post-collection. Wilcoxon signed-rank tests were used to analyze quantitative measurements for paired samples. The A260/280 ratio, a measure of nucleic acid purity, was assessed descriptively for each media, and the Bartlett test evaluated dispersion of this ratio. A Fisher test was performed to compare the number of positive reactions for DNA extraction or PCR amplification of the 16S and 18S rRNA genes between both media. The concentration of total DNA and amplicons, as well as the number of reads obtained in sequencing, was significantly higher in the samples preserved with lysis buffer compared to ethanol, with magnitudes up to three times higher. Electrophoretic analysis of total DNA and amplicons further confirmed superior DNA integrity in lysis buffer preserved samples. The A260/280 values obtained using the lysis buffer were of optimal purity (mean: 1.92) and with little dispersion (SD: 0.27); on the other hand, the ethanol samples also presented an excellent average quality (mean: 1.94), but they were dispersed (SD: 1.10). For molecular studies using mammalian feces, the lysis buffer reagent proved to be a reliable solution for their collection, conservation, and storage.
Collapse
Affiliation(s)
- Néstor Roncancio-Duque
- Facultad de Ciencias Agropecuarias, Grupo de Investigación en Diversidad Biológica, Universidad Nacional de Colombia, Sede Palmira, Colombia
| | - Jeison Eduardo García-Ariza
- Facultad de Ciencias Agropecuarias, Grupo de Investigación en Diversidad Biológica, Universidad Nacional de Colombia, Sede Palmira, Colombia
| | - Nelson Rivera-Franco
- Universidad del Valle, Facultad de Salud, Escuela de Ciencias Básicas, Grupo VIREM—Virus Emergentes y Enfermedad, Cali, Valle del Cauca, Colombia
- Department of Neurology, Johns Hopkins School of Medicine, Maryland, United States
| | - Andrés Mauricio Gonzalez-Ríos
- Universidad del Valle, Facultad de Salud, Escuela de Ciencias Básicas, Grupo VIREM—Virus Emergentes y Enfermedad, Cali, Valle del Cauca, Colombia
| | - Diana López-Alvarez
- Facultad de Ciencias Agropecuarias, Grupo de Investigación en Diversidad Biológica, Universidad Nacional de Colombia, Sede Palmira, Colombia
- Universidad del Valle, Facultad de Salud, Escuela de Ciencias Básicas, Grupo VIREM—Virus Emergentes y Enfermedad, Cali, Valle del Cauca, Colombia
| |
Collapse
|
7
|
Lekka P, Fragopoulou E, Terpou A, Dasenaki M. Exploring Human Metabolome after Wine Intake-A Review. Molecules 2023; 28:7616. [PMID: 38005338 PMCID: PMC10673339 DOI: 10.3390/molecules28227616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Wine has a rich history dating back to 2200 BC, originally recognized for its medicinal properties. Today, with the aid of advanced technologies like metabolomics and sophisticated analytical techniques, we have gained remarkable insights into the molecular-level changes induced by wine consumption in the human organism. This review embarks on a comprehensive exploration of the alterations in human metabolome associated with wine consumption. A great number of 51 studies from the last 25 years were reviewed; these studies systematically investigated shifts in metabolic profiles within blood, urine, and feces samples, encompassing both short-term and long-term studies of the consumption of wine and wine derivatives. Significant metabolic alterations were observed in a wide variety of metabolites belonging to different compound classes, such as phenolic compounds, lipids, organic acids, and amino acids, among others. Within these classes, both endogenous metabolites as well as diet-related metabolites that exhibited up-regulation or down-regulation following wine consumption were included. The up-regulation of short-chain fatty acids and the down-regulation of sphingomyelins after wine intake, as well as the up-regulation of gut microbial fermentation metabolites like vanillic and syringic acid are some of the most important findings reported in the reviewed literature. Our results confirm the intact passage of certain wine compounds, such as tartaric acid and other wine acids, to the human organism. In an era where the health effects of wine consumption are of growing interest, this review offers a holistic perspective on the metabolic underpinnings of this centuries-old tradition.
Collapse
Affiliation(s)
- Pelagia Lekka
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Elizabeth Fragopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece;
| | - Antonia Terpou
- Department of Agricultural Development, Agrofood and Management of Natural Resources, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, 34400 Psachna, Greece;
| | - Marilena Dasenaki
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| |
Collapse
|
8
|
Lan J, Greter G, Streckenbach B, Wanner B, Arnoldini M, Zenobi R, Slack E. Non-invasive monitoring of microbiota and host metabolism using secondary electrospray ionization-mass spectrometry. CELL REPORTS METHODS 2023; 3:100539. [PMID: 37671025 PMCID: PMC10475793 DOI: 10.1016/j.crmeth.2023.100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023]
Abstract
The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.
Collapse
Affiliation(s)
- Jiayi Lan
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Giorgia Greter
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Markus Arnoldini
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Wang YZ, Chen YY, Wu XZ, Bai PR, An N, Liu XL, Zhu QF, Feng YQ. Uncovering the Carboxylated Metabolome in Gut Microbiota-Host Co-metabolism: A Chemical Derivatization-Molecular Networking Approach. Anal Chem 2023. [PMID: 37471289 DOI: 10.1021/acs.analchem.3c02353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Gut microbiota-host co-metabolites serve as essential mediators of communication between the host and gut microbiota. They provide nutrient sources for host cells and regulate gut microenvironment, which are associated with a variety of diseases. Analysis of gut microbiota-host co-metabolites is of great significance to explore the host-gut microbiota interaction. In this study, we integrated chemical derivatization, liquid chromatography-mass spectrometry, and molecular networking (MN) to establish a novel CD-MN strategy for the analysis of carboxylated metabolites in gut microbial-host co-metabolism. Using this strategy, 261 carboxylated metabolites from mouse feces were detected, which grouped to various classes including fatty acids, bile acids, N-acyl amino acids, benzoheterocyclic acids, aromatic acids, and other unknown small-scale molecular clusters in MN. Based on the interpretation of the bile acid cluster, a novel type of phenylacetylated conjugates of host bile acids was identified, which were mediated by gut microbiota and exhibited a strong binding ability to Farnesoid X receptor and Takeda G protein-coupled receptor 5. Our proposed strategy offers a promising platform for uncovering carboxylated metabolites in gut microbial-host co-metabolism.
Collapse
Affiliation(s)
- Yan-Zhen Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yao-Yu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xin-Ze Wu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Pei-Rong Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xia-Lei Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Quan-Fei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Tews HC, Elger T, Grewal T, Weidlich S, Vitali F, Buechler C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023; 11:biomedicines11041186. [PMID: 37189804 DOI: 10.3390/biomedicines11041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The use of biomarkers is of great clinical value for the diagnosis and prognosis of disease and the assessment of treatment efficacy. In this context, adipokines secreted from adipose tissue are of interest, as their elevated circulating levels are associated with a range of metabolic dysfunctions, inflammation, renal and hepatic diseases and cancers. In addition to serum, adipokines can also be detected in the urine and feces, and current experimental evidence on the analysis of fecal and urinary adipokine levels points to their potential as disease biomarkers. This includes increased urinary adiponectin, lipocalin-2, leptin and interleukin-6 (IL-6) levels in renal diseases and an association of elevated urinary chemerin as well as urinary and fecal lipocalin-2 levels with active inflammatory bowel diseases. Urinary IL-6 levels are also upregulated in rheumatoid arthritis and may become an early marker for kidney transplant rejection, while fecal IL-6 levels are increased in decompensated liver cirrhosis and acute gastroenteritis. In addition, galectin-3 levels in urine and stool may emerge as a biomarker for several cancers. With the analysis of urine and feces from patients being cost-efficient and non-invasive, the identification and utilization of adipokine levels as urinary and fecal biomarkers could become a great advantage for disease diagnosis and predicting treatment outcomes. This review article highlights data on the abundance of selected adipokines in urine and feces, underscoring their potential to serve as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Hauke C Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Francesco Vitali
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Średnicka P, Roszko MŁ, Popowski D, Kowalczyk M, Wójcicki M, Emanowicz P, Szczepańska M, Kotyrba D, Juszczuk-Kubiak E. Effect of in vitro cultivation on human gut microbiota composition using 16S rDNA amplicon sequencing and metabolomics approach. Sci Rep 2023; 13:3026. [PMID: 36810418 PMCID: PMC9945476 DOI: 10.1038/s41598-023-29637-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Gut microbiota (GM) plays many key functions and helps maintain the host's health. Consequently, the development of GM cultivation under in vitro stimulating physiological conditions has gained extreme interest in different fields. In this study, we evaluated the impact of four culture media: Gut Microbiota Medium (GMM), Schaedler Broth (SM), Fermentation Medium (FM), and Carbohydrate Free Basal Medium (CFBM) on preserving the biodiversity and metabolic activity of human GM in batch in vitro cultures using PMA treatment coupled with 16S rDNA sequencing (PMA-seq) and LC-HR-MS/MS untargeted metabolomics supplemented with GC-MS SCFA profiling. Before the experiments, we determined the possibility of using the pooled faecal samples (MIX) from healthy donors (n = 15) as inoculum to reduce the number of variables and ensure the reproducibility of in vitro cultivation tests. Results showed the suitability of pooling faecal samples for in vitro cultivation study. Non-cultured MIX inoculum was characterized by higher α-diversity (Shannon effective count, and Effective microbial richness) compared to inocula from individual donors. After 24 h of cultivation, a significant effect of culture media composition on GM taxonomic and metabolomic profiles was observed. The SM and GMM had the highest α-diversity (Shannon effective count). The highest number of core ASVs (125) shared with non-cultured MIX inoculum and total SCFAs production was observed in the SM. These results might contribute to the development of standardized protocols for human GM in vitro cultivation by preventing methodological bias in the data.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1 Street, 02-097, Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Magdalena Szczepańska
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Danuta Kotyrba
- Department of Research, Scientific Information and Marketing Coordination, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| |
Collapse
|
12
|
Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes. Mucosal Immunol 2022; 15:1071-1084. [PMID: 35970917 DOI: 10.1038/s41385-022-00553-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Advances in technology and software have radically expanded the scope of metabolomics studies and allow us to monitor a broad transect of central carbon metabolism in routine studies. These increasingly sophisticated tools have shown that many human diseases are modulated by microbial metabolism. Despite this, it remains surprisingly difficult to move beyond these statistical associations and identify the specific molecular mechanisms that link dysbiosis to the progression of human disease. This difficulty stems from both the biological intricacies of host-microbiome dynamics as well as the analytical complexities inherent to microbiome metabolism research. The primary objective of this review is to examine the experimental and computational tools that can provide insights into the molecular mechanisms at work in host-microbiome interactions and to highlight the undeveloped frontiers that are currently holding back microbiome research from fully leveraging the benefits of modern metabolomics.
Collapse
|
13
|
Zou H, Zhang M, Zhu X, Zhu L, Chen S, Luo M, Xie Q, Chen Y, Zhang K, Bu Q, Wei Y, Ye T, Li Q, Yan X, Zhou Z, Yang C, Li Y, Zhou H, Zhang C, You X, Zheng G, Zhao G. Ginsenoside Rb1 Improves Metabolic Disorder in High-Fat Diet-Induced Obese Mice Associated With Modulation of Gut Microbiota. Front Microbiol 2022; 13:826487. [PMID: 35516426 PMCID: PMC9062662 DOI: 10.3389/fmicb.2022.826487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota plays an important role in metabolic homeostasis. Previous studies demonstrated that ginsenoside Rb1 might improve obesity-induced metabolic disorders through regulating glucose and lipid metabolism in the liver and adipose tissues. Due to low bioavailability and enrichment in the intestinal tract of Rb1, we hypothesized that modulation of the gut microbiota might account for its pharmacological effects as well. Here, we show that oral administration of Rb1 significantly decreased serum LDL-c, TG, insulin, and insulin resistance index (HOMA-IR) in mice with a high-fat diet (HFD). Dynamic profiling of the gut microbiota showed that this metabolic improvement was accompanied by restoring of relative abundance of some key bacterial genera. In addition, the free fatty acids profiles in feces were significantly different between the HFD-fed mice with or without Rb1. The content of eight long-chain fatty acids (LCFAs) was significantly increased in mice with Rb1, which was positively correlated with the increase of Akkermansia and Parasuttereller, and negatively correlated with the decrease of Oscillibacter and Intestinimonas. Among these eight increased LCFAs, eicosapentaenoic acid (EPA), octadecenoic acids, and myristic acid were positively correlated with metabolic improvement. Furthermore, the colonic expression of the free fatty acid receptors 4 (Ffar4) gene was significantly upregulated after Rb1 treatment, in response to a notable increase of LCFA in feces. These findings suggested that Rb1 likely modulated the gut microbiota and intestinal free fatty acids profiles, which should be beneficial for the improvement of metabolic disorders in HFD-fed mice. This study provides a novel mechanism of Rb1 for the treatment of metabolic disorders induced by obesity, which may provide a therapeutic avenue for the development of new nutraceutical-based remedies for treating metabolic diseases, such as hyperlipidemia, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Hong Zou
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Man Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoting Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Liyan Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Shuo Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingjing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qinglian Xie
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yue Chen
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kangxi Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qingyun Bu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuchen Wei
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Ye
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Qiang Li
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haokui Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Haokui Zhou,
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Chenhong Zhang,
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Xiaoyan You,
| | - Guangyong Zheng
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guangyong Zheng,
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guoping Zhao,
| |
Collapse
|
14
|
DE Almeida LR, Amaral Alves M, Mastella AMO, Garrett R, Pereira MJR. Neotropical mustelids: fecal metabolome diversity and its potential for taxonomic discrimination. Integr Zool 2022; 18:518-529. [PMID: 35275446 DOI: 10.1111/1749-4877.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical profiles of non-invasive biological material, such as feces, have great potential to study elusive animals or those with low population densities. Here, we use a metabolomic approach to evaluate Neotropical mustelids as a biological model to describe the diversity of the metabolites present in fecal samples, as well as to evaluate the potential of chemical profiles for taxonomic discrimination. We collected fecal samples from captive individuals of five species of mustelids occurring in Brazil and analyzed them by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Over 200 compounds have been annotated; "bile acids, alcohols and derivatives" was the most expressive class in the metabolome of all the species. We successfully discriminated three taxonomic groups: 1 - Tayra (Eira barbara); 2 - otters (Lontra longicaudis and Pteronura brasiliensis; 1); and 3 - grisons (Galictis vittata and Galictis cuja). Several compounds seemed to be associated with food intake and the digestive process, while others were found for the first time in Neotropical mustelids. We concluded that mustelids show high metabolome diversity and that species-specific identification through metabolomic profiles is possible, thus contributing to the development and implementation of additional non-invasive approaches in the study of mustelids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lana Resende DE Almeida
- Bird and Mammal Evolution, Systematics and Ecology Lab, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Amaral Alves
- Federal University of Rio de Janeiro, Chemistry Institute, Metabolomics Laboratory (LabMeta - LADETEC/IQ - UFRJ), Avenida Horácio Macedo, 1281 - Pólo de Química - Cidade Universitária, Ilha do Fundão, ZIP CODE, Rio de Janeiro, RJ, 21941-598, Brazil.,Universidade Federal do Rio de Janeiro, Walter Mors Institute of Research on Natural Products, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Ana Maria Obino Mastella
- Bird and Mammal Evolution, Systematics and Ecology Lab, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Garrett
- Federal University of Rio de Janeiro, Chemistry Institute, Metabolomics Laboratory (LabMeta - LADETEC/IQ - UFRJ), Avenida Horácio Macedo, 1281 - Pólo de Química - Cidade Universitária, Ilha do Fundão, ZIP CODE, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Maria João Ramos Pereira
- Bird and Mammal Evolution, Systematics and Ecology Lab, Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Zheng Y, Xu Q, Jin Q, Du Y, Yan J, Gao H, Zheng H. Urinary and faecal metabolic characteristics in APP/PS1 transgenic mouse model of Alzheimer's disease with and without cognitive decline. Biochem Biophys Res Commun 2022; 604:130-136. [PMID: 35303679 DOI: 10.1016/j.bbrc.2022.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) has been considered to be a systematic metabolic disorder, but little information is available about metabolic changes in the urine and feces. In this study, we investigated urinary and faecal metabolic profiles in amyloid precursor protein/presenilin 1 (APP/PS1) mice at 3 and 9 months of age (3 M and 9 M) and age-matched wild-type (WT) mice by using 1H NMR-based metabolomics, and aimed to explore changes in metabolic pathways during amyloid pathology progression and identify potential metabolite biomarkers at earlier stage of AD. The results show that learning and memory abilities were impaired in APP/PS1 mice relative to WT mice at 9 M, but not at 3 M. However, metabolomics analysis demonstrates that AD disrupted metabolic phenotypes in the urine and feces of APP/PS1 mice at both 3 M and 9 M, including amino acid metabolism, microbial metabolism and energy metabolism. In addition, several potential metabolite biomarkers were identified for discriminating AD and WT mice prior to cognitive decline with the AUC values from 0.755 to 0.971, such as taurine, hippurate, urea and methylamine in the urine as well as alanine, leucine and valine in the feces. Therefore, our results not only confirmed AD as a metabolic disorder, but also contributed to the identification of potential biomarkers at earlier stage of AD.
Collapse
Affiliation(s)
- Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qihao Jin
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yao Du
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
16
|
Brown CL, Montina T, Inglis GD. Feather pulp: a novel substrate useful for proton nuclear magnetic resonance spectroscopy metabolomics and biomarker discovery. Poult Sci 2022; 101:101866. [PMID: 35679673 PMCID: PMC9189206 DOI: 10.1016/j.psj.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Noninvasive biomarkers of stress that are predictive of poultry health are needed. Feather pulp is highly vascularized and represents a potential source of biomarkers that has not been extensively explored. We investigated the feasibility and use of feather pulp for novel biomarker discovery using 1H-Nuclear Magnetic Resonance Spectroscopy (NMR)-based metabolomics. To this end, high quality NMR metabolomic spectra were obtained from chicken feather pulp extracted using either ultrafiltration (UF) or Bligh-Dyer methanol-chloroform (BD) methods. In total, 121 and 160 metabolites were identified using the UF and BD extraction methods, respectively, with 71 of these common to both methods. The metabolome of feather pulp differed in broiler breeders that were 1-, 23-, and 45-wk-of-age. Moreover, feather pulp was more difficult to obtain from older birds, indicating that age must be considered when targeting feather pulp as a source of biomarkers. The metabolomic profile of feather pulp obtained from 12-day-old broilers administered corticosterone differed from control birds, indicating that the metabolome of feather pulp was sensitive to induced physiological stress. A comparative examination of feather pulp and serum in broilers revealed that the feather pulp metabolome differed from that of serum but provided more information. The study findings show that metabolite biomarkers in chicken feather pulp may allow producers to effectively monitor stress, and to objectively develop and evaluate on-farm mitigations, including practices that reduce stress and enhance bird health.
Collapse
|
17
|
Fecal 1H-NMR Metabolomics: A Comparison of Sample Preparation Methods for NMR and Novel in Silico Baseline Correction. Metabolites 2022; 12:metabo12020148. [PMID: 35208222 PMCID: PMC8875708 DOI: 10.3390/metabo12020148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Analysis of enteric microbiota function indirectly through the fecal metabolome has the potential to be an informative diagnostic tool. However, metabolomic analysis of feces is hampered by high concentrations of macromolecules such as proteins, fats, and fiber in samples. Three methods—ultrafiltration (UF), Bligh–Dyer (BD), and no extraction (samples added directly to buffer, vortexed, and centrifuged)—were tested on multiple rat (n = 10) and chicken (n = 8) fecal samples to ascertain whether the methods worked equally well across species and individuals. An in silico baseline correction method was evaluated to determine if an algorithm could produce spectra similar to those obtained via UF. For both rat and chicken feces, UF removed all macromolecules and produced no baseline distortion among samples. By contrast, the BD and no extraction methods did not remove all the macromolecules and produced baseline distortions. The application of in silico baseline correction produced spectra comparable to UF spectra. In the case of no extraction, more intense peaks were produced. This suggests that baseline correction may be a cost-effective method for metabolomic analyses of fecal samples and an alternative to UF. UF was the most versatile and efficient extraction method; however, BD and no extraction followed by baseline correction can produce comparable results.
Collapse
|
18
|
Gao D, Zhao H, Yin Z, Han C, Wang Y, Luo G, Gao X. Rheum tanguticum Alleviates Cognitive Impairment in APP/PS1 Mice by Regulating Drug-Responsive Bacteria and Their Corresponding Microbial Metabolites. Front Pharmacol 2021; 12:766120. [PMID: 34975476 PMCID: PMC8715007 DOI: 10.3389/fphar.2021.766120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Drugs targeting intestinal bacteria have shown great efficacy for alleviating symptoms of Alzheimer’s disease (AD), and microbial metabolites are important messengers. Our previous work indicated that Rheum tanguticum effectively improved cognitive function and reshaped the gut microbial homeostasis in AD rats. However, its therapeutic mechanisms remain unclear. Herein, this study aimed to elaborate the mechanisms of rhubarb for the treatment of AD by identifying effective metabolites associated with rhubarb-responsive bacteria. The results found that rhubarb reduced hippocampal inflammation and neuronal damage in APP/PS1 transgenic (Tg) mice. 16S rRNA sequencing and metabolomic analysis revealed that gut microbiota and their metabolism in Tg mice were disturbed in an age-dependent manner. Rhubarb-responsive bacteria were further identified by real-time polymerase chain reaction (RT-PCR) sequencing. Four different metabolites reversed by rhubarb were found in the position of the important nodes on rhubarb-responsive bacteria and their corresponding metabolites combined with pathological indicators co-network. Furthermore, in vitro experiments demonstrated o-tyrosine not only inhibited the viabilities of primary neurons as well as BV-2 cells, but also increased the levels of intracellular reactive oxygen species and nitric oxide. In the end, the results suggest that rhubarb ameliorates cognitive impairment in Tg mice through decreasing the abundance of o-tyrosine in the gut owing to the regulation of rhubarb-responsive bacteria. Our study provides a promising strategy for elaborating therapeutic mechanisms of bacteria-targeted drugs for AD.
Collapse
|
19
|
Teaw S, Hinchcliff M, Cheng M. A review and roadmap of the skin, lung and gut microbiota in systemic sclerosis. Rheumatology (Oxford) 2021; 60:5498-5508. [PMID: 33734316 PMCID: PMC8643452 DOI: 10.1093/rheumatology/keab262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/12/2022] Open
Abstract
As our understanding of the genetic underpinnings of SSc increases, questions regarding the environmental trigger(s) that induce and propagate SSc in the genetically predisposed individual emerge. The interplay between the environment, the immune system, and the microbial species that inhabit the patient's skin and gastrointestinal tract is a pathobiological frontier that is largely unexplored in SSc. The purpose of this review is to provide an overview of the methodologies, experimental study results and future roadmap for elucidating the relationship between the SSc host and his/her microbiome.
Collapse
Affiliation(s)
- Shannon Teaw
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Monique Hinchcliff
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Michelle Cheng
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| |
Collapse
|
20
|
Bervoets L, Ippel JH, Smolinska A, van Best N, Savelkoul PHM, Mommers MAH, Penders J. Practical and Robust NMR-Based Metabolic Phenotyping of Gut Health in Early Life. J Proteome Res 2021; 20:5079-5087. [PMID: 34587745 PMCID: PMC8576838 DOI: 10.1021/acs.jproteome.1c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton 1H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of 1H NMR spectra in combination with multivariate statistical modeling. The optimal metabolomics protocol was subsequently applied on feces from seven infants collected at 8 weeks, 4, and 9 months of age. Interindividual variation was exceeding the variation induced by different fecal sample preparation methods, except for filtration. We recommend extracting fecal samples using water with a dilution ratio of 1:5 feces-to-water to homogenize using bead beating and to remove particulates using centrifugation. Samples collected from infants aged 8 weeks and 4 months showed elevated concentrations of milk oligosaccharide derivatives and lactic acid, whereas short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) were higher in the 9 month samples. The established protocol enables hands-on and robust analyses of the infant gut metabolome. The wide-ranging application of this protocol will facilitate interlaboratory comparison of infants' metabolic profiles and finally aid in a better understanding of infant gut health.
Collapse
Affiliation(s)
- Liene Bervoets
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, CARIM Cardiovascular Research Institute Maastricht, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Niels van Best
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Institute of Medical Microbiology, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VUMC, 1081 HV Amsterdam, The Netherlands
| | - Monique A H Mommers
- Department of Epidemiology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
21
|
Association of Cesarean Delivery and Formula Supplementation with the Stool Metabolome of 6-Week-Old Infants. Metabolites 2021; 11:metabo11100702. [PMID: 34677417 PMCID: PMC8540440 DOI: 10.3390/metabo11100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cesarean delivery and formula feeding have both been implicated as important factors associated with perturbations to the infant gut microbiome. To investigate the functional metabolic response of the infant gut microbial milieu to these factors, we profiled the stool metabolomes of 121 infants from a US pregnancy cohort study at approximately 6 weeks of life and evaluated associations with delivery mode and feeding method. Multivariate analysis of six-week stool metabolomic profiles indicated discrimination by both delivery mode and diet. For diet, exclusively breast-fed infants exhibited metabolomic profiles that were distinct from both exclusively formula-fed and combination-fed infants, which were relatively more similar to each other in metabolomic profile. We also identified individual metabolites that were important for differentiating delivery mode groups and feeding groups and metabolic pathways related to delivery mode and feeding type. We conclude based on previous work and this current study that the microbial communities colonizing the gastrointestinal tracts of infants are not only taxonomically, but also functionally distinct when compared according to delivery mode and feeding groups. Further, different sets of metabolites and metabolic pathways define delivery mode and diet metabotypes.
Collapse
|
22
|
Plekhova V, Van Meulebroek L, De Graeve M, Perdones-Montero A, De Spiegeleer M, De Paepe E, Van de Walle E, Takats Z, Cameron SJS, Vanhaecke L. Rapid ex vivo molecular fingerprinting of biofluids using laser-assisted rapid evaporative ionization mass spectrometry. Nat Protoc 2021; 16:4327-4354. [PMID: 34341579 DOI: 10.1038/s41596-021-00580-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/31/2021] [Indexed: 01/29/2023]
Abstract
Of the many metabolites involved in any clinical condition, only a narrow range of biomarkers is currently being used in the clinical setting. A key to personalized medicine would be to extend this range. Metabolic fingerprinting provides a more comprehensive insight, but many methods used for metabolomics analysis are too complex and time-consuming to be diagnostically useful. Here, a rapid evaporative ionization mass spectrometry (REIMS) system for direct ex vivo real-time analysis of biofluids with minor sample pretreatment is detailed. The REIMS can be linked to various laser wavelength systems (such as optical parametric oscillator or CO2 laser) and with automation for high-throughput analysis. Laser-induced sample evaporation occurs within seconds through radiative heating with the plume guided to the MS instrument. The presented procedure includes (i) laser setup with automation, (ii) analysis of biofluids (blood/urine/stool/saliva/sputum/breast milk) and (iii) data analysis. We provide the optimal settings for biofluid analysis and quality control, enabling sensitive, precise and robust analysis. Using the automated setup, 96 samples can be analyzed in ~35-40 min per ionization mode, with no intervention required. Metabolic fingerprints are made up of 2,000-4,000 features, for which relative quantification can be achieved at high repeatability when total ion current normalization is applied. With saliva and feces as example matrices, >70% of features had a coefficient of variance ≤30%. However, to achieve acceptable long-term reproducibility, additional normalizations by, e.g., LOESS are recommended, especially for positive ionization.
Collapse
Affiliation(s)
- Vera Plekhova
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium.,ProDigest BV, Zwijnaarde, Belgium
| | - Marilyn De Graeve
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | | | | | - Ellen De Paepe
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | - Emma Van de Walle
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium
| | - Zoltan Takats
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Simon J S Cameron
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Ghent University, Merelbeke, Belgium. .,School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
23
|
Liu J, Zhao F, Wang T, Xu Y, Qiu J, Qian Y. Host Metabolic Disorders Induced by Alterations in Intestinal Flora under Dietary Pesticide Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6303-6317. [PMID: 34048223 DOI: 10.1021/acs.jafc.1c00273] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A dietary pesticide residue causes underestimated influences on body health. In this work, experimental mice were exposed to commonly used pesticides that cause insulin resistance, inflammation, and non-alcoholic fatty liver diseases. Alterations in intestinal flora were detected in the exposure groups. The abundance of the flora causing high endotoxin production was intensively increased and led to body inflammation. High Firmicutes/Bacteroidetes and obesity-related flora characteristics were also found. The metabolisms of intestinal flora and host circulation were investigated through metabolomics. The associations of flora with their metabolites and host circulation were also established. Association analysis can determine the influences of pesticide exposure on such a complex system. The affected metabolic pathways in the liver were also determined to clarify the mechanism underlying the effect of pesticide exposure on host physiology. Interventions with fructooligosaccharides and fecal microbiota transplantation alleviated the metabolic disorders, thus directly confirming that the intestinal flora mediates the effects of pesticide exposure on host circulation. This work elucidated the intestinal-flora-mediated effects of dietary pollutant exposure on body health and provided potential measures for regulating flora and host circulation.
Collapse
Affiliation(s)
- Jingkun Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Fangfang Zhao
- Analysis & Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, People's Republic of China
| | - Tianrun Wang
- Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yanyang Xu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Yongzhong Qian
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| |
Collapse
|
24
|
Shen W, Wu D, Qiu W, Yi X. Evaluation of freeze-drying for quantification of the microbiome and metabolome in neonatal faecal samples. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Fitness for purpose of stabilized stool samples for bile acid metabolite analyses. Sci Rep 2021; 11:7904. [PMID: 33846363 PMCID: PMC8042040 DOI: 10.1038/s41598-021-86784-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Biobanks and cohort studies are increasingly utilizing chemical stabilizers to collect and store stool samples for downstream DNA-based microbiome analyses. While stabilizers permit ambient-temperature collection and storage of samples for gut microbiome studies, the use of the same sample type for downstream metabolomics assays has not been explored. Microbiome-metabolomics analysis of fecal samples is increasingly getting attention to further elucidate the mechanisms by which the gut microbiota influences the host. In this study, we evaluated fitness-for-purpose of OMNIgene-GUT-collected stool samples for downstream metabolomics assays in the scope of fecal bile acids (BA) quantification. Biocrates Bile Acids Kit was used for the quantification of BA from eight healthy donors' samples collected in (1) OMNIgene-GUT kit and (2) snap frozen in -80 °C in duplicates. A highly selective reversed phase LC-MS/MS analysis method in negative ion multiple reaction monitoring (MRM) detection mode was applied to determine the BA concentrations in each sample.Total fecal BA levels were detectable in OMNIgene-GUT-collected samples (range: 29.9-903.7 pmol/mg). Paired t-test confirmed that there was a significant difference in the total BAs between the OMNIgene-GUT and snap frozen samples (p < 0.05). Extractions from snap frozen samples resulted in higher concentrations of total BAs (range: 243.7-1136.2 pmol/mg). Qualitative differences between individual donors' BA profiles were detectable using the two sample collection methods. No significant difference was found in the relative concentrations of primary (CA, CDCA) or secondary (DCA, LCA, UDCA) unconjugated BAs to the total BA concentrations in OMNIgene-GUT-collected samples as compared with the snap frozen samples (Wilcoxon-Mann-Whitney test, p > 0.05). Passing-Bablok method comparison and correlation analyis showed a high degree of correlation in the relative concentrations of CA, CDCA, DCA and LCA between OMNIgene-GUT and snap frozen samples. For these four bile acids, the two methods are comparable at an acceptability bias of 30%. We conclude that the OMNIgene-GUT-collected stool samples are fit-for-purpose for downstream fecal bile acids analysis.
Collapse
|
26
|
Detecting the effects of predator-induced stress on the global metabolism of an ungulate prey using fecal metabolomic fingerprinting. Sci Rep 2021; 11:6129. [PMID: 33731769 PMCID: PMC7971053 DOI: 10.1038/s41598-021-85600-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Few field tests have assessed the effects of predator-induced stress on prey fitness, particularly in large carnivore-ungulate systems. Because traditional measures of stress present limitations when applied to free-ranging animals, new strategies and systemic methodologies are needed. Recent studies have shown that stress and anxiety related behaviors can influence the metabolic activity of the gut microbiome in mammal hosts, and these metabolic alterations may aid in identification of stress. In this study, we used NMR-based fecal metabolomic fingerprinting to compare the fecal metabolome, a functional readout of the gut microbiome, of cattle herds grazing in low vs. high wolf-impacted areas within three wolf pack territories. Additionally, we evaluated if other factors (e.g., cattle nutritional state, climate, landscape) besides wolf presence were related to the variation in cattle metabolism. By collecting longitudinal fecal samples from GPS-collared cattle, we found relevant metabolic differences between cattle herds in areas where the probability of wolf pack interaction was higher. Moreover, cattle distance to GPS-collared wolves was the factor most correlated with this difference in cattle metabolism, potentially reflecting the variation in wolf predation risk. We further validated our results through a regression model that reconstructed cattle distances to GPS-collared wolves based on the metabolic difference between cattle herds. Although further research is needed to explore if similar patterns also hold at a finer scale, our results suggests that fecal metabolomic fingerprinting is a promising tool for assessing the physiological responses of prey to predation risk. This novel approach will help improve our knowledge of the consequences of predators beyond the direct effect of predation.
Collapse
|
27
|
Kim HS, Kim ET, Eom JS, Choi YY, Lee SJ, Lee SS, Chung CD, Lee SS. Exploration of metabolite profiles in the biofluids of dairy cows by proton nuclear magnetic resonance analysis. PLoS One 2021; 16:e0246290. [PMID: 33513207 PMCID: PMC7845951 DOI: 10.1371/journal.pone.0246290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Studies that screen for metabolites produced in ruminants are actively underway. We aimed to evaluate the metabolic profiles of five biofluids (ruminal fluid, serum, milk, urine, and feces) in dairy cow by using proton nuclear magnetic resonance (1H-NMR) and provide a list of metabolites in each biofluid for the benefit of future research. We analyzed the metabolites in five biofluids from lactating cows using proton nuclear magnetic resonance imaging; 96, 73, 88, 118, and 128 metabolites were identified in the five biofluids, respectively. In addition, 8, 6, 9, and 17 metabolites were unique to ruminal fluid, serum, milk, and urine, respectively. The metabolites present at high concentrations were: acetate, propionate, and butyrate in ruminal fluid; lactate, glucose, and acetate in serum; and lactose, guanidoacetate, and glucitol in milk. In addition, the following metabolites were present at high concentrations: hippurate, urea, and trimethylamine N-oxide in urine and acetate, propionate, and butyrate in feces. The score plots of the principal component analysis did not show clear distinctions among the five biofluid samples. The purpose of this study was to verify the ability of our metabolomics approaches to identify metabolites in the biofluids of dairy cows.
Collapse
Affiliation(s)
- Hyun Sang Kim
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, Korea
| | - Eun Tae Kim
- National Institute of Animal Science, Rural Development Administration, Cheonan, Korea
| | - Jun Sik Eom
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, Korea
| | - You Young Choi
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju, Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, College of Bio-industry Science, Sunchon National University, Suncheon, Korea
| | - Chang Dae Chung
- Ruminant Nutrition and Anaerobe Laboratory, College of Bio-industry Science, Sunchon National University, Suncheon, Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, Korea
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
28
|
Zubeldia-Varela E, Barber D, Barbas C, Perez-Gordo M, Rojo D. Sample pre-treatment procedures for the omics analysis of human gut microbiota: Turning points, tips and tricks for gene sequencing and metabolomics. J Pharm Biomed Anal 2020; 191:113592. [PMID: 32947167 DOI: 10.1016/j.jpba.2020.113592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023]
Abstract
The connection between gut microbiota and human health is becoming increasingly relevant and the number of groups working in this field is constantly growing. In this context, from high-throughput gene sequencing to metabolomics analysis, the omics technologies have contributed enormously to unveil the secret crosstalk between us and our microbes. All the omics technologies produce a great amount of information, and processing this information is time-consuming and expensive. For this reason, a correct experimental design and a careful pre-analytical planning are crucial. To study the human gut microbiota, faeces are the sample of choice. Faecal material is complex, and procedures for collecting and preserving faeces are not well-established. Furthermore, increasing evidence suggests that multiple confounding factors, such as antibiotics consumption, mode of delivery, diet, aging and several diseases and disorders can alter the composition and functionality of the microbiota. This review is focused on the discussion of critical general issues during the pre-analytical planning, from patient handling to faeces sampling, including collection procedures, transport, storage conditions and possible pre-treatments, which are critical for a successful research in omics with a special attention to metabolomics and gene sequencing. We also point out that the adoption of standard operating procedures in the field is needed to guarantee accuracy and reproducibility of results.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Domingo Barber
- Institute of Applied and Molecular Medicine (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Marina Perez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain; Institute of Applied and Molecular Medicine (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, ARADyAL, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
29
|
Gierse LC, Meene A, Schultz D, Schwaiger T, Karte C, Schröder C, Wang H, Wünsche C, Methling K, Kreikemeyer B, Fuchs S, Bernhardt J, Becher D, Lalk M, Study Group K, Urich T, Riedel K. A Multi-Omics Protocol for Swine Feces to Elucidate Longitudinal Dynamics in Microbiome Structure and Function. Microorganisms 2020; 8:microorganisms8121887. [PMID: 33260576 PMCID: PMC7760263 DOI: 10.3390/microorganisms8121887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Swine are regarded as promising biomedical models, but the dynamics of their gastrointestinal microbiome have been much less investigated than that of humans or mice. The aim of this study was to establish an integrated multi-omics protocol to investigate the fecal microbiome of healthy swine. To this end, a preparation and analysis protocol including integrated sample preparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integration linked microbiome composition with function, and metabolic activity with protein inventories, i.e., 16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites. 16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated by Prevotellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae and Clostridiaceae. Similar microbiome compositions in feces and colon, but not ileum samples, were observed, showing that feces can serve as minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition, e.g., temporal decreased abundance of Lactobacillaceae and Streptococcaceae during the experiment, were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed a rather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associated metaproteome functions, pointing towards functional redundancy among microbiome constituents. In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomy and functionality of the intestinal microbiome of swine.
Collapse
Affiliation(s)
- Laurin Christopher Gierse
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Claudia Karte
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18055 Rostock, Germany;
| | - Stephan Fuchs
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany;
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | | | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
- Correspondence: (T.U.); (K.R.); Tel.: +49-3834-420-5904 (T.U.); +49-3834-420-5900 (K.R.)
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
- Correspondence: (T.U.); (K.R.); Tel.: +49-3834-420-5904 (T.U.); +49-3834-420-5900 (K.R.)
| |
Collapse
|
30
|
Rodríguez-Hernández P, Cardador MJ, Arce L, Rodríguez-Estévez V. Analytical Tools for Disease Diagnosis in Animals via Fecal Volatilome. Crit Rev Anal Chem 2020; 52:917-932. [PMID: 33180561 DOI: 10.1080/10408347.2020.1843130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Volatilome analysis is growing in attention for the diagnosis of diseases in animals and humans. In particular, volatilome analysis in fecal samples is starting to be proposed as a fast, easy and noninvasive method for disease diagnosis. Volatilome comprises volatile organic compounds (VOCs), which are produced during both physiological and patho-physiological processes. Thus, VOCs from a pathological condition often differ from those of a healthy state and therefore the VOCs profile can be used in the detection of some diseases. Due to their strengths and advantages, feces are currently being used to obtain information related to health status in animals. However, they are complex samples, that can present problems for some analytical techniques and require special consideration in their use and preparation before analysis. This situation demands an effort to clarify which analytic options are currently being used in the research context to analyze the possibilities these offer, with the final objectives of contributing to develop a standardized methodology and to exploit feces potential as a diagnostic matrix. The current work reviews the studies focused on the diagnosis of animal diseases through fecal volatilome in order to evaluate the analytical methods used and their advantages and limitations. The alternatives found in the literature for sampling, storage, sample pretreatment, measurement and data treatment have been summarized, considering all the steps involved in the analytical process.
Collapse
Affiliation(s)
| | - M J Cardador
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | - L Arce
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
31
|
Identifying Microbiome-Mediated Behaviour in Wild Vertebrates. Trends Ecol Evol 2020; 35:972-980. [DOI: 10.1016/j.tree.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
32
|
Starke R, Oliphant K, Jehmlich N, Schäpe SS, Sachsenberg T, Kohlbacher O, Allen-Vercoe E, von Bergen M. Tracing incorporation of heavy water into proteins for species-specific metabolic activity in complex communities. J Proteomics 2020; 222:103791. [PMID: 32335296 DOI: 10.1016/j.jprot.2020.103791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
Stable isotope probing (SIP) approaches are a suitable tool to identify active organisms in bacterial communities, but adding isotopically labeled substrate can alter both the structure and the functionality of the community. Here, we validated and demonstrated a substrate-independent protein-SIP protocol using isotopically labeled water that captures the entire microbial activity of a community. We found that 18O yielded a higher incorporation rate into peptides and thus comprised a higher sensitivity. We then applied the method to an in vitro model of a human distal gut microbial ecosystem grown in two medium formulations, to evaluate changes in microbial activity between a high-fiber and high-protein diet. We showed that only little changes are seen in the community structure but the functionality varied between the diets. In conclusion, our approach can detect species-specific metabolic activity in complex bacterial communities and more specifically to quantify the amount of amino acid synthesis. Heavy water makes possible to analyze the activity of bacterial communities for which adding an isotopically labeled energy and nutrient sources is not easily feasible. SIGNIFICANCE: Heavy stable isotopes allow for the detection of active key players in complex ecosystems where many organisms are thought to be dormant. Opposed to the labelling with energy or nutrient sources, heavy water could be a suitable replacement to trace activity, which has been shown for DNA and RNA. Here we validate, quantify and compare the incorporation of heavy water either labeled with deuterium or 18‑oxygen into proteins of Escherichia coli K12 and of an in vitro model of a human gut microbial ecosystem. The significance of our research is in providing a freely available pipeline to analyze the incorporation of deuterium and 18‑oxygen into proteins together with the validation of the applicability of tracing heavy water as a proxy for activity. Our approach unveils the relative functional contribution of microbiota in complex ecosystems, which will improve our understanding of both animal- and environment-associated microbiomes and in vitro models.
Collapse
Affiliation(s)
- Robert Starke
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Kaitlyn Oliphant
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Stephanie Serena Schäpe
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Timo Sachsenberg
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany; Center for Bioinformatics, University of Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany; Center for Bioinformatics, University of Tübingen, Germany; Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany.
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
33
|
Van Meulebroek L, Cameron S, Plekhova V, De Spiegeleer M, Wijnant K, Michels N, De Henauw S, Lapauw B, Takats Z, Vanhaecke L. Rapid LA-REIMS and comprehensive UHPLC-HRMS for metabolic phenotyping of feces. Talanta 2020; 217:121043. [PMID: 32498888 DOI: 10.1016/j.talanta.2020.121043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Ambient ionization-based techniques hold great potential for rapid point-of-care applicable metabolic fingerprinting of tissue and fluids. Hereby, feces represents a unique biospecimen as it integrates the complex interactions between the diet, gut microbiome and host, and is therefore ideally suited to study the involvement of the diet-gut microbiome axis in metabolic diseases and their treatments at a molecular level. We present a new method for rapid (<10 s) metabolic fingerprinting of feces, i.e. laser-assisted rapid evaporative ionization mass spectrometry (LA-REIMS) with an Nd:YAG laser (2940 nm) and quadrupole Time-of-Flight mass spectrometer as main components. The LA-REIMS method was implemented on mimicked crude feces samples from individuals that were assigned a state of type 2 diabetes or euglycaemia. Based on the generated fingerprints, enclosing 4923 feature ions, significant segregation according to disease classification was achieved through orthogonal partial least squares discriminant analysis (Q2(Y) of 0.734 and p-value of 1.93e-17) and endorsed by a general classification accuracy of 90.5%. A comparison between the discriminative performance of the novel LA-REIMS and our established ultra-high performance liquid-chromatography high-resolution MS (UHPLC-HRMS) metabolomics and lipidomics methodologies for fingerprinting of stool was performed. Based on the supervised modelling results upon UHPLC-HRMS (Q2(Y) ≥ 0.655 and p-value ≤ 4.11 e-5), equivalent or better discriminative performance of LA-REIMS fingerprinting was concluded. Eventually, comprehensive UHPLC-HRMS was employed to assess metabolic alterations as observed for the defined classes, whereby metformin treatment of the type 2 diabetes patients was considered a relevant study factor to acquire new mechanistic insights. More specifically, ten metabolization products of metformin were identified, with (hydroxylated) triazepinone and metformin-cholesterol reported for the first time in vivo.In conclusion, LA-REIMS was established as an expedient strategy for rapid metabolic fingerprinting of feces, whereby potential implementations may relate, but are not limited to differential diagnosis and treatment efficacy evaluation of metabolic diseases. Yet, LC-HRMS remains essential for in-depth biological interpretation.
Collapse
Affiliation(s)
- Lieven Van Meulebroek
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Simon Cameron
- Imperial College London, Faculty of Medicine, Department of Metabolism, Digestion, and Reproduction, Division of Systems Medicine, St. Dunstans Road, London, SW7 2AZ, United Kingdom; Queen's University Belfast, School of Biological Sciences, Lisburn Road 97, Belfast, United Kingdom.
| | - Vera Plekhova
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Margot De Spiegeleer
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Kathleen Wijnant
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820, Merelbeke, Belgium; Ghent University, Faculty of Medicine and Health Sciences, Department of Public Health and Primary Care, Corneel Heymanslaan 10, 9000, Gent, Belgium.
| | - Nathalie Michels
- Ghent University, Faculty of Medicine and Health Sciences, Department of Public Health and Primary Care, Corneel Heymanslaan 10, 9000, Gent, Belgium.
| | - Stefaan De Henauw
- Ghent University, Faculty of Medicine and Health Sciences, Department of Public Health and Primary Care, Corneel Heymanslaan 10, 9000, Gent, Belgium.
| | - Bruno Lapauw
- Ghent University Hospital, Department of Endocrinology, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Zoltan Takats
- Imperial College London, Faculty of Medicine, Department of Metabolism, Digestion, and Reproduction, Division of Systems Medicine, St. Dunstans Road, London, SW7 2AZ, United Kingdom.
| | - Lynn Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, 9820, Merelbeke, Belgium; Queen's University Belfast, School of Biological Sciences, Lisburn Road 97, Belfast, United Kingdom.
| |
Collapse
|
34
|
Cheng K, Brunius C, Fristedt R, Landberg R. An LC-QToF MS based method for untargeted metabolomics of human fecal samples. Metabolomics 2020; 16:46. [PMID: 32246267 PMCID: PMC7125068 DOI: 10.1007/s11306-020-01669-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Consensus in sample preparation for untargeted human fecal metabolomics is lacking. OBJECTIVES To obtain sample preparation with broad metabolite coverage for high-throughput LC-MS. METHODS Extraction solvent, solvent ratio and fresh frozen-vs-lyophilized samples were evaluated by metabolite feature quality. RESULTS Methanol at 5 mL per g wet feces provided a wide metabolite coverage with optimal balance between signal intensity and saturation for both fresh frozen and lyophilized samples. Lyophilization did not affect SCFA and is recommended because of convenience in normalizing to dry matter. CONCLUSION The suggested sample preparation is simple, efficient and suitable for large-scale human fecal metabolomics.
Collapse
Affiliation(s)
- Ken Cheng
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Carl Brunius
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
35
|
Ertl VM, Höring M, Schött HF, Blücher C, Kjølbæk L, Astrup A, Burkhardt R, Liebisch G. Quantification of diacylglycerol and triacylglycerol species in human fecal samples by flow injection Fourier transform mass spectrometry. Anal Bioanal Chem 2020; 412:2315-2326. [PMID: 32198533 PMCID: PMC7118049 DOI: 10.1007/s00216-020-02416-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
The intestinal microbiome plays an important role in human health and disease and fecal materials reflect the microbial activity. Thus, analysis of fecal metabolites provides insight in metabolic interactions between gut microbiota and host organism. In this work, we applied flow injection analysis coupled to Fourier transform mass spectrometry (FIA-FTMS) to identify and quantify lipid species in human fecal samples. Fecal homogenates were subjected to lipid extraction and analyzed by FIA-FTMS. The analysis of different subjects revealed a vast heterogeneity of lipid species abundance. The majority of samples displayed prominent signals of triacylglycerol (TG) and diacylglycerol (DG) species that could be verified by MS2 spectra. Therefore, we focused on the quantification of TG and DG. Method validation included limit of quantification, linearity, evaluation of matrix effects, recovery, and reproducibility. The validation experiments demonstrated the suitability of the method, with exception for approximately 10% of samples, where we observed coefficients of variation higher than 15%. Impaired reproducibility was related to sample inhomogeneity and could not be improved by additional sample preparation steps. Additionally, these experiments demonstrated that compared with aqueous samples, samples containing isopropanol showed higher amounts of DG, presumably due to lysis of bacteria and increased TG lipolysis. These effects were sample-specific and substantiate the high heterogeneity of fecal materials as well as the need for further evaluation of pre-analytic conditions. In summary, FIA-FTMS offers a fast and accurate tool to quantify DG and TG species and is suitable to provide insight into the fecal lipidome and its role in health and disease.
Collapse
Affiliation(s)
- Verena M Ertl
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Hans-Frieder Schött
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christina Blücher
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Nørre Allé 51, 2200, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Nørre Allé 51, 2200, Copenhagen, Denmark
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
36
|
Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions. Metabolites 2020; 10:metabo10030104. [PMID: 32178364 PMCID: PMC7142637 DOI: 10.3390/metabo10030104] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolomics has found numerous applications in the study of liver metabolism in health and disease. Metabolomics studies can be conducted in a variety of biological matrices ranging from easily accessible biofluids such as urine, blood or feces, to organs, tissues or even cells. Sample collection and storage are critical steps for which standard operating procedures must be followed. Inappropriate sample collection or storage can indeed result in high variability, interferences with instrumentation or degradation of metabolites. In this review, we will first highlight important general factors that should be considered when planning sample collection in the study design of metabolomic studies, such as nutritional status and circadian rhythm. Then, we will discuss in more detail the specific procedures that have been described for optimal pre-analytical handling of the most commonly used matrices (urine, blood, feces, tissues and cells).
Collapse
|
37
|
Sutanti V, Suyanto E, Mufidah M, Kurnianingsih N. Diversity of Sub-Gingival Fluids Microbiota Compositions in Periodontitis and Rheumatoid Arthritis Patients: A Case-Control Study. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Viranda Sutanti
- Brawijaya University, Indonesia; Brawijaya University, Indonesia
| | - Eko Suyanto
- Brawijaya University, Indonesia; Brawijaya University, Indonesia
| | | | | |
Collapse
|
38
|
Fiori J, Turroni S, Candela M, Gotti R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J Pharm Biomed Anal 2019; 177:112867. [PMID: 31614303 DOI: 10.1016/j.jpba.2019.112867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the specific microbial community of the gastrointestinal tract, by means of the production of microbial metabolites provides the host with several functions affecting metabolic and immunological homeostasis. Insights into the intricate relationships between gut microbiota and the host require not only the understanding of its structure and function but also the measurement of effector molecules acting along the gut microbiota axis. This article reviews the literature on targeted chromatographic approaches in analysis of gut microbiota specific metabolites in feces as the most accessible biological matrix which can directly probe the connection between intestinal bacteria and the (patho)physiology of the holobiont. Together with a discussion on sample collection and preparation, the chromatographic methods targeted to determination of some classes of microbiota-derived metabolites (e.g., short-chain fatty acids, bile acids, low molecular masses amines and polyamines, vitamins, neurotransmitters and related compounds) are discussed and their main characteristics, summarized in Tables.
Collapse
Affiliation(s)
- Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
39
|
Associations between usual food intake and faecal sterols and bile acids: results from the Cooperative Health Research in the Augsburg Region (KORA FF4) study. Br J Nutr 2019; 122:309-321. [DOI: 10.1017/s000711451900103x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractAnimal sterols, plant sterols and bile acids in stool samples have been suggested as biomarkers of dietary intake. It is still unknown whether they also reflect long-term habitual dietary intake and can be used in aetiological research. In a subgroup of the Cooperative Health Research in the Augsburg Region (KORA FF4) study, habitual dietary intake was estimated based on repeated 24-h food list and a FFQ. Stool samples were collected according to a standard operating procedure and those meeting the quality criteria were extracted and analysed by means of a metabolomics technique. The present study is based on data from 513 men and 495 women with a mean age of 60 and 58 years, respectively, for which faecal animal and plant sterols and bile acids concentrations and dietary intake data were available. In adjusted regression models, the associations between food intake and log-normalised metabolite concentrations were analysed. Bonferroni correction was used to account for multiple testing. In this population-based sample, associations between habitual dietary intake and faecal concentrations of animal sterols were identified, while the impact of usual diet on bile acids was limited. A habitual diet high in ‘fruits’ and ‘nuts and seeds’ is associated with lower animal faecal sterols concentrations, whereas a diet high in ‘meat and meat products’ is positively related to faecal concentrations of animal sterols. A positive association between glycocholate and fruit consumption was found. Further studies are necessary for evaluation of faecal animal sterols as biomarkers of diet. The findings need to be confirmed in other populations with diverse dietary habits.
Collapse
|
40
|
Kunz S, Matysik S. A comprehensive method to determine sterol species in human faeces by GC-triple quadrupole MS. J Steroid Biochem Mol Biol 2019; 190:99-103. [PMID: 30923016 DOI: 10.1016/j.jsbmb.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/23/2019] [Indexed: 01/12/2023]
Abstract
The human gut microbiome plays a crucial role in both health and disease. Metabolites in human faeces related to microbial activity might therefore be attractive surrogate markers to track changes of microbiota induced by diet or disease. The hyphenation of gas chromatography with triple quadrupole mass spectrometry is a promising approach to increase sensitivity and selectivity as compared to single quad MS instruments. The versatility of gas chromatography-tandem mass spectrometry (GC-MS/MS) can be advantageously exploited in clinical laboratory medicine, e.g. for quantification of sterols in biological material. In this paper, we present the application of GC-MS/MS for determination of sterol components in human faeces. A serious problem of analysis of faeces is preanalytics. Uncontrolled degradation of metabolites during transport and storage of faeces before entering the clinical laboratory might occur. In our experiments we did not observe any increasing or decreasing concentration after storage of native faeces material even at room temperature. Furthermore, we answer the question of how personal metabolic responses with respect to sterols are and address the importance of sampling strategies. From a pilot study it is concluded that differentiation between high and low metabolizers is independent of the type of sampling and constant over several days.
Collapse
Affiliation(s)
- Sonja Kunz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
41
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
42
|
A review on nuclear overhauser enhancement (NOE) and rotating-frame overhauser effect (ROE) NMR techniques in food science: Basic principles and applications. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Liebisch G, Ecker J, Roth S, Schweizer S, Öttl V, Schött HF, Yoon H, Haller D, Holler E, Burkhardt R, Matysik S. Quantification of Fecal Short Chain Fatty Acids by Liquid Chromatography Tandem Mass Spectrometry-Investigation of Pre-Analytic Stability. Biomolecules 2019; 9:E121. [PMID: 30925749 PMCID: PMC6523859 DOI: 10.3390/biom9040121] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
Short chain fatty acids (SCFAs) are generated by the degradation and fermentation of complex carbohydrates, (i.e., dietary fiber) by the gut microbiota relevant for microbe⁻host communication. Here, we present a method for the quantification of SCFAs in fecal samples by liquid chromatography tandem mass spectrometry (LC-MS/MS) upon derivatization to 3-nitrophenylhydrazones (3NPH). The method includes acetate, propionate, butyrate, and isobutyrate with a run time of 4 min. The reproducible (coefficients of variation (CV) below 10%) quantification of SCFAs in human fecal samples was achieved by the application of stable isotope labelled internal standards. The specificity was demonstrated by the introduction of a quantifier and qualifier ions. The method was applied to investigate the pre-analytic stability of SCFAs in human feces. Concentrations of SCFA may change substantially within hours; the degree and kinetics of these changes revealed huge differences between the donors. The fecal SCFA level could be preserved by the addition of organic solvents like isopropanol. An analysis of the colon content of mice either treated with antibiotics or fed with a diet containing a non-degradable and -fermentable fiber source showed decreased SCFA concentrations. In summary, this fast and reproducible method for the quantification of SCFA in fecal samples provides a valuable tool for both basic research and large-scale studies.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Josef Ecker
- Nutritional Physiology, Technical University of Munich, 85354 Freising, Germany.
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| | - Sebastian Roth
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Sabine Schweizer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Veronika Öttl
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Hans-Frieder Schött
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Hongsup Yoon
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising, Germany.
| | - Dirk Haller
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising, Germany.
| | - Ernst Holler
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Ralph Burkhardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
44
|
Xu J, Zhang QF, Zheng J, Yuan BF, Feng YQ. Mass spectrometry-based fecal metabolome analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
López-Bascón MA, Calderón-Santiago M, Argüello H, Morera L, Garrido JJ, Priego-Capote F. Comprehensive analysis of pig feces metabolome by chromatographic techniques coupled to mass spectrometry in high resolution mode: Influence of sample preparation on the identification coverage. Talanta 2019; 199:303-309. [PMID: 30952262 DOI: 10.1016/j.talanta.2019.02.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Pig feces is an interesting biological sample to be implemented in metabolomics experiments by virtue of the information that can be deduced from the interaction between host and microbiome. However, pig fecal samples have received scant attention, especially in untargeted metabolomic studies. In this research, an analytical strategy was planned to maximize the identification coverage of metabolites found in pig fecal samples. For this purpose, two complementary platforms such as LC-QTOF MS/MS and GC-TOF/MS were used. Concerning sample preparation six extractant solvents with different polarity grade were tested to evaluate the extraction performance and, in the particular case of GC-MS, two derivatization protocols were compared. A total number of 303 compounds by combination of all the extractants and analytical platforms were tentatively identified. The main identified families were amino acids, fatty acids and derivatives, carbohydrates and carboxylic acids. For GC-TOF/MS analysis, the recommended extractant is methanol, while methoxymation was required in the derivatization protocol since this step allows detecting the α-keto acids, which are direct markers of the microbiome status. Concerning LC-QTOF MS/MS analysis, a dual extraction approach with methanol (MeOH) or MeOH/water and ethyl acetate is proposed to enhance the detection of polar and non-polar metabolites.
Collapse
Affiliation(s)
- M A López-Bascón
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain; CeiA3 Agroalimentary Excellence Campus, University of Córdoba, Córdoba, Spain; Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain.
| | - M Calderón-Santiago
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain; CeiA3 Agroalimentary Excellence Campus, University of Córdoba, Córdoba, Spain; Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain.
| | - H Argüello
- Department of Genetic, University of Córdoba, Córdoba, Spain.
| | - L Morera
- Department of Genetic, University of Córdoba, Córdoba, Spain.
| | - J J Garrido
- Department of Genetic, University of Córdoba, Córdoba, Spain.
| | - F Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain; CeiA3 Agroalimentary Excellence Campus, University of Córdoba, Córdoba, Spain; Maimónides Institute for Biomedical Research (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
46
|
Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018; 14:152. [PMID: 30830421 DOI: 10.1007/s11306-018-1449-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC-MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and 'in house' metabolite databases available. AIM OF REVIEW This review provides an overview of developments in GC-MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC-MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is to both highlight and provide an update on GC-MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC-MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific & Industrial Research Organization (CSIRO), P.O. Box 2583, Brisbane, QLD, 4001, Australia.
| | - Farhana R Pinu
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Trajan Scientific and Medical, 7 Argent Pl, Ringwood, 3134, Australia
| | - Mahesha M Poojary
- Chemistry Section, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, 3010, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, 3083, Australia.
| |
Collapse
|
47
|
Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, Wine E, Wishart DS. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta 2018; 1030:1-24. [DOI: 10.1016/j.aca.2018.05.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
|
48
|
A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using ultra-high performance liquid-chromatography coupled to hybrid orbitrap high-resolution mass spectrometry. Anal Chim Acta 2018; 1033:108-118. [DOI: 10.1016/j.aca.2018.06.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 01/28/2023]
|
49
|
Ulaszewska MM, Weinert CH, Trimigno A, Portmann R, Andres Lacueva C, Badertscher R, Brennan L, Brunius C, Bub A, Capozzi F, Cialiè Rosso M, Cordero CE, Daniel H, Durand S, Egert B, Ferrario PG, Feskens EJM, Franceschi P, Garcia-Aloy M, Giacomoni F, Giesbertz P, González-Domínguez R, Hanhineva K, Hemeryck LY, Kopka J, Kulling SE, Llorach R, Manach C, Mattivi F, Migné C, Münger LH, Ott B, Picone G, Pimentel G, Pujos-Guillot E, Riccadonna S, Rist MJ, Rombouts C, Rubert J, Skurk T, Sri Harsha PSC, Van Meulebroek L, Vanhaecke L, Vázquez-Fresno R, Wishart D, Vergères G. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Mol Nutr Food Res 2018; 63:e1800384. [PMID: 30176196 DOI: 10.1002/mnfr.201800384] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/10/2018] [Indexed: 12/13/2022]
Abstract
The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state-of-the-art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow.
Collapse
Affiliation(s)
- Marynka M Ulaszewska
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Alessia Trimigno
- Department of Agricultural and Food Science, University of Bologna, Italy
| | - Reto Portmann
- Method Development and Analytics Research Division, Agroscope, Federal Office for Agriculture, Berne, Switzerland
| | - Cristina Andres Lacueva
- Biomarkers & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain. CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - René Badertscher
- Method Development and Analytics Research Division, Agroscope, Federal Office for Agriculture, Berne, Switzerland
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Carl Brunius
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Francesco Capozzi
- Department of Agricultural and Food Science, University of Bologna, Italy
| | - Marta Cialiè Rosso
- Dipartimento di Scienza e Tecnologia del Farmaco Università degli Studi di Torino, Turin, Italy
| | - Chiara E Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco Università degli Studi di Torino, Turin, Italy
| | - Hannelore Daniel
- Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Stéphanie Durand
- Plateforme d'Exploration du Métabolisme, MetaboHUB-Clermont, INRA, Human Nutrition Unit, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bjoern Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Paola G Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Edith J M Feskens
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Pietro Franceschi
- Computational Biology Unit, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Mar Garcia-Aloy
- Biomarkers & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain. CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Franck Giacomoni
- Plateforme d'Exploration du Métabolisme, MetaboHUB-Clermont, INRA, Human Nutrition Unit, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pieter Giesbertz
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Raúl González-Domínguez
- Biomarkers & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain. CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Lieselot Y Hemeryck
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joachim Kopka
- Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Rafael Llorach
- Biomarkers & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Barcelona, Spain. CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Claudine Manach
- INRA, UMR 1019, Human Nutrition Unit, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.,Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
| | - Carole Migné
- Plateforme d'Exploration du Métabolisme, MetaboHUB-Clermont, INRA, Human Nutrition Unit, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Linda H Münger
- Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture, Berne, Switzerland
| | - Beate Ott
- Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.,ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany
| | - Gianfranco Picone
- Department of Agricultural and Food Science, University of Bologna, Italy
| | - Grégory Pimentel
- Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture, Berne, Switzerland
| | - Estelle Pujos-Guillot
- Plateforme d'Exploration du Métabolisme, MetaboHUB-Clermont, INRA, Human Nutrition Unit, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Samantha Riccadonna
- Computational Biology Unit, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Manuela J Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Caroline Rombouts
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Josep Rubert
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Thomas Skurk
- Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.,ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany
| | - Pedapati S C Sri Harsha
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Rosa Vázquez-Fresno
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Canada
| | - David Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Canada
| | - Guy Vergères
- Food Microbial Systems Research Division, Agroscope, Federal Office for Agriculture, Berne, Switzerland
| |
Collapse
|
50
|
Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods 2018; 149:3-12. [PMID: 29715508 DOI: 10.1016/j.ymeth.2018.04.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding of the microbial functions. Finally, the emerging approaches of genome-scale metabolic modelling to study microbial co-metabolism and host-microbe interactions are highlighted.
Collapse
|