1
|
Ma D, Zhao Z, Wen Y, Zhou J, Zhou W, Mao J, Lv K, Cao Y, Jiang L. The synergistic gelation of novel Bletilla striata polysaccharide with hyaluronic acid: Characterization, rheology. Food Chem 2024; 467:142359. [PMID: 39657486 DOI: 10.1016/j.foodchem.2024.142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Bletilla striata polysaccharide (BSP) has attracted considerable interest due to its diverse biological activities. In this research, a novel low-molecular-weight water-soluble polysaccharide (BSP-182) was isolated and purified from Bletilla striata tubers, and its structure was characterized. The findings indicated that BSP-182 is predominantly composed of β-1,4-linked glucose (Glc) and β-1,4-linked mannose (Man) in a molar ratio of approximately 7.8:2.2. Additionally, hyaluronic acid (HA)/BSP-182 hydrogels were synthesized, and their physicochemical properties and structure were examined. Rheological analysis revealed that HA and BSP-182 form hydrogels via hydrogen bonding, with concentration-dependent enhancements in rheological properties, textural attributes, and thermal stability. The hydrogels displayed significant shear-thinning behavior and viscoelasticity, which are beneficial for food processing and texture modification, especially in the development of easy-to-swallow foods. This research offers valuable insights for the development of innovative BSP-based hydrogels for dysphagia management.
Collapse
Affiliation(s)
- Didi Ma
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Zhenzhen Zhao
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Yujing Wen
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Juan Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Wenhao Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jian Mao
- Yangtze River Delta Information Intelligence Innovation Research Institute, Wuhu 241000, Anhui, China
| | - Kun Lv
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China; Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China.
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| | - Lan Jiang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China; Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China.
| |
Collapse
|
2
|
Gao H, Shi D, Yin C, Fan X, Cheng X, Qiao X, Liu C, Hu G, Yao F, Qiu J, Yu W. A highly branched glucomannan from the fruiting body of Schizophyllum commune: Structural characteristics and antitumor properties analysis. Int J Biol Macromol 2024; 282:137460. [PMID: 39528189 DOI: 10.1016/j.ijbiomac.2024.137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, a highly branched glucomannan (SCP-1) from Schizophyllum commune fruiting body with good solubility was isolated, and its structural characteristics and antitumor properties were analyzed. The monosaccharides of SCP-1 were fucose, glucosamine hydrochloride, galactose, glucose and mannose with a relative molar ratio of 14:6:210:593:177, and the molecular weight (Mw) of SCP-1 was 15.1 kDa. SCP-1 showed a rough and dense surface, and it was aggregated to particles in distilled water, though it might have triple-helix conformation. The main backbone chain of SCP-1 was →[3)-β-D-Glcp-(1]3→3)-β-D-Glcp-(1→2)-α-D-Manp-(1→2)-α-D-Manp-(1→3)-α-D-Glcp-(1→ and three sides chains including α-D-Glcp-(1→[6)-β-D-Glcp-(1]2→, α-D-Glcp-(1→3)-α-D-Manp-(1→ and α-D-Glcp-(1→[6)-α-D-Galp-(1]3→ were linked with 1,6-glycosidic bond, which was significantly different with the schizophyllan isolated from the mycelia of S. commune. SCP-1 could significantly inhibit the growth of A549 cells, the inhibition rate reached 41.62 % and the percentage of cells in S phase increased from 27.17 % to 56.40 % (400 μg/mL, 48 h). Moreover, SCP-1 could induce cell apoptosis and the total apoptosis rate reached 28.13 %. SCP-1 exerted apoptosis inducing effect probably by reducing the expression ratio of Bcl-2/Bax and the p-PI3K, p-Akt and p-mTOR expression level. The results showed that SCP-1 might have the potential to act as an antitumor agent for lung cancer therapy.
Collapse
Affiliation(s)
- Hong Gao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Defang Shi
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Chaomin Yin
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China.
| | - Xiuzhi Fan
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Xianbo Cheng
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xin Qiao
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Chunyou Liu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzho 545006, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fen Yao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Jianhui Qiu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Wei Yu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China.
| |
Collapse
|
3
|
Wang H, Fan T, Zeng Z, Chen Z, Lu M, Zhou M, Qin X, Liu X. Use of ozone oxidation in combination with deacetylation for improving the structure and gelation properties of konjac glucomannan. Food Chem 2024; 453:139599. [PMID: 38788640 DOI: 10.1016/j.foodchem.2024.139599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
In this study, oxidized deacetylated konjac glucomannans with different degrees of oxidation were prepared by a combination of deacetylation and ozone oxidation. Carboxyl groups were found to be introduced into the modified konjac glucomannan while acetyl groups were removed. The backbone, branched chains, and crystal structure of modified konjac glucomannan were not significantly affected. The whiteness was enhanced to 97-99 % and the thermal degradation temperature was up to 250 °C after modification. The solubility of the modified konjac glucomannan (oxidized for 60 min) was significantly increased to 84.56 % (p < 0.05), while its viscosity and swelling power were notably decreased owing to the changes in molecular weight (from 106 to 104) and functional groups. Rheological analysis showed that oxidized deacetylated konjac glucomannan has the ability to form soft-textured gels and the potential to develop dysphagia foods. Future studies should focus on the gelation mechanisms of oxidized deacetylated konjac glucomannan.
Collapse
Affiliation(s)
- Haoyuan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tianqin Fan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhilong Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Manman Lu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Min Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Bian B, Miao X, Zhao X, Lai C, Chen Y, Zhou M, Yong Q. Impacts of monosaccharide composition on immunomodulation by cello-pentaose, manno-pentaose, and xylo-pentaose: Unraveling the underlying molecular mechanisms. Carbohydr Polym 2024; 334:122006. [PMID: 38553211 DOI: 10.1016/j.carbpol.2024.122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Different types of functional oligosaccharides exhibit varying degrees of immune-enhancing effects, which might be attributable to differences in their glycosyl structures. The differences in the immunomodulatory action of three functional oligosaccharides with distinct glycosyl compositions: cello-oligosaccharides (COS), manno-oligosaccharides (MOS), and xylo-oligosaccharides (XOS), were investigated in mouse-derived macrophage RAW264.7. Moreover, the immune enhancement mechanism of oligosaccharides with diverse glycosyl compositions was investigated from a molecular interaction perspective. The TLR4-dependent immunoregulatory effect of functional oligosaccharides was shown by measuring the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells treated with different functional oligosaccharides, both with and without Resatorvid [TAK-242] (a Toll-like receptor 4 [TLR4] inhibitor). Western blot analysis showed that binding of the three oligosaccharides to TLR4 activated the downstream signaling pathway and consequently enhanced the immune response. The fluorescence spectra and molecular docking results revealed that the main mechanisms by which these oligosaccharides attach to the TLR4 active pocket are hydrogen bonds and van der Waals forces. Functional oligosaccharides were ranked according to their affinity for TLR4, as follows: MOS > COS > XOS, indicating that oligosaccharides or polysaccharides containing mannose units may confer significant advantages for immune enhancement.
Collapse
Affiliation(s)
- Bin Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyang Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxue Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanan Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyi Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Ma H, Liao M, Zhong P, Ding J, Wang X, Gong G, Huang L, Liu J, Wang Q. Diversely regio-oxidative degradation of konjac glucomannan by lytic polysaccharide monooxygenase AA10 and generating antibacterial hydrolysate. Int J Biol Macromol 2024; 266:131094. [PMID: 38537852 DOI: 10.1016/j.ijbiomac.2024.131094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Konjac glucomannan (KGM) hydrolysate exhibit various biological activities and health-promoting effects. Lytic polysaccharide monooxygenases (LPMOs) play an important role on enzymatic degradation of recalcitrant polysaccharides to obtain fermentable sugars. It is generally accepted that LPMOs exhibits high substrate specificity and oxidation regioselectivity. Here, a bacteria-derived SmAA10A, with chitin-active with strict C1 oxidation, was used to catalyse KGM degradation. Through ethanol precipitation, two hydrolysed KGM components (4 kDa (KGM-1) and 5 kDa (KGM-2)) were obtained that exhibited antibacterial activity against Staphylococcus aureus. In natural KGM, KGM-1, and KGM-2, the molar ratios of mannose to glucose were 1:2.19, 1:3.05, and 1:2.87, respectively, indicating that SmAA10A preferentially degrades mannose in KGM. Fourier-transform infrared spectroscopy and scanning electron microscopy imaging revealed the breakage of glycosylic bonds during enzymatic catalysis. The regioselectivity of SmAA10A for KGM degradation was determined based on the fragmentation behaviour of the KGM-1 and KGM-2 oligosaccharides and their NaBD4-reduced forms. SmAA10A exhibited diverse oxidation degradation of KGM and generated single C1-, single C4-, and C1/C4-double oxidised oligosaccharide forms. This study provides an alternative method for obtaining KGM degradation components with antibacterial functions and expands the substrate specificity and oxidation regioselectivity of bacterial LPMOs.
Collapse
Affiliation(s)
- Hongjuan Ma
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China; College of Life Science, Northwest University, Xi'an 710069, China
| | - Minghong Liao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Peiyun Zhong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jianling Liu
- College of Life Science, Northwest University, Xi'an 710069, China.
| | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
6
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
7
|
Li XJ, Yin Y, Xiao SJ, Chen J, Zhang R, Yang T, Zhou TY, Zhang SY, Hu P, Zhang X. Extraction, structural characterization and immunoactivity of glucomannan type polysaccahrides from Lilium brownii var. viridulum Baker. Carbohydr Res 2024; 536:109046. [PMID: 38335805 DOI: 10.1016/j.carres.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Homogeneous polysaccharide (LBP) was extracted and purified from the bulblets of Lilium brownii var. viridulum Baker with a molecular weight of 312 kDa. The monosaccharides are composed of mannose and glucose, and the corresponding molar ratios are 0.582 and 0.418, respectively. FT-IR, LC-MS, NMR, GC-MS and HPAEC were used to analyze the functional groups, glycosidic linkages and chemical structure of LBP, which was a 1-4-linked glucomannan and contained a dodecasaccharide repeating units of →4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → . In vitro experimental results showed that LBP had noble biocompatibility, and a low dose of 5 μg/mL LBP significantly up-regulated the mRNA expression of TNF-α, iNOS, IL-6, IL-1β and Toll-like receptors family (TLRs) in RAW 264.7 cells. In conclusion, LBP played an important role in immunomodulation, and further studies on the specific immunomodulatory mechanisms of LBP on RAW 264.7 cells are still needed.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yuan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Rui Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong-Yu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Si-Yan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang, 330103, PR China.
| | - Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
8
|
Deng P, Liu X, Li Y, Zhang YF, Wu K, Jiang F. Konjac glucomannan-based aerogels with excellent thermal stability and flame retardancy for thermal insulation application. Int J Biol Macromol 2024; 254:127814. [PMID: 37918590 DOI: 10.1016/j.ijbiomac.2023.127814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Biomass aerogels are a promising kind of environment-friendly thermal insulation material. However, the flammability, poor water resistance, and thermal instability of biomass aerogels limit their applications. Herein, freeze-drying and thermal imidization were used to create konjac glucomannan (KGM), boron nitride (BN), and polyimide (PI)-based aerogels with a semi-interpenetrating network structure. The introduction of BN was beneficial to improve the mechanical properties and thermal stability of aerogels. The imidization process of PI improved the hydrophobicity, mechanical property, and flame retardancy of the aerogels. The synergistic effect of PI and BN reduced the peak heat release rate and total heat release rate of KGM-based aerogel by 55.8 % and 35 %, respectively, and endowed aerogel with good self-extinguishing performance. Moreover, the results of thermal conductivity and infrared thermal imaging demonstrated that the aerogels had excellent thermal insulation properties, and could effectively manage thermal energy over a wide range of temperatures. This study provides a simple method for the preparation of heat-insulating aerogel with high fire safety, which has broad application prospects in the field of energy saving and emission reduction.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xinping Liu
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yan Li
- Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha 410114, China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science and Technology, Changsha 410114, China
| | - Kao Wu
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
9
|
Waresindo WX, Priyanto A, Sihombing YA, Hapidin DA, Edikresnha D, Aimon AH, Suciati T, Khairurrijal K. Konjac glucomannan-based hydrogels with health-promoting effects for potential edible electronics applications: A mini-review. Int J Biol Macromol 2023; 248:125888. [PMID: 37473898 DOI: 10.1016/j.ijbiomac.2023.125888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Konjac glucomannan (KGM), a dietary fiber hydrocolloid polysaccharide isolated from Amorphophallus konjac tubers, has potential applications in various fields. However, the use of KGM-based hydrogels has mainly focused on the food, biomedical, and water treatment industries. KGM possesses several health benefits and could be a promising candidate for use in edible electronics. This paper presents the first review of KGM-based hydrogels as edible electronics and their potential health benefits. The paper initially focuses on the health-promoting effects of KGM-based hydrogels, such as prebiotic effects, antiobesity, antioxidant, and antibacterial properties. Then, it discusses the feasible design strategies for KGM-based hydrogels as edible electronics, considering their flexibility, mechanical properties, response to stimuli, degradability aspects, their role as electronic device components, and the retention period of the devices. Finally, this review outlines future directions for developing KGM-based hydrogels for use in edible electronics.
Collapse
Affiliation(s)
- William Xaveriano Waresindo
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Aan Priyanto
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Yuan Alfinsyah Sihombing
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Dian Ahmad Hapidin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; University Center of Excellence - Nutraceutical, Bioscience, and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Akfiny Hasdi Aimon
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; University Center of Excellence - Nutraceutical, Bioscience, and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Sciences, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Lampung 35365, Indonesia.
| |
Collapse
|
10
|
Kou F, Ge Y, Wang W, Mei Y, Cao L, Wei X, Xiao H, Wu X. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int J Biol Macromol 2023:125199. [PMID: 37285888 DOI: 10.1016/j.ijbiomac.2023.125199] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization. In this review, the structure and health benefits were summarized, and the factors that may affect the quality of G. lucidum polysaccharides were discussed, including the use of chemical modifications such as sulfation, carboxymethylation, and selenization. Those modifications improve the physicochemical characteristics and utilization of G. lucidum polysaccharides, and make them more stable that could be used as functional biomaterials to encapsulate active substances. Ultimate, G. lucidum polysaccharide-based nanoparticles were designed to deliver various functional ingredients to achieve better health-promoting effects. Overall, this review presents an in-depth summary of current modification strategies and offers new insights into the effective processing techniques to develop G. lucidum polysaccharide-rich functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Longkui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
11
|
The synergistic gelation of Dendrobium officinale polysaccharide (Dendronans) with xanthan gum and its rheological and texture properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
12
|
Wang H, Li H, Hou Y, Zhang P, Tan M. Plant polysaccharides: sources, structures, and anti-diabetic effects. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Chen H, Wang B, Li J, Xu J, Zeng J, Gao W, Chen K. Comparative study on the extraction efficiency, characterization, and bioactivities of Bletilla striata polysaccharides using response surface methodology (RSM) and genetic algorithm-artificial neural network (GA-ANN). Int J Biol Macromol 2023; 226:982-995. [PMID: 36495990 DOI: 10.1016/j.ijbiomac.2022.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
This research established the optimal conditions for alkali-assisted extraction (AAE) of bioactive polysaccharides from Bletilla striata integrated with response surface methodology (RSM) and the genetic algorithm-artificial neural networks (GA-ANN). In comparison with RSM, the ANN model showed a relatively higher determination coefficient in the global output values (RSM: ANN = 0.9270: 0.9742) performing more satisfactorily in the validation. Under the optimum conditions (52 °C; 167 min, and 0.01 mol/L NaOH), the extraction yields, IC50 of ABTS, and FRAP value were 29.53 ± 0.97 %, 3.41 mg/mL, and 39.11 μmol Fe2+/g, respectively. The results indicated that BSPs-A was mainly composed of glucose and mannose with small amounts of arabinose, galactose, and galacturonic acid, while possessed a molecular weight of about 305.94 kDa (Mw). The structural characterization of BSPs-A was initially characterized by FT-IR, SEM, and Congo red tests, which indicated that BSPs-A possessed a triple helix conformation of typical Bletilla striata polysaccharides. In addition, BSPs-A exhibited excellent antioxidant activity, which was further confirmed by a series of in vitro antioxidant activity assays including DPPH, ABTS, FRAP, and ORAC. After incubation in the BSA-glucose system for 15 days, BSPs-A showed inhibition of the advanced glycation end products (AGEs) formation for the first time.
Collapse
Affiliation(s)
- Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
14
|
Liu D, Shi Z, Wang S, Zhai L, Gou D, Zhao J, Hu Y. Anti-oxidant and anti-fatigue properties of polysaccharides from black soybean hull. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2098971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Duo Liu
- College of Food Science and Engineering, Changchun University, Changchun, China
- School of Life Sciences, Changchun Normal University, Changchun, Changchun, China
| | - Zenghui Shi
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Siqi Wang
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Liyuan Zhai
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Yanbo Hu
- College of Food Science and Engineering, Changchun University, Changchun, China
| |
Collapse
|
15
|
Guo X, Yang M, Wang C, Nie S, Cui SW, Guo Q. Acetyl-glucomannan from Dendrobium officinale: Structural modification and immunomodulatory activities. Front Nutr 2022; 9:1016961. [PMID: 36245489 PMCID: PMC9558108 DOI: 10.3389/fnut.2022.1016961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
To understand the mechanisms of immunomodulatory effect, Dendrobium Officinale polysaccharides (DOP) were treated by ultrasound and mild base separately to generate fractions of various weight-average molecular weight (Mw) and degrees of acetylation (DA). The structural features, conformational properties, functional properties and immunomodulatory activities of original and modified DOPs were investigated. Ultrasonic treatment decreased the Mw and apparent viscosity and improved the water solubility of DOP. Mild base treatment remarkably reduced the DA and the water solubility, while the overall apparent viscosity was increased. Conformational analysis by triple-detector high performance size-exclusion chromatography showed that the molecular chain of DOP turned more compact coil conformation with decreased DA. Results from the macrophages RAW 264.7 analysis showed that samples sonicated for 200 min (Mw 34.2 kDa) showed the highest immune-regulation effects. However, the immunomodulatory effects of the samples after de-acetylation were all compromised compared to the original DOP. This study inspires further research to establish the structural-immunomodulatory relationships, which promote the application of DOP in both the food and medicine fields.
Collapse
Affiliation(s)
- Xiaoyu Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Mingguan Yang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
- Shaoping Nie,
| | - Steve W. Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Qingbin Guo,
| |
Collapse
|
16
|
Xue H, Wang W, Bian J, Gao Y, Hao Z, Tan J. Recent advances in medicinal and edible homologous polysaccharides: Extraction, purification, structure, modification, and biological activities. Int J Biol Macromol 2022; 222:1110-1126. [PMID: 36181889 DOI: 10.1016/j.ijbiomac.2022.09.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
110 kinds of traditional Chinese medicines can be used for medicine and food from Chinese pharmacopoeia in 2021. With the deepening of research in recent years, medicinal and edible homologous (MEH) traditional Chinese medicines have great development and application prospects in many fields. Polysaccharides are one of the major and representative pharmacologically active macromolecules in traditional Chinese medicines with MEH. Moreover, traditional Chinese medicines with MEH have become the main source of natural polysaccharides with safety, high efficiency, and low side effects. Increasing researches have confirmed that MEH polysaccharides (MEHPs) have multiple biological activities both in vitro and in vivo methods, such as antioxidant, immunomodulatory, anti-tumor, anti-aging, anti-inflammatory, hypoglycemic, hypolipidemic activities, and regulating intestinal flora. Additionally, different raw materials, extraction, purification, and chemical modification methods result in differences in the structure and biological activities of MEHPs. The purpose of the present review is to provide comprehensively and systematically reorganized information in the extraction, purification, structure, modification, biological activities, and potential mechanism of MEHPs to support their therapeutic effects and health functions. New valuable insights and theoretical basis for the future researches and developments regarding MEHPs were proposed in the fields of medicine and food.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Wenli Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiayue Bian
- School of Basic Medical Sciences, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
17
|
Gu Q, Liu Y, Zhen L, Zhao T, Luo L, Zhang J, Deng T, Wu M, Cheng G, Hu J. The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway. Carbohydr Polym 2022; 292:119694. [PMID: 35725182 DOI: 10.1016/j.carbpol.2022.119694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
Bletilla formosana is a traditional Chinese herbal medicine and is widely consumed as foods and medicines in China. However, the chemical structure and bioactivity of its polysaccharides remain unknown. Herein, two new polysaccharides, BFP60 and BFP80, with molecular weights of 3.99 kDa and 10.07 kDa, respectively, were isolated and purified from dried tuber of B. formosana. Structural analysis suggested that BFP60 and BFP80 may have backbone consisted of →4)-β-d-Man-(1→,→4)-β-d-Glc-(1→,→4)-2-O-acetyl-β-d-Man-(1→, and →4)-3-O-acetyl-β-d-Man-(1→. Inflammation assay in LPS-induced RAW264.7 cells showed that the productions of NO and pro-inflammatory cytokines including IL-6, IL-1β, TNF-α, and IFN-γ were significantly reduced, and the expression of iNOS, COX-2, and target proteins in the NF-κB pathway were suppressed after BFP60 and BFP80 pretreatment. These findings indicated that this novel polysaccharide had significant inflammatory protective effects in vitro.
Collapse
Affiliation(s)
- Qinghui Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Li Zhen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lan Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Junyin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tuo Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jiangmiao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Zhang M, Qin H, An R, Zhang W, Liu J, Yu Q, Liu W, Huang X. Isolation, purification, structural characterization and antitumor activities of a polysaccharide from Lilium davidii var. unicolor Cotton. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Li F, Zhao J, Wei Y, Jiao X, Li Q. Holistic review of polysaccharides isolated from pumpkin: Preparation methods, structures and bioactivities. Int J Biol Macromol 2021; 193:541-552. [PMID: 34656536 DOI: 10.1016/j.ijbiomac.2021.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Pumpkin polysaccharides have arrested researchers' attention in fields of food supplements for healthy product and traditional Chinese medicine due to their multiple bioactivities with non-toxic and highly biocompatible. This review emphatically summarized recent progresses in the primary and spatial structural features, various bioactivities, structure-to-function associations, different preparation techniques, and absorption characteristics across intestinal epithelial and in vivo bio-distribution of pumpkin polysaccharides. Additionally, current challenges and future trends in development of pumpkin polysaccharides were pointed out. We found that pumpkin polysaccharides were primary structure (e.g. glucan, galactoglucan, galactomannan, galactan, homogalacturonan (HG), and rhamnogalacturonan-Ι (RG-Ι)) and special structure diverse (e.g. hollow helix, linear, and sphere-like) and significant functional foods or therapeutic agents (e.g. oral hypoglycemic agents). Moreover, we found that the molecular weight (Mw), uronic acid, linkage types, and modifications all could affect their bioactivities (e.g. anti-oxidant, anti-coagulant, and anti-diabetic activities), and pumpkin polysaccharides may across intestinal epithelial into the blood reaching to target organs. Collectively, the structures diversity and pharmacological values of pumpkin polysaccharides support their therapeutic potentials and sanitarian functions.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
20
|
Li M, Wen J, Huang X, Nie Q, Wu X, Ma W, Nie S, Xie M. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis. Food Chem 2021; 374:131586. [PMID: 34839969 DOI: 10.1016/j.foodchem.2021.131586] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Various structural types of polysaccharides are recognized by toll-like receptor 4 (TLR4). However, the mechanism of interaction between the polysaccharides with different structures and TLR4 is unclarified. This review summarized the primary structure of polysaccharides related to TLR4, mainly including molecular weight, monosaccharide composition, glycosidic bonds, functional groups, and branched-chain structure. The optimal primary structure for interacting with TLR4 was obtained by the statistical analysis. Besides, the dual-directional regulation of TLR4 signaling cascade by polysaccharides was also elucidated from an immune balance perspective. Finally, the 3D interaction model of polysaccharides to TLR4-myeloid differentiation factor 2 (MD2) complex was hypothesized according to the LPS-TLR4-MD2 dimerization model and the polysaccharides solution conformation. The essence of polysaccharides binding to TLR4-MD2 complex is a multivalent non-covalent bond interaction. All the arguments summarized in this review are intended to provide some new insights into the interaction between polysaccharides and TLR4.
Collapse
Affiliation(s)
- Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
| | - Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
21
|
Crosstalk during the Carbon-Nitrogen Cycle That Interlinks the Biosynthesis, Mobilization and Accumulation of Seed Storage Reserves. Int J Mol Sci 2021; 22:ijms222112032. [PMID: 34769462 PMCID: PMC8585027 DOI: 10.3390/ijms222112032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrates are the major storage reserves in seeds, and they are produced and accumulated in specific tissues during the growth and development of a plant. The storage products are hydrolyzed into a mobile form, and they are then translocated to the developing tissue following seed germination, thereby ensuring new plant formation and seedling vigor. The utilization of seed reserves is an important characteristic of seed quality. This review focuses on the seed storage reserve composition, source–sink relations and partitioning of the major transported carbohydrate form, i.e., sucrose, into different reserves through sucrolytic processes, biosynthetic pathways, interchanging levels during mobilization and crosstalk based on vital biochemical pathways that interlink the carbon and nitrogen cycles. Seed storage reserves are important due to their nutritional value; therefore, novel approaches to augmenting the targeted storage reserve are also discussed.
Collapse
|
22
|
Lassfolk R, Bertuzzi S, Ardá A, Wärnå J, Jiménez‐Barbero J, Leino R. Kinetic Studies of Acetyl Group Migration between the Saccharide Units in an Oligomannoside Trisaccharide Model Compound and a Native Galactoglucomannan Polysaccharide. Chembiochem 2021; 22:2986-2995. [PMID: 34405515 PMCID: PMC8597014 DOI: 10.1002/cbic.202100374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Acyl group migration is a fundamental phenomenon in carbohydrate chemistry, recently shown to take place also between two non-adjacent hydroxyl groups, across the glycosidic bond, in a β-(1→4)-linked mannan trisaccharide model compound. With the central mannoside unit containing acetyl groups at the O2 and O3 positions, the O2-acetyl was in the earlier study shown to migrate to O6 of the reducing end. Potential implications of the general acyl migration process on cell signaling events and plant growth in nature are intriguing open questions. In the present work, migration kinetics in this original trisaccharide model system were studied in more detail together with potential interactions of the model compound and the migration products with DC-SIGN lectin. Furthermore, we demonstrate here for the first time that similar migration may also take place in native polysaccharides, here represented by galactoglucomannan from Norway spruce.
Collapse
Affiliation(s)
- Robert Lassfolk
- Laboratory of Molecular Science and EngineeringÅbo Akademi University20500TurkuFinland
| | - Sara Bertuzzi
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | - Ana Ardá
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| | - Johan Wärnå
- Laboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi University20500TurkuFinland
| | - Jesús Jiménez‐Barbero
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
- Department of Organic & Inorganic ChemistryUniversity of the Basque Country, UPV/EHU48940LeioaBizkaiaSpain
| | - Reko Leino
- Laboratory of Molecular Science and EngineeringÅbo Akademi University20500TurkuFinland
| |
Collapse
|
23
|
Fan S, Zhang Z, Zhong Y, Li C, Huang X, Geng F, Nie S. Microbiota-related effects of prebiotic fibres in lipopolysaccharide-induced endotoxemic mice: short chain fatty acid production and gut commensal translocation. Food Funct 2021; 12:7343-7357. [PMID: 34180493 DOI: 10.1039/d1fo00410g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fructans such as fructo-oligosaccharides (FOS) and inulin have been reported to directly regulate ileal inflammatory responses in lipopolysaccharide (LPS)-induced endotoxemic mice, without alterations in the colonic microbiota. Firstly, we replicated this model and found that a single gavage of 10 mg g-1 of fructans directly promoted caecal acetate and propionate production. Thus, the previous understanding of microbiota-independent effects of prebiotic fructans in endotoxemic mice has been challenged. In parallel, we performed a daily gavage of 160 mg kg-1 of inulin, xylan, or Dendrobium officinale polysaccharides (DOP) for two weeks prior to LPS injection. The long-term intake of prebiotic fibres reduced the bacterial load in the spleen and mesenteric lymph nodes (MLNs), and in comparison, a single gavage of fructans increased that. However, the long-term intake was unable to improve the short-chain fatty acid (SCFA) synthesis and epithelial barrier function that were impaired by LPS. Notably, the three fibre types consistently reduced the expression of mucin 2 (MUC2) and variously modulated critical mediators (IL-18, IL-22, and HIF-1α) to regulate the host-commensal microbiota interactions in the ileum. In addition, the three fibre types consistently inhibited the inflammatory T helper (Th) cell response in the ileum, while they diversely modulated the peripheral and systemic Th cell responses. Overall, the prebiotic fibres displayed microbiota-related changes in endotoxemic mice, and the potential associations with the in vivo anti-inflammatory effects of prebiotic fibres need further investigation.
Collapse
Affiliation(s)
- Songtao Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Luan F, Zou J, Rao Z, Ji Y, Lei Z, Peng L, Yang Y, He X, Zeng N. Polysaccharides from Laminaria japonica: an insight into the current research on structural features and biological properties. Food Funct 2021; 12:4254-4283. [PMID: 33904556 DOI: 10.1039/d1fo00311a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Laminaria japonica, one of the most widespread seafood consumed in China and many other nations, has been traditionally utilized as an effective therapeutically active substance for treating weight loss, phlegm elimination, and detumescence for more than 2000 years. Numerous studies have found that the polysaccharides play an indispensable role in the nutritional and medicinal value of L. japonica. Water extraction and alcohol precipitation method is the most used method. Approximately 56 LJPs were successfully isolated and purified from L. japonica, whereas only few of them were well characterized. Modern pharmacological studies have shown that L. japonica polysaccharides (LJPs) have high-order structural features and multiple biological activities, including anti-tumor, anti-thrombotic, anti-atherosclerosis, hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, renoprotective, and immunomodulatory. In addition, the structural characteristics of LJPs are closely related to their biological activity. In this review, the extraction and purification methods, structural characteristics, biological activities, clinical settings, toxicities, and structure-activity relationships of LJPs are comprehensively summarized. The structural characteristics and biological activities as well as the underlying molecular mechanisms of LJPs were also outlined. Furthermore, the clinical settings and structure-activity functions of LJPs were highlighted. Some research perspectives and challenges in the study of LJPs were also proposed.
Collapse
Affiliation(s)
- Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Comparative study on glucomannans with different structural characteristics: Functional properties and intestinal production of short chain fatty acids. Int J Biol Macromol 2020; 164:826-835. [DOI: 10.1016/j.ijbiomac.2020.07.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
|
27
|
Chen N, Zhang H, Zong X, Li S, Wang J, Wang Y, Jin M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr Polym 2020; 247:116750. [DOI: 10.1016/j.carbpol.2020.116750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
28
|
Hellebois T, Tsevdou M, Soukoulis C. Functionalizing and bio-preserving processed food products via probiotic and synbiotic edible films and coatings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:161-221. [PMID: 32892833 DOI: 10.1016/bs.afnr.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Edible films and coatings constitute an appealing concept of innovative, cost-effective, sustainable and eco-friendly packaging solution for food industry applications. Edible packaging needs to comply with several technological pre-requisites such as mechanical durability, low permeability to water vapor and gases, good optical properties, low susceptibility to chemical or microbiological alterations and neutral sensory profile. Over the past few years, functionalization of edible films and coatings via the inclusion of bioactive compounds (antioxidants, micronutrients, antimicrobials, natural coloring and pigmentation agents) and beneficial living microorganisms has received much attention. As for living microorganisms, probiotic bacterial cells, primarily belonging to the Lactobacilli or Bifidobacteria genera, have been exploited to impart bespoke health and biopreservation benefits to processed food. Given that the health benefit conferring and biopreservation potential of probiotics is dependent on several extrinsic and intrinsic parameters, the development of probiotic and synbiotic edible packaging concepts is a quite challenging task. In the present chapter, we aimed at a timely overview of the technological advances in the field of probiotic, symbiotic and synbiotic edible films and coatings. The individual or combined effects of intrinsic (matrix composition and physical state, pH, dissolved oxygen, water activity, presence of growth stimulants or inhibitors) and extrinsic (film forming method, food processing, storage time and conditions, exposure to gastrointestinal conditions) factors on maintaining the biological activity of probiotic cells were addressed. Moreover, the impact of living cells inclusion on the mechanical, physicochemical and barrier properties of the edible packaging material as well as on the shelf-life and quality of the coated or wrapped food products, were duly discussed.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg; Université de Lorraine, LIBio, Nancy, France
| | - Maria Tsevdou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|