1
|
Zhang Y, Liu J, Zheng Z, Cao S, Wang X, Guo W, Yan Z, Zhang R, Liu X. Ultrasound-mediated soybean-egg white protein acid-induced emulsion gels: A multi-design approach integrating techno-functional properties, digestibility, and nutritional value. Food Chem 2025; 469:142560. [PMID: 39721435 DOI: 10.1016/j.foodchem.2024.142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
This study investigated the effects of formulation and ultrasound on the processing properties and nutrient digestion of soy protein isolate (SPI)-egg white protein (EWP) emulsion gels. The incorporation of EWP significantly improved the texture properties and freeze-thaw stability through disulfide bonds and homogeneous networks in comparison to SPI emulsion gels. However, swelling ratio of emulsion gels at SPI:EWP ratios of 3:1 and 2:1 decreased due to disruption of SPI network continuity. After ultrasound, SPI-EWP emulsion gels exhibited higher gel strength, freeze-thaw stability, and swelling ratio. Digestion kinetics showed an increased half-life time of SPI-EWP emulsion gels with no significant difference in PCmax. Flexible proteins could adsorb around small droplets, forming tight interfacial layers and a dense and uniform network according to particle size and Cryo-SEM. This work elucidated the mechanism of performance stabilization and digestion kinetics of SPI-EWP emulsion gels, supporting the design of animal and plant protein complex products.
Collapse
Affiliation(s)
- Yudan Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyuan Zheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
3
|
Kim W, Zia MB, Naik RR, Ho KKHY, Selomulya C. Effects of polyphenols from Tasmannia lanceolata on structural, emulsifying, and antioxidant properties of pea protein. Food Chem 2025; 464:141589. [PMID: 39406142 DOI: 10.1016/j.foodchem.2024.141589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
The effects of polyphenols from Tasmanian pepper (Tasmannia Lanceolata) leaf and berry on the functional properties of pea protein were investigated in flaxseed oil-in-water emulsions. Phenolic acids and flavonols in Tasmanian pepper leaf with smaller molecular weights led to stronger non-covalent interactions with pea protein, while anthocyanins from Tasmanian pepper berry induced protein aggregation under acidic condition and co-existed with proteins in neutral and alkaline conditions. The total phenolic content was significantly increased with incorporation of polyphenols from Tasmanian pepper leaf (334.94-445.92 μg/mL) and berry (72.89-153.03 μg/mL) to pea protein (4.19-15.59 μg/mL). The oxidative stability of emulsions at pH 3 and 7 was enhanced, reducing TBARS value from 1.54 to 2.68 mg MDA/kg in pea protein to 0.56-0.85 mg MDA/kg after 2 weeks storage. These findings illustrated the distinct interactions between pea protein and different polyphenols from Tasmanian pepper leaf and berry to enhance the antioxidant capacity of pea protein.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Muhammad Bin Zia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - Kacie K H Y Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | |
Collapse
|
4
|
Michels D, Verkempinck SHE, den Broeck LV, Spaepen R, Vermeulen K, Roelants S, Wealleans A, Grauwet T. Molecular characteristics of glycolipids determine oil-water interfacial behavior and in vitro lipid digestion kinetics. Food Res Int 2025; 202:115714. [PMID: 39967168 DOI: 10.1016/j.foodres.2025.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
An extensive amount of research has been conducted on a multitude of emulsifiers regarding their effect on o/w emulsion characteristics and lipolysis kinetics. However, there is an emerging need towards the understanding of biobased emulsifier characteristics. Therefore, this research studied the effect of 6 glycolipids on interfacial tension, emulsion microstructure throughout in vitro digestion, and lipolysis kinetics. Findings showed that molecular differences between glycolipids, such as the degree of acetylation, lactonization, and symmetry, substantially affected their behavior on the oil-water (o/w) interface, lowering the interfacial tensions to values ranging between 2 and 18 mN/m. Glycolipids with a higher amount of acetyl groups, lower tendency to self-assemble, and/or smaller molecular volume on the interface, decreased the interfacial tension substantially more. Therefore, acetylated lactonic sophorolipid decreased the interfacial tension most, while non-acetylated sophoroside showed the smallest effect on the interfacial tension. While all emulsions were stable and initially had similar droplet sizes, some were unstable throughout the simulated upper digestive tract, resulting in significantly different hydrolysis behaviors. Acetylated lactonic sophorolipid and non-acetylated glucolipid were more hydrophobic than the remaining 4 glycolipids, causing this gastric instability resulting in lower lipolysis extents by the end of the small intestinal phase. The acetylated sophoroside emulsion was unstable during the small intestinal phase, attributed to bile salt interactions. Therefore, this research concludes that molecular changes between glycolipids give rise to significantly different emulsion and digestion properties. These insights can be used in future work to optimize glycolipid structure and subsequent functional properties.
Collapse
Affiliation(s)
- Daphne Michels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Lore Van den Broeck
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Riet Spaepen
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | - Karen Vermeulen
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | | | - Alexandra Wealleans
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Tian Y, Qiu M, Shen Y, Zheng Y, Yang X, Zhang W, Jiang Y. Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation. Int J Biol Macromol 2025; 301:140368. [PMID: 39884608 DOI: 10.1016/j.ijbiomac.2025.140368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH. Initially, the properties of WPH with different (6 %, 8 %, 10 %, 12 % and 14 %) degree of hydrolysis (DH) were investigated. 8 %-WPH demonstrated superior emulsifying (11.49 m2/g, 81.34 min) and foaming properties (14.00 %, 7.78 %). Subsequently, the stability of different WPH-stabilized emulsions were examined. 8 %-WPH emulsion exhibited the lowest centrifugal precipitation rate (4.50 %) and Turbiscan stability index (2.24). Additionally, the 8 %-WPH promoted the adsorption and retention of molecules at the interface, which effectively reduced the interfacial tension. QCM-D measurement further proved that the 8 %-WPH possessed excellent adsorption mass and viscoelasticity. Finally, we characterized the interface-adsorbed WPH. The 8 %-WPH exhibited the highest surface hydrophobicity (1072.60) and flexibility (0.22). Notably, the 8 %-WPH showed the highest β-sheet (41.11 %). This led to stronger interactions between neighboring interfacial WPH molecules, which protected the emulsion droplets from destabilizing factors. Nevertheless, excessive hydrolysis (10 %-14 %) caused WPH molecules aggregation, which consequently diminished the viscoelasticity of the interfacial film and the emulsion stability.
Collapse
Affiliation(s)
- Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
6
|
Cao X, Liu H, Yang M, Mao K, Wang X, Chen Z, Ran M, Hao L. Evaluation of the nutritional quality of yeast protein in comparison to animal and plant proteins using growing rats and INFOGEST model. Food Chem 2025; 463:141178. [PMID: 39303477 DOI: 10.1016/j.foodchem.2024.141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Yeast, identified as a microorganism, boasts a considerable protein content, positioning yeast protein as a highly promising alternative in the quest for sustainable protein sources. The primary aim of this study is to evaluate the protein quality of yeast protein and compare it with animal proteins (whey concentrate/isolate proteins) and plant proteins (soy, wheat, pea proteins). Notably, yeast protein exhibits the highest ratio of indispensable/dispensable amino acids (IAAs/DAAs, 0.91). However, in both in vivo and in vitro digestion experiments, yeast protein demonstrated lower true protein digestibility (TPD) and true ileal digestibility (TID) compared to other proteins. Despite this, the yeast protein's amino acid score (AAS, 1.37 for >3 years), protein digestibility-corrected amino acid score (PDCAAS, 100 % for >3 years), and digestibility-corrected amino acid score (DIAAS, 82.42 % for >3 years) of yeast protein surpassed those of plant proteins, yet remained lower than animal proteins primarily due to its lower digestibility.
Collapse
Affiliation(s)
- Xin Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Miao Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xinzheng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Ziyu Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Mingqi Ran
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
| |
Collapse
|
7
|
Qi X, Luo Y, Fei W, Shen M, Chen Y, Yu Q, Xie J. Effects of enzyme hydrolysis-assisted fibrillation treatment on the solubility, emulsifying properties and antioxidant activity of rice protein. Int J Biol Macromol 2024; 279:135378. [PMID: 39244125 DOI: 10.1016/j.ijbiomac.2024.135378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This work aimed to explore the changes of rice protein (RP) in solubility, emulsifying properties, and antioxidant activity after the enzyme hydrolysis-assisted fibrillation dual modification. Results showed that enzyme hydrolysis by papain and fibrillation treatments significantly affected the secondary and tertiary structures of RP. The modified proteins, including RP hydrolysate (RPH), RP nanofibrils (RPN), and RPH nanofibrils (RPHN), demonstrated enhanced solubility and antioxidant activity compared to RP, with RPHN exhibiting the superior performance. The emulsifying capacity of RPH, RPN, and RPHN increased by 9.55 %, 22.86 %, and 26.57 %, respectively, compared to that of RP. Furthermore, RPHN displayed the highest emulsion stability index. Nanoemulsion stabilized by RPHN showed enhanced centrifugal, storage, and oxidative stabilities. Neither RPHN nor RPN exhibited cytotoxicity to human cell lines, and could provide nutrients for cells. Overall, the functional properties and antioxidant activity of RP were significantly improved by enzyme hydrolysis-assisted fibrillation dual modification. This study may provide reference for the development and utilization of nanofibrils from plant proteins.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weiqi Fei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Rout S, Dash P, Panda PK, Yang PC, Srivastav PP. Interaction of dairy and plant proteins for improving the emulsifying and gelation properties in food matrices: a review. Food Sci Biotechnol 2024; 33:3199-3212. [PMID: 39328217 PMCID: PMC11422335 DOI: 10.1007/s10068-024-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/28/2024] Open
Abstract
A variety of variables influence food texture, two of which are gelation and emulsification. Protein interactions have an important role in influencing gelation and emulsifying properties. The utilization of plant proteins in the development of food systems is a prominent subject within the current protein transition paradigm. Plant proteins diminish gel strength compared to dairy proteins. Protein providers prefer to create their own networks rather than rely on tight ties. It may be feasible to resolve these challenges if the interactions between plant and dairy proteins are known at all sizes, from molecular to macroscopic. Therefore, the proteins and dairy proteins are the main emphasis of this review. The role of these proteins in interacting with food matrices is also discussed. Additionally, this data gives information on worldwide research trends. Finally, a glimpse into the future was discussed.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608 Taiwan
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 32003 Taiwan
| | - Po-Chih Yang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 32003 Taiwan
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| |
Collapse
|
9
|
Chen Y, Li T, Jiang L, Huang Z, Zhang W, Luo Y. The composition, extraction, functional property, quality, and health benefits of coconut protein: A review. Int J Biol Macromol 2024; 280:135905. [PMID: 39332551 DOI: 10.1016/j.ijbiomac.2024.135905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Coconut is widely appreciated for its distinctive flavor and is commonly utilized in the production of a variety of goods. Coconut protein, a by-product derived from coconut oil and coconut milk cake, is frequently underutilized or discarded. This study provides a comprehensive overview of the distribution and composition of coconut protein. Analyses reveal that coconut protein, specifically 11S globulin and 7S globulin, is predominantly found in coconut flesh. Furthermore, various extraction techniques for coconut protein, such as chemical, enzymatic, and physical methods, are discussed. The alkali dissolution and acid precipitation methods are widely utilized for extracting coconut protein, with the potential for enhancement through the incorporation of physical methods such as ultrasound. The evaluation of functional properties, quality, and health benefits of coconut protein is essential, given the limitations imposed by its solubility. Modification may be necessary to optimize its functional properties. Coconut presents a promising source of food protein, characterized by balanced amino acid composition, high digestibility, and low allergenic potential. In conclusion, this study provides a comprehensive overview of the extraction methods, functional properties, quality, and nutritional benefits of coconut protein, offering insights for potential future research directions in the field. Additionally, the information presented may serve as a valuable reference for incorporating coconut protein into plant-based food products.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
10
|
Wang X, Yu H, Hu Z, Zhang C, Liu B, Liu H, Ma Y. Construction and characterization of sesame meal-stabilized Pickering high internal phase emulsions and their application in cake production. Int J Biol Macromol 2024; 281:136364. [PMID: 39374722 DOI: 10.1016/j.ijbiomac.2024.136364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Pickering high internal phase emulsions (HIPEs) show promise for solid fat replacement and nutrient delivery, but the availability of safe and easily accessible food-borne particulate emulsifiers is a bottleneck limiting their practical application. In this study, the feasibility of using sesame meal as an emulsifier for the construction of sunflower oil-based Pickering HIPEs was evaluated. These HIPEs were then characterized in terms of their microstructural and mechanical properties, and utilized as a substitute for butter in cake production. Results showed that sesame meal is rich in protein, and has a particle size (median diameter, 46.40 ± 0.83 μm), and wettability that makes it suitable for use as an emulsifier. It stabilized O/W type Pickering HIPEs formulated with sunflower oil with a volume fraction of up to 80 %. The mechanical properties of these Pickering HIPEs were positively correlated with the concentration of sesame meal. Sunflower oil-based HIPEs prepared from sesame meal can partially replace butter for cake preparation when φ = 80 % and c = 9.0 %, and enhance the internal pore structure of cake when butter substitution (Wb) ≤ 30 %. This provides a new way to use sesame meal and new type of food-grade Pickering HIPEs.
Collapse
Affiliation(s)
- Xiaohuan Wang
- College of Food Science and Engineering, Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hang Yu
- College of Food Science and Engineering, Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihong Hu
- College of Food Science and Engineering, Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Chenxia Zhang
- College of Food Science and Engineering, Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huamin Liu
- College of Food Science and Engineering, Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yuxiang Ma
- College of Food Science and Engineering, Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
11
|
Feng D, Han D, Li M, Li H, Li N, Liu T, Wang J. Protein nutritional support: The prevention and regulation of colorectal cancer and its mechanism research. FOOD FRONTIERS 2024; 5:2515-2532. [DOI: 10.1002/fft2.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
AbstractColorectal cancer (CRC) is a common malignant tumor of the digestive tract in China; its incidence rates and mortality rates have been on the rise in recent years, ranking third in terms of incidence and second in mortality. Rational dietary intervention plays an important role in human health, and prevention and adjuvant treatment of CRC through dietary supplementation is the most ideal and safest way to treat the disease at present. More importantly, dietary protein is the basis of our diet and the key nutrient to maintain the normal function of the human body. Therefore, this narrative review delivered an overview of the common causes and therapeutic treatments for CRC. It emphasized the importance of dietary interventions, with a particular focus on elucidating the distinct regulatory impacts of plant proteins, animal proteins, and their mixed proteins.
Collapse
Affiliation(s)
- Duo Feng
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Di Han
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Mengjie Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Hu Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Na Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Tianxin Liu
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Jing Wang
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
12
|
Hassan L, Reynoso M, Xu C, Al Zahabi K, Maldonado R, Nicholson RA, Boehm MW, Baier SK, Sharma V. The bubbly life and death of animal and plant milk foams. SOFT MATTER 2024; 20:8215-8229. [PMID: 39370983 DOI: 10.1039/d4sm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Milk foams are fragile objects, readily prepared for frothy cappuccinos and lattes using bovine milk. However, evolving consumer preferences driven by health, climate change, veganism, and sustainability have created a substantial demand for creating frothy beverages using plant-based milk alternatives or plant milks. In this contribution, we characterize maximum foam volume and half-lifetime as metrics for foamability and foam stability and drainage kinetics of two animal milks (cow and goat) and compared them to those of the six most popular, commercially available plant milks: almond, oat, soy, pea, coconut, and rice. We used three set-ups: an electric frother with cold (10 °C) and hot (65 °C) settings to emulate the real-life application of creating foam for cappuccinos, a commercial device called a dynamic foam analyzer or DFA and fizzics-scope, a bespoke device we built. Fizzics-scope visualizes foam creation, evolution, and destruction using an extended prism-based imaging system facilitating the capture of spatiotemporal variation in foam microstructure over a broader range of heights and liquid fractions. Among the chosen eight milks, oat produces the longest-lasting foams, and rice has the lowest amount and stability of foam. Using the hot settings, animal milks produce more foam volume using an electric frother than the top three plant milks in terms of foamability (oat, pea, and soy). Using the cold settings, oat, soy, and almond outperform cow milk in terms of foam volume and lifetime for foams made with the frother and sparging. Most plant milks have higher viscosity due to added polysaccharide thickeners, and in some, lecithin and saponin can supplement globular proteins as emulsifiers. Our studies combining foam creation by frothing or sparging with imaging protocols to track global foam volume and local bubble size changes present opportunities for contrasting the physicochemical properties and functional attributes of animal and plant-based milk and ingredients for engineering better alternatives.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Monse Reynoso
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Karim Al Zahabi
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Ramiro Maldonado
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | | | | | - Stefan K Baier
- Motif FoodWorks Inc., Boston, MA 02210, USA
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| |
Collapse
|
13
|
de Oliveira Filho JG, Duarte LGR, Bonfim DO, Salgaço MK, Mattoso LHC, Egea MB. Shaping the Future of Functional Foods: Using 3D Printing for the Encapsulation and Development of New Probiotic Foods. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10382-5. [PMID: 39419915 DOI: 10.1007/s12602-024-10382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Consumers have been demanding foods that, besides providing nutrition, bring some health benefits, known as functional foods. The insertion of probiotics in foods is a strategy for developing functional foods. Still, it has been a challenge because these matrices have different pHs and undergo different process temperatures and times that can reduce the viability of these microorganisms. In this sense, encapsulation using 3D printing emerges to protect probiotic microorganisms and ensure that they reach the intestine viable and carry out the expected beneficial action. Thus, this review evaluates the current advancements in 3D printing to encapsulate and develop novel probiotic foods. Research has shown that 3D printing effectively encapsulates probiotic microorganisms, preserving their viability throughout the gastrointestinal tract. Studies have proven the effectiveness of 3D printing encapsulation in protecting probiotics during processing, storage, and digestion. Innovative formulations for 3D bioprinted products with probiotics, such as food structures based on cereals, mashed potatoes, and cream, have been developed. Producing products with shelf life and combining applications of phytochemicals and probiotics aims to improve personalized nutrition, textural characteristics, and sensory attributes of the foods produced by this emerging approach. Therefore, 3D printing of foods with probiotics has the potential to create new products that meet this demand.
Collapse
Affiliation(s)
| | | | - Diego Oliveira Bonfim
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
14
|
Xie Y, Liu Q, Ge Y, Liu Y, Yang R. Formation and Applications of Typical Basic Protein-Based Heteroprotein Complex Coacervations. Foods 2024; 13:3281. [PMID: 39456343 PMCID: PMC11508135 DOI: 10.3390/foods13203281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Lactoferrin, lysozyme, and gelatin are three common basic proteins known for their ability to interact with acidic proteins (lactoglobulin, ovalbumin, casein, etc.) and form various supramolecular structures. Their basic nature makes them highly promising for interaction with other acidic proteins to form heteroprotein complex coacervation (HPCC) with a wide range of applications. This review extensively examines the structure, properties, and preparation methods of these basic proteins and delves into the internal and external factors influencing the formation of HPCC, including pH, ionic strength, mixing ratio, total protein concentration, temperature, and inherent protein properties. The applications of different HPCCs based on these three basic proteins are discussed, including the encapsulation of bioactive molecules, emulsion stabilization, protein separation and extraction, nanogel formation, and the development of formulas for infants. Furthermore, the challenges and issues that are encountered in the formation of heteroprotein complexes are addressed and summarized, shedding light on the complexities and considerations involved in utilizing HPCC technology in practical applications. By harnessing the basic proteins to interact with other proteins and to form complex coacervates, new opportunities arise for the development of functional food products with enhanced nutritional profiles and functional attributes.
Collapse
Affiliation(s)
- Yufeng Xie
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingchen Liu
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yubo Ge
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yongqi Liu
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
15
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
16
|
Mao JH, Wang Y, Chen WM, Wang XM, Liu J, Shao YH, Tu ZC. Galacto-oligosaccharides modified whey protein isolate ameliorates cyclophosphamide-induced immunosuppression. Int J Biol Macromol 2024; 278:134642. [PMID: 39128745 DOI: 10.1016/j.ijbiomac.2024.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The effect of whey protein isolate (WPI)- galacto-oligosaccharides (GOS)/fructo-oligosaccharides (FOS) conjugates on RAW264.7 cells, and further the effect of WPI-GOS conjugates on CTX-induced immunosuppressed mice were investigated. Compared to WPI-FOS conjugates, WPI-GOS conjugates exhibited deeper glycation extent, more pronounced structural unfolding and helix-destabilizing, and obviously improved functional indicators of RAW264.7 macrophages. In addition, WPI-GOS conjugates also repaired immune organ and intestinal barrier and increased IL-1β and IFN-γ levels in immunosuppressed mice. The alteration of gut microbiota induced by WPI-GOS conjugates changed the serum metabolites, causing the activation of NFκB pathway, which strengthens the immune system. The activation of NFκB pathway maybe associated with the mTOR signal pathway and ABC transporters. However, the precise mechanisms by which NFκB pathway interacts with mTOR signal pathway and ABC transporters to modulate the immune response need for further research.
Collapse
Affiliation(s)
- Ji-Hua Mao
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yang Wang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Mei Chen
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
17
|
Haładyn K, Wojdyło A, Nowicka P. Isolation of Bioactive Compounds (Carotenoids, Tocopherols, and Tocotrienols) from Calendula Officinalis L., and Their Interaction with Proteins and Oils in Nanoemulsion Formulation. Molecules 2024; 29:4184. [PMID: 39275032 PMCID: PMC11397186 DOI: 10.3390/molecules29174184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Calendula officinalis L. has numerous health-promoting properties due to the presence of a large number of lipophilic compounds. Their effective delivery to the body requires the use of an appropriate technique such as emulsification. So, the main purpose of this study was to understand how the profile of lipophilic compounds from pot marigold and the pro-health potential are shaped by different types of protein, oil, and drying techniques in o/w nanoemulsion. To obtain this, the profiles of carotenoid compounds and tocols were measured. Additionally, antioxidant potential and the ability to inhibit α-amylase and α-glucosidase were measured. Pea protein emulsion exhibited a higher final content of carotenoid compounds (23.72-39.74 mg/100 g), whereas those with whey protein had stronger α-amylase inhibition (487.70 mg/mL). The predominant compounds in the studied nanoemulsions were β-carotene (between 19% and 40%), followed by α-tocopherol/γ-tocopherol. The type of proteins shaped the health-promoting properties and determined the content of health-promoting compounds.
Collapse
Affiliation(s)
- Kamil Haładyn
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|
18
|
Kang ZL, Yao PL, Xie JJ, Li YP, Ma HJ. Effects of low-frequency magnetic field on solubility, structural and functional properties of soy 11S globulin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5944-5954. [PMID: 38415770 DOI: 10.1002/jsfa.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Soy 11S globulin has high thermal stability, limiting its application in the production of low-temperature gel foods. In this study, the low-frequency magnetic field (LF-MF, 5 mT) treatment (time, 30, 60, 90, and 120 min) was used to improve the solubility, conformation, physicochemical properties, surface characteristics, and gel properties of soy 11S globulin. RESULTS Compared with the native soy 11S globulin, the sulfhydryl content, emulsifying capacity, gel strength, water-holding capacity, and absolute zeta potential values significantly increased (P < 0.05) after LF-MF treatment. The LF-MF treatment induced the unfolding of the protein structure and the fracture of disulfide bonds. The variations in solubility, foaming properties, viscosity, surface hydrophobicity, and rheological properties were closely related to the conformational changes of soy 11S globulin, with the optimum LF-MF modification time being 90 min. CONCLUSION LF-MF treatment is an effective method to improve various functional properties of native soy 11S globulin, and this study provides a reference for the development of plant-based proteins in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuang-Li Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China
| | - Peng-Lei Yao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Jing-Jie Xie
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan-Ping Li
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, China
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
19
|
Zhu B, Yang J, Dou J, Ning Y, Qi B, Li Y. Comparison of the physical stability, microstructure and protein-lipid co-oxidation of O/W emulsions stabilized by l-arginine/l-lysine-modified soy protein hydrolysate. Food Chem 2024; 447:138901. [PMID: 38458131 DOI: 10.1016/j.foodchem.2024.138901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
This work investigated the physical stability, microstructure, and oxidative stability of the emulsions prepared by soy protein hydrolysate (SPH) after modification with different concentrations of l-arginine and l-lysine. l-Arginine and l-lysine significantly increased the absolute zeta potential values, and decreased droplet sizes of the emulsions, thereby improving the physical stability of the emulsions. Meanwhile, l-arginine and l-lysine markedly decreased the apparent viscosity of the emulsions. The measurement of interfacial protein adsorption percentage showed that l-arginine (≤0.5 %) promoted the adsorption of SPH at the oil-water interface, whereas l-lysine (≤1%) reduced the adsorption of SPH at the oil-water interface. In addition, l-arginine and l-lysine (≤0.5 %) could retard lipid and protein oxidation. Correlation analysis indicated that the improvement in the physical stability of the emulsions by l-arginine and l-lysine also enhanced the oxidative stability of the emulsions. In summary, l-arginine and l-lysine could be effective modifiers for the protein-based emulsion systems.
Collapse
Affiliation(s)
- Bin Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jinjie Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingjing Dou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yijie Ning
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
20
|
Rigueto CVT, Rosseto M, Alessandretti I, Krein DDC, Emer CD, Loss RA, Dettmer A, Pizzutti IR. Extraction and improvement of protein functionality using steam explosion pretreatment: advances, challenges, and perspectives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1215-1237. [PMID: 38910923 PMCID: PMC11190127 DOI: 10.1007/s13197-023-05817-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 06/25/2024]
Abstract
Protein has become an increasingly valuable food component with high global demand. Consequently, unconventional sources, such as industrial and agroindustrial wastes and by-products, emerge as interesting alternatives to meet this demand, considering the UN Sustainable Development Goals and the transition to a circular economy. In this context, this work presents a review of the use of Steam Explosion (SE), a green technique that can be employed as a pretreatment for various waste materials, including bones, hide/leather, feathers, and wool, aimming the extraction of protein compounds, such as low molecular weight biopeptides, gelatin, and keratin, as well as to enhance the protein functionality of grains and meals. The SE technique and the main factors affecting the process's efficiency were detailed. Promising experimental studies are discussed, along with the mechanisms responsible for protein extraction and functionality improvement, as well as the main reported and suggested applications. In general, steam explosion favored yields in subsequent extraction processes, ranging from 27 to 95%, in addition to enhancing solubility and functional protein properties. Nonetheless, it is crucial to maintain the continuity of research on this topic to drive advancements in ensuring the safety of the extracted compounds for use in consumable products and oral ingestion.
Collapse
Affiliation(s)
- Cesar Vinicius Toniciolli Rigueto
- Program in Food Science and Technology (PPGCTA), Center of Rural Science, Postgraduate, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul Brazil
| | - Marieli Rosseto
- Program in Food Science and Technology (PPGCTA), Center of Rural Science, Postgraduate, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul Brazil
| | - Ingridy Alessandretti
- Postgraduate Program in Food Science and Technology (PPGCTA), Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Passo Fundo, Rio Grande Do Sul Brazil
| | - Daniela Dal Castel Krein
- Postgraduate Program in Food Science and Technology (PPGCTA), Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Passo Fundo, Rio Grande Do Sul Brazil
| | - Cassandro Davi Emer
- Postgraduate Program in Food Science and Technology (PPGCTA), Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Passo Fundo, Rio Grande Do Sul Brazil
| | - Raquel Aparecida Loss
- Postgraduate Program in Environment and Agricultural Production Systems, Mato Grosso State University (UNEMAT), Tangará da Serra, Mato Grosso Brazil
| | - Aline Dettmer
- Postgraduate Program in Food Science and Technology (PPGCTA), Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Passo Fundo, Rio Grande Do Sul Brazil
| | - Ionara Regina Pizzutti
- Program in Food Science and Technology (PPGCTA), Center of Rural Science, Postgraduate, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul Brazil
| |
Collapse
|
21
|
Abliz A, Huang Y, Rouzi R, Xu D, Gao Y, Liu J. Effects of Emulsifiers on Physicochemical Properties and Carotenoids Bioaccessibility of Sea Buckthorn Juice. Foods 2024; 13:1972. [PMID: 38998478 PMCID: PMC11241759 DOI: 10.3390/foods13131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The need to improve the physicochemical properties of sea buckthorn juice and the bioavailability of carotenoids is a major challenge for the field. The effects of different natural emulsifiers, such as medium-chain triglycerides (MCTs), tea saponins (TSs) and rhamnolipids (Rha), on the physical and chemical indexes of sea buckthorn juice were studied. The particle size of sea buckthorn juice and the carotenoids content were used as indicators for evaluation. The effects of different addition levels of MCT, Rha and TS on the bioavailability of carotenoids in sea buckthorn juice were investigated by simulating human in vitro digestion tests. The results showed that those emulsifiers, MCT, Rha and TS, can significantly reduce the particle size and particle size distribution of sea buckthorn juice, improve the color, increase the soluble solids content, turbidity and physical stability and protect the carotenoids from degradation. When the addition amount of Rha was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 45.20%; when the addition amount of TS was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 37.95%. Furthermore, the bioaccessibility of carotenoids was increased from 36.90 ± 2.57% to 54.23 ± 4.17% and 61.51 ± 4.65% through in vitro digestion by Rha and TS addition, respectively. However, the total carotenoids content (TCC) of sea buckthorn juice and bioaccessibility were not significantly different with the addition of MCT. In conclusion, the findings of this study demonstrate the potential of natural emulsifiers, such as MCT, Rha and TS, to significantly enhance the physicochemical properties and bioavailability of carotenoids in sea buckthorn juice, offering promising opportunities for the development of functional beverages with improved nutritional benefits.
Collapse
Affiliation(s)
- Arzigül Abliz
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Huang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Reziwanguli Rouzi
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
22
|
Hadinoto K, Ling JKU, Pu S, Tran TT. Effects of Alkaline Extraction pH on Amino Acid Compositions, Protein Secondary Structures, Thermal Stability, and Functionalities of Brewer's Spent Grain Proteins. Int J Mol Sci 2024; 25:6369. [PMID: 38928076 PMCID: PMC11203782 DOI: 10.3390/ijms25126369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A high alkaline pH was previously demonstrated to enhance the extraction yield of brewer's spent grains (BSG) proteins. The effects of extraction pH beyond the extraction yield, however, has not been investigated before. The present work examined the effects of extraction pH (pH 8-12) on BSG proteins' (1) amino acid compositions, (2) secondary structures, (3) thermal stability, and (4) functionalities (i.e., water/oil holding capacity, emulsifying, and foaming properties). The ideal extraction temperature (60 °C) and BSG-to-solvent ratio (1:20 w/v) for maximizing the extraction yield were first determined to set the conditions for the pH effect study. The results showed that a higher extraction pH led to more balanced compositions between hydrophilic and hydrophobic amino acids and higher proportions of random coils structures indicating increased protein unfolding. This led to superior emulsifying properties of the extracted proteins with more than twofold improvement between pH 8 and a pH larger than 10. The extraction pH, nevertheless, had minimal impact on the water/oil holding capacity, foaming properties, and thermal denaturation propensity of the proteins. The present work demonstrated that a high alkaline pH at pH 11-12 was indeed ideal for both maximizing the extraction yield (37-46 wt.%) and proteins' functionalities.
Collapse
Affiliation(s)
- Kunn Hadinoto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
23
|
Li R, Kirkensgaard JJK, Corredig M. Structural evolution of pea-derived albumins during pH and heat treatment studied with light and X-ray scattering. Food Res Int 2024; 186:114380. [PMID: 38729734 DOI: 10.1016/j.foodres.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.
Collapse
Affiliation(s)
- Ruifen Li
- Department of Food Science & CiFood Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| | - Jacob J K Kirkensgaard
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; Niels Bohr Institute, Universitetsparken 5, 2100 København Ø, Denmark
| | - Milena Corredig
- Department of Food Science & CiFood Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| |
Collapse
|
24
|
Rayees R, Gani A, Noor N, Ayoub A, Ashraf ZU. General approaches to biopolymer-based Pickering emulsions. Int J Biol Macromol 2024; 267:131430. [PMID: 38599428 DOI: 10.1016/j.ijbiomac.2024.131430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Pickering emulsion is a type of emulsion that uses solid particles or colloidal particles as emulsifiers rather than surfactants to adhere at oil-water interface. Pickering emulsions have gathered significant research attention recently due to their excellent stability and wide range of potential uses compared to traditional emulsions. Major advancements have been made in development of innovative Pickering emulsions using different colloidal particles by various techniques including homogenization, emulsification and ultrasonication. Use of biopolymer particles gives Pickering emulsions a more escalating possibilities. In this review paper, we seek to present a critical overview of development in food-grade particles that have been utilized to create Pickering emulsions with a focus on techniques and application of Pickering emulsions. Particularly, we have evaluated protein, lipid, polysaccharide-based particles and microalgal proteins that have emerged in recent years with respect to their potential to stabilize and add novel functionalities to Pickering emulsions. Some preparation methods of Pickering emulsions in brief, applications of Pickering emulsions are also highlighted. Encapsulation and delivery of bioactive compounds, fat substitutes, film formation and catalysis are potential applications of Pickering emulsions. Pickering double emulsions, nutraceutical and bioactive co-delivery, and preparation of porous materials are among research trends of food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Rahiya Rayees
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India.
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| |
Collapse
|
25
|
Liao M, Yang W, Jin R, Shang J, Li M, Kang J, Wei Z, Teng X, Xin Q, Liu N, Ren H. Research of Maillard reaction and stability of liquid infant formulas during storage. Int J Food Sci Technol 2024; 59:2197-2209. [DOI: 10.1111/ijfs.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2025]
Abstract
SummaryThis study investigated the Maillard reaction (MR) and the stability of liquid infant formulas (LIFs) stored at 5 °C, 25 °C and 40 °C for 6 months. With the increase in storage temperature, the concentrations of 2‐furoylmethyl‐ε‐lysine (furosine) increased from 60.72 to 109.60 mg/100 g protein and Nɛ‐ Carboxy methyl lysine (CML) increased 106.82 to 197.04 mg/100 g protein. Colour became darker, yellower and redder, and pH values decreased. Negative charges increased during the first 3 months and decreased during the last 3 months. Fat globule sizes increased and particle size distribution (PSD) regressed, and the accumulation of fat was clearly observed by confocal laser scanning microscopy (CLSM). Shear thickened with the increase in shear rate, and the turbiscan stability index (TSI) values increased. In summary, these results indicated that lower storage temperature (5 °C) inhibits the MR and reduces unstable changes of LIF during storage period; thus, the nutritional value of LIF can be largely preserved.
Collapse
Affiliation(s)
- Minhe Liao
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Wei Yang
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ritian Jin
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Jiaqi Shang
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Meng Li
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Jiaxin Kang
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Zikai Wei
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Xiangyu Teng
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Qiuyan Xin
- Heilongjiang Chenying Dairy Co., Ltd 18 Nenduo Road, Nenjiang 161499 China
| | - Ning Liu
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| | - Haowei Ren
- Key Laboratory of Dairy Science, Ministry of Education Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
- College of Food Science Northeast Agricultural University 600 Changjiang Road, Xiangfang District Harbin 150030 China
| |
Collapse
|
26
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
27
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Liu Y, Wu Q, Zhang J, Yan W, Mao X. Food emulsions stabilized by proteins and emulsifiers: A review of the mechanistic explorations. Int J Biol Macromol 2024; 261:129795. [PMID: 38290641 DOI: 10.1016/j.ijbiomac.2024.129795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The stability of food emulsions is the basis for other properties. During their production and processing, emulsions tend to become unstable due to their thermodynamic instability, and it is usually necessary to add emulsifiers and proteins to stabilize emulsions. It becomes crucial to study the intrinsic mechanisms of emulsifiers and proteins and their joint stabilization of food emulsions. This paper summarizes the research on intrinsic mechanisms of food emulsions stabilized by emulsifiers and proteins in recent years. The destabilization and stabilization of emulsions are related to the added surfactants. The properties, type, and concentration of emulsifiers determine the stability of emulsions, and the emulsifiers can be classified into different types (e.g., ionic or nonionic, solid or liquid) according to their properties and sources. The physicochemical properties of proteins (e.g., spatial conformation, hydrophobicity) and the composition of proteins can also determine the stability of emulsions, and emulsions stabilized by emulsifiers and proteins together not only depend on these factors but also have a great relationship with the mutual combination and competition between the two. The instability and stability of emulsions are related to factors such as interfacial interaction forces, the rheological nature of the interface, and the added surfactant.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Qingzhi Wu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Wenbo Yan
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China.
| |
Collapse
|
29
|
Doshi N, Guo W, Chen F, Venema P, Shum HC, de Vries R, Li X. Simple and complex coacervation in systems involving plant proteins. SOFT MATTER 2024; 20:1966-1977. [PMID: 38334990 DOI: 10.1039/d3sm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Plant-based foods are gaining popularity as alternatives to meat and dairy products due to sustainability and health concerns. As a consequence, there is a renewed interest in the phase behaviour of plant proteins and of mixtures of plant proteins and polysaccharides, in particular in the cases where coacervation is found to occur, i.e., liquid-liquid phase separation (LLPS) into two phases, one of which is rich in biopolymers and one of which is poor in biopolymer. Here we review recent research into both simple and complex coacervation in systems involving plant proteins, and their applications in food- as well as other technologies, such as microencapsulation, microgel production, adhesives, biopolymer films, and more.
Collapse
Affiliation(s)
- Nirzar Doshi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Wei Guo
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feipeng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul Venema
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
30
|
Lee S, Kim E, Jo M, Choi YJ. Characterization of yeast protein isolates extracted via high-pressure homogenization and pH shift: A promising protein source enriched with essential amino acids and branched-chain amino acids. J Food Sci 2024; 89:900-912. [PMID: 38193157 DOI: 10.1111/1750-3841.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
In the global food industry, plant-based protein isolates are gaining prominence as an alternative to animal-based counterparts. However, their nutritional value often falters due to insufficient essential amino acids. To address this issue, our study introduces a sustainable protein isolate derived from yeast cells, achieved through high-pressure homogenization (HPH) and alkali pH-shifting treatment. Subjected to HPH pressures ranging from 60 to 120 MPa and 1 to 10 cycles, higher pressure and cycle numbers resulted in enhanced disruption of yeast cells. Combining HPH with alkali pH-shifting treatment significantly augmented protein extraction. Four cycles of HPH at 100 MPa yielded the optimized protein content, resulting in a yeast protein isolate (YPI) with 75.3 g protein per 100 g powder, including 30.0 g of essential amino acids and 18.4 g of branched-chain amino acids per 100 g protein. YPI exhibited superior water and oil-holding capacities compared to pea protein isolate, whey protein isolate (WPI), and soy protein isolate. Although YPI exhibited lower emulsifying ability than WPI, it excelled in stabilizing protein-stabilized emulsions. For foaming, YPI outperformed others in both foaming ability and stabilizing protein-based foam. In conclusion, YPI surpasses numerous plant-based protein alternatives in essential amino acids and branched-chain amino acids contents, positioning it as an excellent candidate for widespread utilization as a sustainable protein source in the food industry, owing to its exceptional nutritional advantages, as well as emulsifying and foaming properties. PRACTICAL APPLICATION: This study introduces a sustainable protein isolate derived from yeast cells. YPI exhibited considerable promise as a protein source. Nutritionally, YPI notably surpassed plant-based protein isolates in EAA and BCAA contents. Functionally, YPI demonstrated superior water-holding and oil-holding capacities, as well as an effective emulsion and foam stabilizer.
Collapse
Affiliation(s)
- Suyoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| |
Collapse
|
31
|
Keefer H, Racette C, Drake M. Factors influencing consumer motivations for protein choice. J Food Sci 2024; 89:596-613. [PMID: 37990832 DOI: 10.1111/1750-3841.16805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
This study evaluated the factors that motivate US consumers (18-65 years) to choose protein products derived from specific protein sources. An online survey was conducted. Participants who purchased protein products (n = 673) were shown agree/disagree questions, along with maximum difference (MaxDiff), constant sum, and Kano questions on factors surrounding protein choice. Last, follow-up qualitative interviews were conducted with 51 survey participants to further investigate consumer motivations behind protein choice. Survey participants conceptually desired a protein product or protein-fortified food that was a good source of protein, tasted great, and was healthy. Three clusters of consumers with distinct motivations for protein purchases were identified. Cluster 1 (C1) consumers (n = 176) desired plant-based, environmentally friendly products and valued sustainability label claims more than flavor/taste. Cluster 2 (C2) consumers (n = 271) were nutritionally conscious and desired high-protein healthy products that were also high in vitamins/minerals. Cluster 3 (C3) consumers (n = 226) showed the most loyalty to the products they currently purchased and were also most willing to try new products based on the recommendations. Cluster 1 consumers placed importance on protein sources, while C2 valued price most and C3 gave the highest value to flavor. In side-by-side protein comparisons, plant-based proteins were considered superior to dairy proteins in sustainability, health, ethics, and digestibility, while both protein types were at parity for naturalness, satiety, and taste across all consumers, but differences were documented among consumer clusters. Results from this study demonstrate that there are many different motivations for consumers to purchase protein products. These motivations can be applied to consumer education as well as the strategic positioning of protein products. Practical Application: This study investigated consumer perception of different protein types and the drivers of choice for protein types among distinct consumer groups. Further application of findings from this study may help guide the development and formulation of new products with a diverse range of protein sources.
Collapse
Affiliation(s)
- Heather Keefer
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Clara Racette
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
32
|
Li R, True AD, Sha L, Xiong YL. Structural modification of oat protein by thermosonication combined with high pressure for O/W emulsion and model salad dressing production. Int J Biol Macromol 2024; 255:128109. [PMID: 37979742 DOI: 10.1016/j.ijbiomac.2023.128109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Oat protein is becoming an important ingredient in beverages and formulated foods owing to its high nutritive value and bland flavor; yet, its functionality remains largely unexplored. This study sought to enhance the surface activity of oat protein isolate (OPI) through high-intensity ultrasound (HIU; at 20 or 60 °C) combined with high pressure homogenization (HP; 30 MPa) treatments. Sonication disturbed the protein conformation and significantly improved surface hydrophobicity (19.7%) and ζ-potential (15.7%), which were further augmented by subsequent HP (P < 0.05). Confocal microscopy revealed a uniform oil droplet distribution in emulsions prepared with HIU+HP combination treated OPI, and the oil droplet size decreased up to 35.6% when compared to that of non-treated OPI emulsion (d = 1718 nm). Emulsifying activity was greater for HIU+HP than for HIU, and the viscosity followed a similar trend. Moreover, while emulsions prepared with HIU or HP treated OPI were more stable than control, the 60 °C HIU+HP combination treatment yielded the maximum stability. In corroboration, a model salad dressing prepared from HIU+HP treated OPI displayed a homogenous oil droplet distribution and an improved viscosity. Therefore, thermosonication combined with high pressure homogenization may be suitable for salad dressings and other oil-imbedded food products.
Collapse
Affiliation(s)
- Runnan Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Alma D True
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Lei Sha
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
33
|
Meng Q, Xu M, Chen L, Xu S, Li J, Li Y, Fan L, Shi G, Ding Z. Emulsion for stabilizing β-carotene and curcumin prepared directly using a continuous phase of polysaccharide-rich Schizophyllum commune fermentation broth. Int J Biol Macromol 2024; 254:127730. [PMID: 38287588 DOI: 10.1016/j.ijbiomac.2023.127730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of β-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of β-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
34
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
35
|
Ma J, Pan C, Chen H, Chen W, Pei J, Zhang M, Zhong Q, Chen W, Zeng G. Effects of protein concentration, ionic strength, and heat treatment on the interfacial and emulsifying properties of coconut ( Cocos nucifera L.) globulins. Food Chem X 2023; 20:100984. [PMID: 38144867 PMCID: PMC10740072 DOI: 10.1016/j.fochx.2023.100984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
This research aimed to investigate the effects of protein concentration (0.2 %-1.0 %), ionic strength (100-500 mM NaCl), and heat treatment (temperature: 80 and 90℃; time: 15 and 30 min) on the interfacial and emulsifying properties of coconut globulins (CG). When protein concentration was set at 0.2-0.6 %, the interfacial adsorption increased with the increasing of protein concentration. However, the lowest interfacial viscoelasticity was found when CG concentration was 0.6 %. When the protein concentration was higher than 0.6 %, the dilatational viscoelasticity increased with the increasing of protein concentration. The protein concentration showed positive effect on the emulsion stability of CG. The ionic strength showed positive effect on the interfacial adsorption but negative effects on the interfacial viscoelasticity and emulsion stability. Higher temperature and longer heating time brought worse interface behavior. The heated CG (90℃, 30 min) had the worst interfacial behavior but the best emulsion stability.
Collapse
Affiliation(s)
- Jingrong Ma
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haiming Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Weijun Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Jianfei Pei
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Ming Zhang
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Qiuping Zhong
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Wenxue Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | | |
Collapse
|
36
|
Fan W, Shi Y, Hu Y, Zhang J, Liu W. Effects of the Combination of Protein in the Internal Aqueous Phase and Polyglycerol Polyricinoleate on the Stability of Water-In-Oil-In-Water Emulsions Co-Encapsulating Crocin and Quercetin. Foods 2023; 13:131. [PMID: 38201158 PMCID: PMC10779032 DOI: 10.3390/foods13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to diminish the reliance on water-in-oil-in-water (W/O/W) emulsions on the synthetic emulsifier polyglycerol polyricinoleate (PGPR). Considering the potential synergistic effects of proteins and PGPR, various protein types (whey, pea and chickpea protein isolates) were incorporated into the internal aqueous phase to formulate W/O/W emulsions. The effects of the combination of PGPR and protein at different ratios (5:0, 4:1, 3:2, 1:1 and 2:3) on the stability and encapsulation properties of W/O/W emulsions co-encapsulating crocin and quercetin were investigated. The findings indicated that the combination of PGPR and protein resulted in a slight reduction in the encapsulation efficiency of the emulsions, compared to that of PGPR (the control). Nonetheless, this combination significantly enhanced the physical stability of the emulsions. This result was primarily attributed to the smaller droplet sizes and elevated viscosity. These factors contributed to increased retentions of crocin (exceeding 70.04%) and quercetin (exceeding 80.29%) within the emulsions after 28 days of storage, as well as their improved bioavailability (increases of approximately 11.62~20.53% and 3.58~7.98%, respectively) during gastrointestinal digestion. Overall, combining PGPR and protein represented a viable and promising strategy for reducing the amount of PGPR and enhancing the stability of W/O/W emulsions. Notably, two plant proteins exhibited remarkable favorability in this regard. This work enriched the formulations of W/O/W emulsions and their application in the encapsulation of bioactive substances.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Yan Shi
- Department of Food Science and Engineering, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Jing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| |
Collapse
|
37
|
Nieto G, Martínez-Zamora L, Peñalver R, Marín-Iniesta F, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB. Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods 2023; 13:47. [PMID: 38201075 PMCID: PMC10778451 DOI: 10.3390/foods13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
According to the Codex Alimentarius, a food additive is any substance that is incorporated into a food solely for technological or organoleptic purposes during the production of that food. Food additives can be of synthetic or natural origin. Several scientific evidence (in vitro studies and epidemiological studies like the controversial Southampton study published in 2007) have pointed out that several synthetic additives may lead to health issues for consumers. In that sense, the actual consumer searches for "Clean Label" foods with ingredient lists clean of coded additives, which are rejected by the actual consumer, highlighting the need to distinguish synthetic and natural codded additives from the ingredient lists. However, this natural approach must focus on an integrated vision of the replacement of chemical substances from the food ingredients, food contact materials (packaging), and their application on the final product. Hence, natural plant alternatives are hereby presented, analyzing their potential success in replacing common synthetic emulsifiers, colorants, flavorings, inhibitors of quality-degrading enzymes, antimicrobials, and antioxidants. In addition, the need for a complete absence of chemical additive migration to the food is approached through the use of plant-origin bioactive compounds (e.g., plant essential oils) incorporated in active packaging.
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Lorena Martínez-Zamora
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Fulgencio Marín-Iniesta
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
| | - Amaury Taboada-Rodríguez
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (G.N.); (L.M.-Z.); (R.P.); (A.T.-R.)
- Agrosingularity, Calle Pintor Aurelio Pérez 12, 30006 Murcia, Spain
| | - Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| |
Collapse
|
38
|
Zia R, Poortinga AT, Nazir A, Aburuz S, van Nostrum CF. Triple-Emulsion-Based Antibubbles: A Step Forward in Fabricating Novel Multi-Drug Delivery Systems. Pharmaceutics 2023; 15:2757. [PMID: 38140097 PMCID: PMC10747882 DOI: 10.3390/pharmaceutics15122757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Developing carriers capable of efficiently transporting both hydrophilic and lipophilic payloads is a captivating focus within the pharmaceutical and drug delivery research domain. Antibubbles, constituting an innovative encapsulation system designed for drug delivery purposes, have garnered scientific interest thanks to their distinctive water-in-air-in-water (W1/A/W2) structure. However, in contrast to their precursor, i.e., nanoparticle-stabilized W1/O/W2 double emulsion, traditional antibubbles lack the ability to accommodate a lipophilic payload, as the intermediary (volatile) oil layer of the emulsion is replaced by air during the antibubble fabrication process. Therefore, here, we report the fabrication of triple-emulsion-based antibubbles (O1/W1/A/W2), in which the inner aqueous phase was loaded with a nanoemulsion stabilized by various proteins, including whey, soy, or pea protein isolates. As model drugs, we employed the dyes Nile red in the oil phase and methylene blue in the aqueous phase. The produced antibubbles were characterized regarding their size distribution, entrapment efficiency, and stability. The produced antibubbles demonstrated substantial entrapment efficiencies for both lipophilic (ranging from 80% to 90%) and hydrophilic (ranging from 70% to 82%) components while also exhibiting an appreciable degree of stability during an extended rehydration period of two weeks. The observed variations among different antibubble variants were primarily attributed to differences in protein concentration rather than the type of protein used.
Collapse
Affiliation(s)
- Rabia Zia
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Albert T. Poortinga
- Department of Mechanical Engineering, Polymer Technology, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein Aburuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
39
|
Kim W, Wang Y, Vongsvivut J, Ye Q, Selomulya C. On surface composition and stability of β-carotene microcapsules comprising pea/whey protein complexes by synchrotron-FTIR microspectroscopy. Food Chem 2023; 426:136565. [PMID: 37302310 DOI: 10.1016/j.foodchem.2023.136565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
This study aims to elucidate the stability of spray dried β-carotene microcapsules by identifying their surface composition using synchrotron-Fourier transform infrared (FTIR) microspectroscopy. To investigate the impact of enzymatic cross-linking and polysaccharide addition on heteroprotein, three wall materials were prepared: pea/whey protein blends (Con), cross-linked pea/whey protein blends (TG), and cross-linked pea/whey protein blends-maltodextrin complex (TG-MD). The TG-MD exhibited the highest encapsulation efficiency (>90 %) after 8 weeks of storage followed by TG and Con. Chemical images obtained using synchrotron-FTIR microspectroscopy confirmed that the TG-MD displayed the least amount of surface oil, followed by TG and Con, due to increasing amphiphilic β-sheet structure of the proteins led by cross-linking and maltodextrin addition. Both enzymatic cross-linking and polysaccharide addition improved the stability of β-carotene microcapsules, demonstrating that pea/whey protein blends with maltodextrin can be utilised as a hybrid wall material for enhancing the encapsulation efficiency of lipophilic bioactive compounds in foods.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Qianyu Ye
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | |
Collapse
|
40
|
Wang N, Wang D, Xing K, Han X, Gao S, Wang T, Yu D, Elfalleh W. Ultrasonic treatment of rice bran protein-tannic acid stabilized oil-in-water emulsions: Focus on microstructure, rheological properties and emulsion stability. ULTRASONICS SONOCHEMISTRY 2023; 99:106577. [PMID: 37678064 PMCID: PMC10495670 DOI: 10.1016/j.ultsonch.2023.106577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Rice bran protein (RBP)-tannic acid (TA) complex was prepared and the RBP-TA emulsions were subjected to ultrasonic treatment with different powers. Ultrasonic treatment has a positive effect on improving the properties of RBP-TA emulsion. This study investigated the influence of different ultrasonic power levels on the physicochemical properties, microstructure, rheological properties, and stability of emulsions containing RBP-TA. Under the ultrasonic treatment of 400 W, the particle size, zeta potential, and adsorbed protein content of the RBP-TA emulsion were 146.86 nm, -20.7 eV, and 61.91%, respectively. At this time, the emulsion had the best emulsifying properties, apparent viscosity, energy storage modulus and loss modulus. In addition, the POV and TBARS values of RBP-TA emulsions were 6.12 and 7.60 mmol/kg, respectively. The thermal, salt ion, pH and oxidative stability of the emulsions were investigated, and it was shown that ultrasonic treatment was effective in improving the stability of RBP-TA emulsions.
Collapse
Affiliation(s)
- Ning Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield S10 2TNc, United Kingdom
| | - Kaiwen Xing
- Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Han
- Northeast Agricultural University, Harbin 150030, China
| | - Shan Gao
- Heilongjiang Academy of Green Food Science, Harbin 150028, China.
| | - Tong Wang
- Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- Northeast Agricultural University, Harbin 150030, China
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, National Engineering School of Gabes, University of Gabes, Zrig, 6072 Gabes, Tunisia
| |
Collapse
|
41
|
Jo YJ, Chu Y, Chen L. Enhanced stabilization of oil-in-water (O/W) emulsions by fibrillar gel particles from lentil proteins. Food Res Int 2023; 172:113203. [PMID: 37689950 DOI: 10.1016/j.foodres.2023.113203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Pulse proteins as a sustainable protein source have attracted increasing interest in food development, but pulse proteins are generally less surface active than dairy proteins. This work introduces lentil protein (LP)-based fibrillar gel particles (FGPs) fabricated from heat-induced LP fibrillar aggregates by 1, 4, 8, and 16 h of heating, followed by particle reduction using sonication. The heating time significantly impacts the FGPs particle size and surface hydrophobicity. The FGP prepared by 4 h of heating (FGP-4) showed a small size (<200 nm) and homogeneous size distribution while possessing significantly increased surface hydrophobicity compared to untreated LP. Such structural features made FGP-4 better adsorb at the O/W interface and then completely covered the oil droplet surface, leading to homogeneous emulsions of small size (22.33 μm) and superior long-term stability without creaming for 30 days. In addition, the dispersed FGP in the bulk phase could develop interactions among each other, leading to improved emulsion viscosity and texture without oil droplet size change. This finding suggests that constructing fibril-type gel particles can provide a new strategy for forming superior O/W emulsions with improved stability from plant proteins.
Collapse
Affiliation(s)
- Yeon-Ji Jo
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Yifu Chu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
42
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
43
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
44
|
Xu Y, Sun L, Zhuang Y, Gu Y, Cheng G, Fan X, Ding Y, Liu H. Protein-Stabilized Emulsion Gels with Improved Emulsifying and Gelling Properties for the Delivery of Bioactive Ingredients: A Review. Foods 2023; 12:2703. [PMID: 37509795 PMCID: PMC10378947 DOI: 10.3390/foods12142703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In today's food industry, the potential of bioactive compounds in preventing many chronic diseases has garnered significant attention. Many delivery systems have been developed to encapsulate these unstable bioactive compounds. Emulsion gels, as colloidal soft-solid materials, with their unique three-dimensional network structure and strong mechanical properties, are believed to provide excellent protection for bioactive substances. In the context of constructing carriers for bioactive materials, proteins are frequently employed as emulsifiers or gelling agents in emulsions or protein gels. However, in emulsion gels, when protein is used as an emulsifier to stabilize the oil/water interface, the gelling properties of proteins can also have a great influence on the functionality of the emulsion gels. Therefore, this paper aims to focus on the role of proteins' emulsifying and gelling properties in emulsion gels, providing a comprehensive review of the formation and modification of protein-based emulsion gels to build high-quality emulsion gel systems, thereby improving the stability and bioavailability of embedded bioactive substances.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
45
|
Thompson CMB, Acevedo BA, Añón MC, Avanza MV. Emulsifying Capacity of Cowpea Protein Isolates. Effect of Thermal and Hydrolytic Treatment. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:366-374. [PMID: 37155006 DOI: 10.1007/s11130-023-01072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
In this work, modifications due to the effect of thermal treatments (TT 70 and 90 °C) and partial hydrolysis by digestion with alcalase (LH) on the emulsifying properties of cowpea protein isolates (CPIs) extracted at pH 8 and 10 were analyzed. In addition, the influence of protein concentration [0.1 and 1% (w/v)] was evaluated. Emulsions (O:W) were prepared and particle size, stability, interfacial composition, and microstructure were studied. Fresh emulsions formulated with TT CPIs presented lower values of volume-weighted mean droplet size (D4.3), with the increase in temperature and treatment time, compared to the untreated CPIs. After seven days of storage, D4.3 and the indexes of flocculation (FI) and coalescence (CI) increased, mainly at 90 °C. On the other hand, the emulsions with LH CPIs presented lower D4.3 values compared to all the conditions tested, remaining unchanged during the storage time. The destabilization process in the TT CPIs emulsions revealed coalescence at 0.1% (w/v) and cremated-flocculation at 1% (w/v). The presence of polypeptides of low molecular mass (MM) at the interface would be responsible for the better stability found in emulsions with LH CPIs, compared to those formulated with untreated and TT CPIs. Increasing the protein concentration resulted in a significant improvement of all emulsifying properties.
Collapse
Affiliation(s)
- Cinthia M B Thompson
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA, UNNE-CONICET), Avenida Libertad 5460, Corrientes, Corrientes, 3400, Argentina.
| | - Belén A Acevedo
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA, UNNE-CONICET), Avenida Libertad 5460, Corrientes, Corrientes, 3400, Argentina
| | - María C Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, 1900, Argentina
| | - María V Avanza
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA, UNNE-CONICET), Avenida Libertad 5460, Corrientes, Corrientes, 3400, Argentina
| |
Collapse
|
46
|
Diaz-Bustamante ML, Keppler JK, Reyes LH, Alvarez Solano OA. Trends and prospects in dairy protein replacement in yogurt and cheese. Heliyon 2023; 9:e16974. [PMID: 37346362 PMCID: PMC10279912 DOI: 10.1016/j.heliyon.2023.e16974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
There is a growing demand for nutritional, functional, and eco-friendly dairy products, which has increased the need for research regarding alternative and sustainable protein sources. Plant-based, single-cell (SCP), and recombinant proteins are being explored as alternatives to dairy proteins. Plant-Based Proteins (PBPs) are commonly used to replace total dairy protein. However, PBPs are generally mixed with dairy proteins to improve their functional properties, which makes them dependent on animal protein sources. In contrast, single-Cell Proteins (SCPs) and recombinant dairy proteins are promising alternatives for dairy protein replacement since they provide nutritional components, essential amino acids, and high protein yield and can use industrial and agricultural waste as carbon sources. Although alternative protein sources offer numerous advantages over conventional dairy proteins, several technical and sensory challenges must be addressed to fully incorporate them into cheese and yogurt products. Future research can focus on improving the functional and sensory properties of alternative protein sources and developing new processing technologies to optimize their use in dairy products. This review highlights the current status of alternative dairy proteins in cheese and yogurt, their functional properties, and the challenges of their use in these products.
Collapse
Affiliation(s)
- Martha L. Diaz-Bustamante
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Julia K. Keppler
- AFSG: Laboratory of Food Process Engineering, Wageningen University & Research, Wageningen, Netherlands
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Oscar Alberto Alvarez Solano
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
47
|
Wang X, Zhao Z. A mini-review about direct steam heating and its application in dairy and plant protein processing. Food Chem 2023; 408:135233. [PMID: 36535181 DOI: 10.1016/j.foodchem.2022.135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The world's requirement for plant protein consumption is increasing. However, their application in different foods is limited due to their low techno-functionality. Heating is the most widely used method to improve the functionality of proteins. Compared to indirect tubular or plate heating methods, direct steam injection heating (DSIH) can heat the sample much faster, thus modifying the structure and functionality of protein differently. It is used in the sterilization of milk to minimize the heat-induced denaturation of whey proteins and the loss of volatiles. By contrast, its application in producing plant protein ingredients is seldom. This review summarizes recent research using DSIH to process dairy- and plant-based proteins and proposes future research perspectives. DSIH is a promising technique for producing functional protein ingredients. It is of particular interest to overcome the techno-functional hurdles of plant protein blends using DSIH to improve their behavior in different food matrices.
Collapse
Affiliation(s)
- Xiuju Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhengtao Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China.
| |
Collapse
|
48
|
Milutinov J, Krstonošić V, Ćirin D, Pavlović N. Emulgels: Promising Carrier Systems for Food Ingredients and Drugs. Polymers (Basel) 2023; 15:polym15102302. [PMID: 37242878 DOI: 10.3390/polym15102302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Novel delivery systems for cosmetics, drugs, and food ingredients are of great scientific and industrial interest due to their ability to incorporate and protect active substances, thus improving their selectivity, bioavailability, and efficacy. Emulgels are emerging carrier systems that represent a mixture of emulsion and gel, which are particularly significant for the delivery of hydrophobic substances. However, the proper selection of main constituents determines the stability and efficacy of emulgels. Emulgels are dual-controlled release systems, where the oil phase is utilized as a carrier for hydrophobic substances and it determines the occlusive and sensory properties of the product. The emulsifiers are used to promote emulsification during production and to ensure emulsion stability. The choice of emulsifying agents is based on their capacity to emulsify, their toxicity, and their route of administration. Generally, gelling agents are used to increase the consistency of formulation and improve sensory properties by making these systems thixotropic. The gelling agents also impact the release of active substances from the formulation and stability of the system. Therefore, the aim of this review is to gain new insights into emulgel formulations, including the components selection, methods of preparation, and characterization, which are based on recent advances in research studies.
Collapse
Affiliation(s)
- Jovana Milutinov
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Veljko Krstonošić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan Ćirin
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
49
|
Ćirin D, Pavlović N, Nikolić I, Krstonošić V. Assessment of Soy Protein Acid Hydrolysate-Xanthan Gum Mixtures on the Stability, Disperse and Rheological Properties of Oil-in-Water Emulsions. Polymers (Basel) 2023; 15:polym15092195. [PMID: 37177341 PMCID: PMC10181046 DOI: 10.3390/polym15092195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
There is a growing need for natural ingredients that could be utilized for the production of food, pharmaceutical, and cosmetic emulsions. Soy protein acid hydrolysate (SPAH) is a plant-based additive used in the food industry mainly as a flavor enhancer. For the purpose of this work, however, it was mixed with a well-known natural polysaccharide, xanthan gum (XG), to produce stable 30% (w/w) sunflower oil-in-water emulsions using a rotor-stator homogenizer. In order to assess the emulsifying properties of the SPAH and its mixtures with XG, the surface tension properties of their water solutions, particle size, creaming stability, and rheological properties of the emulsions were investigated. Since the emulsions prepared using only SPAH, in various concentrations, were not stable, systems containing 5% of SPAH and 0.1, 0.2, 0.3, 0.4, or 0.5% of XG were then studied. The increase in concentration of the macromolecule led to an increase in creaming stability. The emulsions with 5% SPAH and 0.5% XG were stable for at least 14 days. The increase in XG concentration led to a decrease in d4,3, while consistency index and non-Newtonian behavior increased. The systems containing SPAH, in the absence of XG, showed shear-thinning flow behavior, which was changed to thixotropic with the addition of XG. Viscoelastic properties of emulsions containing over 0.2% of XG were confirmed by oscillatory rheological tests, demonstrating the dominance of elastic (G') over viscous (G") modulus.
Collapse
Affiliation(s)
- Dejan Ćirin
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Pavlović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Ivana Nikolić
- University of Novi Sad, Faculty of Technology, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Veljko Krstonošić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
50
|
Yiu CCY, Liang SW, Mukhtar K, Kim W, Wang Y, Selomulya C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023; 9:gels9050366. [PMID: 37232958 DOI: 10.3390/gels9050366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes. Finally, the potential applications of plant-based emulsion gels, such as dairy and meat alternatives, condiments, baked goods, and functional foods, were discussed with a focus on sensory properties and consumer acceptance. This study found that the implementation of plant-based emulsion gel in food is promising to date despite persisting challenges. This review will provide valuable insights for researchers and industry professionals looking to understand and utilize plant-based food emulsion gels.
Collapse
Affiliation(s)
- Canice Chun-Yin Yiu
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Sophie Wenfei Liang
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|