1
|
Das PP, Prathapan R, Ng KW. Advances in biomaterials based food packaging systems: Current status and the way forward. BIOMATERIALS ADVANCES 2024; 164:213988. [PMID: 39116599 DOI: 10.1016/j.bioadv.2024.213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
World hunger is getting worse, while one-third of food produced around the globe is wasted and never consumed. It is vital to reduce food waste to promote the sustainability of food systems, and improved food packaging solutions can augment this effort. The utilization of biomaterials in smart food packaging not only enhances food preservation and safety but also aligns with current demands for eco-friendly technologies to mitigate the impacts of climate change. This review provides a comprehensive overview of the developments in the field of food packaging based on the innovative use of biomaterials. It emphasizes the potential use of biomaterials derived from nature including cellulose, chitosan, keratin, etc. for this purpose. Various smart food packaging technologies such as active and intelligent packaging are discussed in detail including scavenging additives, colour-changing environment indicators, sensors, RFID tags, etc. The article also delves into the utilization of edible films and coatings, nanoparticle fillers and 2D materials in food packaging systems. Furthermore, it outlines the challenges and opportunities in this dynamic domain, emphasizing the ongoing need for research and innovation to shape the future of sustainable and smart food packaging solutions to enhance and monitor the shelf-life of food products.
Collapse
Affiliation(s)
- Partha Pratim Das
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ragesh Prathapan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
2
|
El Guerraf A, Ziani I, Ben Jadi S, El Bachiri A, Bazzaoui M, Bazzaoui EA, Sher F. Smart conducting polymer innovations for sustainable and safe food packaging technologies. Compr Rev Food Sci Food Saf 2024; 23:e70045. [PMID: 39437198 DOI: 10.1111/1541-4337.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biofilm formation on food packaging surfaces is a major issue in the industry, as it leads to contamination, reduces shelf life, and poses risks to human health. To mitigate these effects, developing smart coatings that can actively sense and combat microbial growth has become a critical research focus. This study is motivated by the need for intelligent packaging solutions that integrate antimicrobial agents and sensors for real-time contamination detection. It is hypothesized that combining conducting polymers (CPs) with nanomaterials can enhance antimicrobial efficacy while maintaining the mechanical integrity and environmental stability required for food packaging applications. Through the application of numerous technologies like surface modification, CP-nanoparticle integration, and multilayered coating, the antimicrobial performance and sensor capabilities of these materials were analyzed. Case studies showed a 90% inhibition of bacterial growth and a tenfold decrease in viable bacterial counts with AgNPs incorporation, extending strawberries' shelf life by 40% and maintaining fish freshness for an additional 5 days. Moreover, multilayered CP coatings in complex systems have been shown to reduce oxidative spoilage in nuts and dried fruits by up to 85%, while maintaining the quality of leafy greens for up to 3 weeks under suboptimal conditions. Environmental assessments indicated a 30% reduction in carbon footprint when CP coatings were combined with biodegradable polymers, contributing to a more transparent and reliable food supply chain. CP-based films integrated with intelligent sensors exhibit high sensitivity, detecting ammonia concentrations below 500 ppb, and offer significant selectivity for sensing hazardous gases. These findings indicate that CP-based smart coatings markedly enhance food safety and sustainability in packaging applications.
Collapse
Affiliation(s)
- Abdelqader El Guerraf
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences and Technologies, Hassan First University, Settat, Morocco
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Imane Ziani
- International Society of Engineering Science and Technology, Nottingham, UK
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Sana Ben Jadi
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - Ali El Bachiri
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohammed Bazzaoui
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Cité de l'innovation Souss Massa, Agadir, Morocco
| | - El Arbi Bazzaoui
- Laboratory of Applied Chemistry and Environment, Department of chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
3
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
4
|
Wang J, Cheng Y, Li S, Liu B, Yang L, Geng F, Xie S, Qi R, Zhang Y, Liu D, Xia H. Enhanced properties of gelatin films incorporated with TiO 2-loaded reduced graphene oxide aerogel microspheres for active food packaging applications. Int J Biol Macromol 2024; 261:129772. [PMID: 38281539 DOI: 10.1016/j.ijbiomac.2024.129772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The synergistic effect of graphene sheets and titanium dioxide nanoparticles (TiO2) hybrid fillers can improve the antibacterial, mechanical, and barrier properties of gelatin (GL), making it more suitable to be used in the food packaging application. However, the uneven dispersion and aggregation of the hybrid fillers restrict its performance for further application. In order to achieve the above superior properties, reduced graphene oxide aerogel microspheres (rGOAMs) loaded with TiO2 (rGOAMs@TiO2) were successfully prepared using one-step hydrothermal process by reducing titanium sulfate into TiO2 on the framework of rGOAMs, followed by effective dispersion in the GL matrix to form nanocomposites (rGOAMs@TiO2/GL) through simultaneous ultrasonication and mechanical stirring, as well as an ultrasonic cell grinder process. Incorporating a mere 0.8 wt% of rGOAMs@TiO2 effectively improved the mechanical, antibacterial, UV light barrier, thermal stability, hydrophobicity, and water vapor barrier properties of the GL. Compared with the composites made of rGOAMs, TiO2, and GL (rGOAMs/TiO2/GL), rGOAMs@TiO2/GL composites showed stronger filler-matrix interactions, better filler dispersion, and lower TiO2 particle aggregation, suggesting superiority compared to rGOAMs/TiO2/GL composites at the same filler content. This innovative method of mixing GL with rGOAMs@TiO2 holds great promise for enhancing the suitability of GL in active food packaging applications.
Collapse
Affiliation(s)
- Jian Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yu Cheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Shijiu Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Baohua Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Li Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Songzhi Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Qi
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Self-assembly fabrication of chitosan-tannic acid/MXene composite film with excellent antibacterial and antioxidant properties for fruit preservation. Food Chem 2023; 410:135405. [PMID: 36621333 DOI: 10.1016/j.foodchem.2023.135405] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
It is highly urgent to develop a simple and effective strategy to extend the shelf life of time-sensitive fruits, which are very susceptible to spoilage over time, resulting in considerable food waste. Herein, a biopolymer-based composite film with superior antibacterial and antioxidant properties was developed by introducing MXene and tannic acid into a chitosan network via hydrogen bonding and an electrostatic self-assembly method. The results show that the mechanical properties, water and heat resistance, antibacterial and antioxidant capabilities of the obtained Chitosan-Tannic acid/MXene film are significantly increased to meet the use of packaging film scenarios. The fruit preservation experiments also confirmed that the composite film can effectively extend the shelf life of bananas and grapes through its excellent water vapor and oxygen barrier. These desirable performances enable our newly designed composite film to be an effective and competitive packaging material to solve the fresh fruit preservation dilemma.
Collapse
|
6
|
Seidi F, Arabi Shamsabadi A, Dadashi Firouzjaei M, Elliott M, Saeb MR, Huang Y, Li C, Xiao H, Anasori B. MXenes Antibacterial Properties and Applications: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206716. [PMID: 36604987 DOI: 10.1002/smll.202206716] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes' unique combination of properties, including multifarious elemental compositions, 2D-layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | | | - Mostafa Dadashi Firouzjaei
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mark Elliott
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, Gdańsk, 11/12 80-233, Poland
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Babak Anasori
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
7
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
8
|
Aizudin M, Alias NH, Ng YXA, Mahmod Fadzuli MH, Ang SC, Ng YX, Poolamuri Pottammel R, Yang F, Ang EH. Membranes prepared from graphene-based nanomaterials for water purification: a mini-review. NANOSCALE 2022; 14:17871-17886. [PMID: 36468603 DOI: 10.1039/d2nr05328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene-based nanomaterials (GBnMs) are currently regarded as a critical building block for the fabrication of membranes for water purification due to their advantageous properties such as easy surface modification of functional groups, adjustable interlayer pore channels for solvent transportation, robust mechanical properties, and superior photothermal capabilities. By combining graphene derivatives with other emerging materials, heteroatom doping and rational design of a three-dimensional network can enhance water transportation and evaporation rates through channels of GBnM laminates and such layered structures have been applied in various water purification technologies. Herein, this mini-review summarizes recent progress in the synthesis of GBnMs and their applications in water treatment technologies, specifically, nanofiltration (NF) and solar desalination (SD). Finally, personal perspectives on the challenges and future directions of this promising nanomaterial are also provided.
Collapse
Affiliation(s)
- Marliyana Aizudin
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Nur Hashimah Alias
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Yun Xin Angel Ng
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Muhammad Haikal Mahmod Fadzuli
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Seng Chuan Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Yi Xun Ng
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | | | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhejiang 212003, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
9
|
Polyethylene with
MoS
2
nanoparticles toward antibacterial active packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.53323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Suriati L. Nano Coating of Aloe-Gel Incorporation Additives to Maintain the Quality of Freshly Cut Fruits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.914254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The edible coating is an environmentally friendly technology that is applied to fresh-cut fruit products. One of the natural ingredients that are potentially applicable is aloe-gel because it contains several functional components. The main advantage of aloe-coating is that additives can be incorporated into the polymer matrix to enhance its properties. Additives tend to improve the safety, nutritional, and sensory attributes of fresh fruits, but in some cases, aloe-coating does not work. Furthermore, particle size determines the effectiveness of the process on fresh-cut fruits. Aloe-gel nano-coating can be used to overcome the difficulty of adhesion on the surface of fresh-cut fruits. However, quality criteria for fresh cut fruit coated with aloe-gel nano-coating must be strictly defined. The fruit to be processed must be of minimal quality so that discoloration, loss of firmness, spoilage ratio, and fruit weight loss can be minimized. This study aims to discuss the use of nano-coating aloe-gel incorporated with additional ingredients to maintain the quality of fresh-cut fruits. It also examined the recent advances in preparation, extraction, stabilization, and application methods in fresh fruits.
Collapse
|
11
|
Joshi N, Pransu G, Adam Conte-Junior C. Critical review and recent advances of 2D materials-Based gas sensors for food spoilage detection. Crit Rev Food Sci Nutr 2022; 63:10536-10559. [PMID: 35647714 DOI: 10.1080/10408398.2022.2078950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many people around the world are concerned about meat safety and quality, which has resulted in the ongoing advancement of packaged food technology. Since the emergence of graphene in 2004, the number of studies on layered two-dimensional materials (2DMs) for applications ranging from food packaging to meat quality monitoring has been expanding quickly. Recently, scientists have been working hard to develop a novel class of 2DMs that keep the good things about graphene but don't have zero bandgaps at room temperature. Much work has been done on layered transition metal dichalcogenides (TMDCs) like different metal sulfides and selenides for meat spoilage gas sensors. This review looks at (i) the main indicators of meat spoilage and (ii) the detection methods that can be used to find out if meat has been spoiled, such as chemiresistive, electrochemical, and optical methods. (iii) the role of 2DMs in meat spoilage detection and (iv) the emergence of advanced methods for selective classification of target analytes in meat/food spoilage detection in recent years. Thus, this review demonstrates the potential scope of 2DMs for developing intelligent sensor systems for food and meat spoilage detection with high viability, simplicity, cost-effectiveness, and other multipurpose tools.
Collapse
Affiliation(s)
- Nirav Joshi
- Physics Department, Federal University of ABC, Campus Santo André, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gaurav Pransu
- Graphene Research Labs, Manchappanahosahalli, Karnataka, India
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Post-Graduation Program of Veterinary Hygiene (PPGHV) Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
12
|
Jafarzadeh S, Forough M, Amjadi S, Javan Kouzegaran V, Almasi H, Garavand F, Zargar M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit Rev Food Sci Nutr 2022; 63:9667-9693. [PMID: 35522084 DOI: 10.1080/10408398.2022.2070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumer demands to utilize environmentally friendly packaging have led researchers to develop packaging materials from naturally derived resources. In recent years, plant protein-based films as a replacement for synthetic plastics have attracted the attention of the global food packaging industry due to their biodegradability and unique properties. Biopolymer-based films need a filler to show improved packaging properties. One of the latest strategies introduced to food packaging technology is the production of nanocomposite films which are multiphase materials containing a filler with at least one dimension less than 100 nm. This review provides the recent findings on plant-based protein films as biodegradable materials that can be combined with nanoparticles that are applicable to food packaging. Moreover, it investigates the characterization of nanocomposite plant-based protein films/edible coatings. It also briefly describes the application of plant-based protein nanocomposite films/coating on fruits/vegetables, meat and seafood products, and some other foods. The results indicate that the functional performance, barrier, mechanical, optical, thermal and antimicrobial properties of plant protein-based materials can be extended by incorporating nanomaterials. Recent reports provide a better understanding of how incorporating nanomaterials into plant protein-based biopolymers leads to an increase in the shelf life of food products during storage time.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
13
|
Zhou X, Hao Y, Li Y, Peng J, Wang G, Ong W, Li N. MXenes: An emergent materials for packaging platforms and looking beyond. NANO SELECT 2022. [DOI: 10.1002/nano.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xing Zhou
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaya Hao
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Yaxin Li
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Jiahe Peng
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
| | - Guosheng Wang
- Faculty of Printing Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an P. R. China
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan Malaysia
| | - Neng Li
- Key Laboratory of Silicate Materials for Architectures & Research Center for Materials Genome Engineering Wuhan University of Technology Hubei P. R. China
- Shenzhen Research Institute of Wuhan University of Technology Shenzhen China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
14
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Han WH, Li X, Yu GF, Wang BC, Huang LP, Wang J, Long YZ. Recent Advances in the Food Application of Electrospun Nanofibers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|