1
|
Cheng X, Wu T, Han L, Sun T, Huang G. Association between added sugars intake and Parkinson's disease status in U.S. adults: a cross-sectional study from NHANES 1990-2020. Arch Public Health 2024; 82:225. [PMID: 39593073 PMCID: PMC11590255 DOI: 10.1186/s13690-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Added sugars intake is common among individuals with Parkinson's disease (PD), yet the link between added sugars intake and PD is not well understood. Our study aims to investigate the association between added sugars intake and PD. METHODS This study utilized data from the National Health and Nutrition Examination Survey (NHANES) from1990 to 2020. Added sugars intake was estimated based on a 24-hour dietary recall from participants. Multivariable logistic regression analysis was employed to explore the relationship between added sugars intake and the prevalence of PD. Restricted cubic spline (RCS) was used to explore the nonlinear association between added sugars intake and PD. To further observe whether the conclusions were consistent across different subgroups, we conducted subgroup analyses to investigate the association of added sugars intake with PD in different populations. RESULTS The study included 12,489 participants, of which 100 had PD. When weighted, the data represented 136,959,144 participants. The study revealed a positive association between added sugars intake and the prevalence of PD. In multivariable regression models adjusted for all confounding factors, compared with the lowest quartile of added sugars intake, the third quartile (OR = 2.99; 95% CI: 1.43-6.26) and those consuming more than 25% of their calories from added sugars (OR = 3.34; 95% CI: 1.03-10.86) had the highest risk of PD. The RCS curve showed an L-shaped nonlinear association between added sugars intake and PD. Two-segment linear regression by sex revealed that PD prevalence in women was linearly related to sugar intake (nonlinear P = 0.465), while men exhibited an L-shaped nonlinear relationship (nonlinear P = 0.03). Additionally, subgroup analysis showed that alcohol consumption and diabetes significantly influenced the association between added sugars intake and the prevalence of PD. CONCLUSION These results highlight a positive association between added sugars intake and the prevalence of PD, particularly among women, heavy drinkers, and individuals with diabetes.
Collapse
Affiliation(s)
- Xuehua Cheng
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Li Han
- Department of Traditional Chinese Medicine (TCM) Geriatrics, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Tong Sun
- Department of Neonatology, Jiuting Hospital, Shanghai, 201615, China.
| | - Guoxin Huang
- Department of Evidence-Based Medicine Center, People's Hospital, Hubei University of Medicine, Xiangyang No.1, Xiangyang, 441000, China.
| |
Collapse
|
2
|
Golpour-Hamedani S, Askari G, Khorvash F, Kesharwani P, Bagherniya M, Sahebkar A. The potential protective effects and mechanisms of fasting on neurodegenerative disorders: A narrative review. Brain Res 2024; 1849:149348. [PMID: 39581525 DOI: 10.1016/j.brainres.2024.149348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to review the potential neuroprotective effects and underlying mechanisms of fasting in neurodegenerative disorders by synthesizing the existing literature. Research indicates that fasting may induce substantial modifications in both brain structure and function through diverse metabolic and cellular pathways. Preclinical studies utilizing animal models have elucidated several key mechanisms mediating these effects. The other significant proposed mechanism involves the modulation of gut microbiota during fasting periods. The intestinal microbiome functions as a crucial intermediary in the complex interplay between feeding patterns, circadian rhythms, and immune responses. These microbiome alterations may subsequently exert considerable influence on central nervous system functionality. Moreover, by reducing glucose availability, fasting has been shown to enhance the survival and resistance of healthy cells to adjuvant treatments in central nervous system tumors. Fasting presents a promising non-pharmacological intervention for neurodegenerative disorders, potentially offering both preventive and therapeutic benefits. However, the current evidence base remains preliminary, warranting extensive further investigation to validate these initial findings and establish robust clinical protocols for both efficacy and safety.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Soni D, Jamwal S, Chawla R, Singh SK, Singh D, Singh TG, Khurana N, Kanwal A, Dureja H, Patil UK, Singh R, Kumar P. Nutraceuticals Unveiled a Multifaceted Neuroprotective Mechanisms for Parkinson’s Disease: Elixir for the Brain. FOOD REVIEWS INTERNATIONAL 2024; 40:3079-3102. [DOI: 10.1080/87559129.2024.2337766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rakesh Chawla
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences & Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Deependra Singh
- Univesity Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Raipur, Chhattisgarh, India
| | | | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, India
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
4
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Belinchón-deMiguel P, Ramos-Campo DJ, Curiel-Regueros A, Martín-Rodríguez A, Tornero-Aguilera JF. The Interplay of Sports and Nutrition in Neurological Health and Recovery. J Clin Med 2024; 13:2065. [PMID: 38610829 PMCID: PMC11012304 DOI: 10.3390/jcm13072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
This comprehensive review explores the dynamic relationship between sports, nutrition, and neurological health. Focusing on recent clinical advancements, it examines how physical activity and dietary practices influence the prevention, treatment, and rehabilitation of various neurological conditions. The review highlights the role of neuroimaging in understanding these interactions, discusses emerging technologies in neurotherapeutic interventions, and evaluates the efficacy of sports and nutritional strategies in enhancing neurological recovery. This synthesis of current knowledge aims to provide a deeper understanding of how lifestyle factors can be integrated into clinical practices to improve neurological outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Agustín Curiel-Regueros
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.C.-R.); (J.F.T.-A.)
| |
Collapse
|
5
|
Açar Y, Ağagündüz D, De Cicco P, Capasso R. Flavonoids: Their putative neurologic roles, epigenetic changes, and gut microbiota alterations in Parkinson's disease. Biomed Pharmacother 2023; 168:115788. [PMID: 37913731 DOI: 10.1016/j.biopha.2023.115788] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterized by the degeneration of progressive dopaminergic (DA) neurons in the substantia nigra region of the human midbrain. Although just what causes PD remains a mystery, it is known that oxidative stress (OS) as well as mitochondrial dysfunction, neuro-inflammation, and insufficient neurotrophic support play a role in the disease's pathophysiology. Phytochemicals are a diverse small molecule group derived from plants that can be classified into numerous classes on the basis of their biological activities and chemical structure. Of these groups of phytochemicals, the most abundant, which has well-established anti-Parkinson's effects, are polyphenols. Flavonoids, including naringin and naringenin, genistein, kaempferol, anthocyanins, epigallocatechin-3-gallate, and baicalein are plant-based biologically active polyphenols, which have been shown to exhibit therapeutic potential when used as treatment for a variety of pathological illnesses, such as neurodegenerative diseases (NDs) and PD. Recently, it was reported that flavonoids have beneficial effects on PD, such as the protection of DA neurons, improvement of motor and cognitive abilities, regulation of signaling pathways, and modulation of OS and neuro-inflammation. In addition, by changing the composition of bacteria in gut microbiota, flavonoids reduce pathogenic strains and promote the growth of beneficial strains. In this context, the current paper will provide a literature review on the neurological roles that flavonoids play, as one of the most abundant phytochemical families, in PD.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey.
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy.
| |
Collapse
|
6
|
Zhu J, Wang G. Artificial Intelligence Technology for Food Nutrition. Nutrients 2023; 15:4562. [PMID: 37960215 PMCID: PMC10649930 DOI: 10.3390/nu15214562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
Food nutrition is generally defined as the heat energy and nutrients obtained from food by the human body, such as protein, fat, carbohydrates and so on [...].
Collapse
Affiliation(s)
- Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Chu C, Li T, Yu L, Li Y, Li M, Guo M, Zhao J, Zhai Q, Tian F, Chen W. A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease by Regulating the Microbiota-Metabolite-Brain Axis and Fibroblast Growth Factor 21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267589 DOI: 10.1021/acs.jafc.2c07606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective effect on PD remains elusive. Here, we found that an LPHC diet ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced motor deficits, decreased dopaminergic neuronal death, and increased the levels of striatal dopamine, serotonin, and their metabolites in PD mice. Levels of fibroblast growth factor 21 (FGF-21), a member of the fibroblast growth factor family, were elevated in PD mice following LPHC treatment. Furthermore, the administration of FGF-21 exerted a protective effect on MPTP-induced PC12 cells, similar to the effect of an LPHC diet in MPTP-induced mice. Sequencing of the 16S rDNA from fecal microbiota revealed that an LPHC diet normalized the gut bacterial composition imbalance in PD mice, as evidenced by the increased abundance of the genera Bifidobacterium, Ileibacterium, Turicibacter, and Blautia and decreased abundance of Bilophila, Alistipes, and Bacteroides. PICRUSt-predicted fecal microbiome function revealed that an LPHC diet suppressed lipopolysaccharide biosynthesis and the citrate cycle (TCA cycle), biosynthesis of ubiquinone and other terpenoid-quinones, and oxidative phosphorylation pathways caused by MPTP, and enhanced the biosynthesis of amino acids, carbohydrate metabolism, and biosynthesis of other secondary metabolites. A nonmetabolomic analysis of the serum and feces showed that an LPHC diet significantly increased the levels of aromatic amino acids (AAAs), including tryptophan, tyrosine, and phenylalanine. In addition, an LPHC diet elevated the serum concentrations of bile acids (BAs), particularly tauroursodeoxycholic acid (TUDCA) and taurine. Collectively, our current findings point to the potential mechanism of administering an LPHC diet in attenuating movement impairments in MPTP-induced PD mice, with AAAs, microbial metabolites (TUDCA and taurine), and FGF-21 as key mediators along the gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Li
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602, United States
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Nabeh OA. New insights on the impact of gut microbiota on premenstrual disorders. Will probiotics solve this mystery? Life Sci 2023; 321:121606. [PMID: 36948390 DOI: 10.1016/j.lfs.2023.121606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Premenstrual disorders (PMDs) refer to premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD), where both are characterized by physical and psychological changes occurring in the luteal phase of menstrual cycle. According to the available theories, there is no single accusation succeeded to explain the pathophysiology of PMDs. However, there is emerging evidence for the role of gut microbiota (GM) in PMDs, supported by the diverging impact of GM on our body systems. The direct secretory function of GM and their integration in hormonal, neurotransmitters and bioactive compounds secretion and activity reinforce this speculation. Moreover, the bidirectional relation between GM and steroid hormones and the impact of diet, drugs, and inflammation on both, GM and PMDs incidence and severity justify the need for more studies to determine the actual role of GM in PMDs and the possible potential of probiotics and prebiotics as therapeutic options.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt; Cardiovascular Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
9
|
Wang H, Chen K, Ning M, Wang X, Wang Z, Yue Y, Yuan Y, Yue T. Intake of Pro- and/or Prebiotics as a Promising Approach for Prevention and Treatment of Colorectal Cancer. Mol Nutr Food Res 2023; 67:e2200474. [PMID: 36349520 DOI: 10.1002/mnfr.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer, posing a serious threat to human life. It is widely believed that dietary factors may be crucial modifiers of CRC risk, with pro-and/or prebiotics being especially promising. In this review, a synthesis of CRC prevention and treatment of strategies relying on usage of pro- and/or prebiotics supplements is given, as well as discuss mechanisms underlying the contribution of pro-and/or prebiotics to the suppression of colonic carcinogenesis. Furthermore, a framework for personalizing such supplements according to the composition of an individual's gut microbiome is suggested. Various factors including diversity of one's intestinal microflora, integrity of their intestinal barrier, and the presence of mutagenic/carcinogenic/genotoxic and beneficial compounds are known to have a prominent influence on the development of CRC; thus, clarifying the role of pro- and/or prebiotics will yield valuable insight toward optimizing interventions for enhanced patient outcomes in the future.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an, 71000, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
10
|
Inflammatory microbes and genes as potential biomarkers of Parkinson's disease. NPJ Biofilms Microbiomes 2022; 8:101. [PMID: 36564391 PMCID: PMC9789082 DOI: 10.1038/s41522-022-00367-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
As the second-largest neurodegenerative disease in the world, Parkinson's disease (PD) has brought a severe economic and medical burden to our society. Growing evidence in recent years suggests that the gut microbiome may influence PD, but the exact pathogenesis of PD remains unclear. In addition, the current diagnosis of PD could be inaccurate and expensive. In this study, the largest meta-analysis currently of the gut microbiome in PD was analyzed, including 2269 samples by 16S rRNA gene and 236 samples by shotgun metagenomics, aiming to reveal the connection between PD and gut microbiome and establish a model to predict PD. The results showed that the relative abundances of potential pro-inflammatory bacteria, genes and pathways were significantly increased in PD, while potential anti-inflammatory bacteria, genes and pathways were significantly decreased. These changes may lead to a decrease in potential anti-inflammatory substances (short-chain fatty acids) and an increase in potential pro-inflammatory substances (lipopolysaccharides, hydrogen sulfide and glutamate). Notably, the results of 16S rRNA gene and shotgun metagenomic analysis have consistently identified five decreased genera (Roseburia, Faecalibacterium, Blautia, Lachnospira, and Prevotella) and five increased genera (Streptococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Desulfovibrio) in PD. Furthermore, random forest models performed well for PD prediction based on 11 genera (accuracy > 80%) or 6 genes (accuracy > 90%) related to inflammation. Finally, a possible mechanism was presented to explain the pathogenesis of inflammation leading to PD. Our results provided further insights into the prediction and treatment of PD based on inflammation.
Collapse
|
11
|
Effects of lifespan-extending interventions on cognitive healthspan. Expert Rev Mol Med 2022; 25:e2. [PMID: 36377361 DOI: 10.1017/erm.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
12
|
Feng Y, Song Y, Zhou J, Duan Y, Kong T, Ma H, Zhang H. Recent progress of Lycium barbarum polysaccharides on intestinal microbiota, microbial metabolites and health: a review. Crit Rev Food Sci Nutr 2022; 64:2917-2940. [PMID: 36168931 DOI: 10.1080/10408398.2022.2128037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intestinal microbiota is symbiotically associated with host health, learning about the characteristics of microbiota and the factors that modulate it could assist in developing strategies to promote human health and prevent diseases. Polysaccharides from Lycium barbarum (LBPs) are found beneficial for enhancing the activity of gut microbiota, as a potential prebiotic, which not only participates in improving body immunity, obesity, hyperlipidemia and systemic inflammation induced by oxidative stress, but also plays a magnificent role in regulating intestinal microenvironment and improving host health and target intestinal effects via its biological activities, as well as gut microbiota and metabolites. To highlight the internal relationship between intestinal microbiota and LBPs, this review focuses on the latest advances in LBPs on the intestinal microbiota, metabolites, immune regulation, intestinal barrier protection, microbiota-gut-brain axis and host health. Moreover, the preparation, structure, bioactivity and modification of LBPs were also discussed. This review may offer new perspective on LBPs improving health of gut and host via intestinal microbiota, and provide useful guidelines for the application of LBPs in the food industry.
Collapse
Affiliation(s)
- Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 2022; 59:6684-6700. [DOI: 10.1007/s12035-022-02990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
14
|
Nutrition and Gut–Brain Pathways Impacting the Onset of Parkinson’s Disease. Nutrients 2022; 14:nu14142781. [PMID: 35889738 PMCID: PMC9323908 DOI: 10.3390/nu14142781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
An emerging body of literature suggests that long-term gut inflammation may be a silent driver of Parkinson’s disease (PD) pathogenesis. Importantly, specific nutritive patterns might improve gut health for PD risk reduction. Here, we review the current literature on the nutritive patterns and inflammatory markers as a predictor for early detection of PD. This knowledge might be used to foster the detection of early nutritive patterns and preclinical biomarkers to potentially alter PD development and progression.
Collapse
|
15
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
16
|
|