1
|
Chen JH, Yin X, He H, Lu LW, Wang M, Liu B, Cheng KW. Potential neuroprotective benefits of plant-based fermented foods in Alzheimer's disease: an update on preclinical evidence. Food Funct 2024; 15:3920-3938. [PMID: 38517682 DOI: 10.1039/d3fo03805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Alzheimer's disease (AD) currently lacks effective treatments, making its prevention a critical focus. While accumulating evidence supports that plant-based fermented foods may contribute to AD prevention, the neuroprotective effect of plant-based fermented foods on AD has not been comprehensively reviewed. In this study, we conducted a systematic review of preclinical studies on the efficacy of plant-based fermented foods in AD. The literature search was based on databases including PubMed, Embase, Web of Science, and Scopus. The PICO approach was employed for report inclusion, and each report was assessed for risk of bias using the SYRCLE's RoB tool. From the analysis of 25 retrieved reports, we extracted essential details, including bibliographic information, animal models and characteristics, sources of plant-based fermented foods, dosages, administration routes, durations, and outcome measures. Our findings indicate that plant-based fermented foods may positively impact acute and long-term cognitive function, as well as beta-amyloid-mediated neurodegeneration. This review sheds light on the potential neuroprotective benefits of plant-based fermented foods for various AD-related aspects, including oxidative stress, synaptotoxicity, neuroinflammation, tau hyperphosphorylation, dysfunctional amyloidogenic pathways, and cognitive deficits, as observed in rodent models of AD. However, the small number of studies obtained from our literature search and the finding that many of them were of moderate methodological quality suggest the need for further investigation to substantiate the beneficial potential of this class of functional food for the management of AD.
Collapse
Affiliation(s)
- Jie-Hua Chen
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xuan Yin
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hui He
- School of Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Louise Weiwei Lu
- School of Biological Sciences, Faculty of Science, The University, of Auckland, Auckland 1010, New Zealand
| | - Mingfu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Kim ME, Lee JS. The Potential of Korean Bioactive Substances and Functional Foods for Immune Enhancement. Int J Mol Sci 2024; 25:1334. [PMID: 38279334 PMCID: PMC10816026 DOI: 10.3390/ijms25021334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
In this review, we explore the immunomodulatory properties of Korean foods, focusing on ginseng and fermented foods. One notable example is Korean red ginseng, known for its immune system-regulating effects attributed to the active ingredient, ginsenoside. Ginsenoside stimulates immune cells, enhancing immune function and suppressing inflammatory responses. With a long history, Korean red ginseng has demonstrated therapeutic effects against various diseases. Additionally, Korean fermented foods like kimchi, doenjang, chongkukjang, gochujang, vinegar, and jangajji provide diverse nutrients and bioactive substances, contributing to immune system enhancement. Moreover, traditional Korean natural herbs such as Cirsium setidens Nakai, Gomchwi, Beak-Jak-Yak, etc. possess immune-boosting properties and are used in various Korean foods. By incorporating these foods into one's diet, one can strengthen their immune system, positively impacting their overall health and well-being.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Department of Biological Science, Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
3
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes 2024; 16:2295432. [PMID: 38174650 PMCID: PMC10773645 DOI: 10.1080/19490976.2023.2295432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease that seriously endangers the health of middle-aged and older adults. Recently, with the continuous deepening of research, an increasing number of studies have revealed gut microbiota as a potential target for osteoporosis, and the research concept of the gut-bone axis has gradually emerged. Additionally, the intake of dietary nutrients and the adoption of dietary patterns may affect the gut microbiota, and alterations in the gut microbiota might also influence the metabolic status of the host, thus adjusting bone metabolism. Based on the gut-bone axis, dietary intake can also participate in the modulation of bone metabolism by altering abundance, diversity, and composition of gut microbiota. Herein, combined with emerging literatures and relevant studies, this review is aimed to summarize the impacts of different dietary components and patterns on osteoporosis by acting on gut microbiota, as well as underlying mechanisms and proper dietary recommendations.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Pei-Ran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhong-Min Shi
- Department of Orthopaedics, Sixth People’s Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Jung H, Shin J, Lim K, Shin S. Edible mushroom intake and risk of all-cause and cause-specific mortality: results from the Korean Genome and Epidemiology Study (KoGES) Cohort. Food Funct 2023; 14:8829-8837. [PMID: 37682230 DOI: 10.1039/d3fo00996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Mushroom is rich in protein, fiber, vitamins, and essential amino acids. A relationship between mushroom consumption and a lower all-cause mortality risk has been reported. This study aimed to examine the association of mushroom consumption with all-cause and cause-specific mortality. Data were extracted from the Korean Genome and Epidemiology Study cohort. Mortality outcomes were confirmed from 2001-2020 death records provided by the Korea National Statistical Office. Mushroom intake was assessed using food frequency questionnaires and categorized into four groups: none, <1 serving per week, 1-3 servings per week, and ≥3 servings per week. Cox proportional hazard regression was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality. The 152 828 participants ≥40 years had a mean age of 53.7 years. Over a mean 11.6-year follow-up, 7085 deaths were recorded. In men, consuming <1 and 1-3 servings per week of mushroom was associated with lower risks of all-cause (HR = 0.858, 95% CI = 0.793-0.929; HR = 0.902, 95% CI = 0.819-0.993) and cardiovascular disease (CVD) (HR = 0.767, 95% CI = 0.632-0.930; HR = 0.762, 95% CI = 0.601-0.967) mortality than non-consumption. In women, consuming <1 and 1-3 servings per week of mushrooms was associated with a lower risk of all-cause mortality (HR = 0.864, 95% CI = 0.784-0.952; HR = 0.869, 95% CI = 0.771-0.980) than non-consumption. This prospective cohort study demonstrated that low and medium mushroom consumption is associated with a lower risk of all-cause mortality in men and women. However, only men who consumed <1 and 1-3 servings per week of mushrooms exhibited a lower risk of CVD mortality.
Collapse
Affiliation(s)
- Hyein Jung
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, Republic of Korea.
| | - JiAe Shin
- Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, 1 Gangwondaehakgil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Kyungjoon Lim
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
5
|
Wang H, Qin S, Li F, Zhang H, Zeng L. A cross-sectional study on the association between dietary inflammatory index and hyperuricemia based on NHANES 2005-2018. Front Nutr 2023; 10:1218166. [PMID: 37810924 PMCID: PMC10552180 DOI: 10.3389/fnut.2023.1218166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background Hyperuricemia is a common condition that can lead to gout and other related diseases. It has been suggested that Inflammatory factors play important role in the development and progression of hyperuricemia. The dietary inflammatory index (DII) enables the assessment of the inflammatory potential of an individual's diet. This study aimed to investigate the association between DII and hyperuricemia. Methods This study was performed based on a cross-sectional dataset from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Participants aged 18 years and above with dietary intake and serum uric acid level information were included. DII scores were calculated using dietary intake data, based on which participants were categorized into tertiles. Multivariable logistic regression analysis was adopted to investigate the association between DII and hyperuricemia. Results Among a total of 31,781 participants in the analysis, 5,491 had hyperuricemia. After adjusting confounding factors, the odds of hyperuricemia are significantly higher in the second (OR 1.17, 95% CI 1.07-1.29) and third tertiles (OR 1.31, 95% CI 1.19-1.44) relative to the first one. Conclusion This study suggested that diet with higher inflammatory potential, as measured by DII, is associated with increased hyperuricemia risk. These findings indicated that dietary modification may be a potential approach for hyperuricemia's prevention and control.
Collapse
Affiliation(s)
- Hao Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Shengmei Qin
- Department of Nursing, Stomatological Hospital Southern Medical University, Guangzhou, China
| | - Feng Li
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Huanhuan Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Ling Zeng
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wang L, Liu H, Wang D, Huang X, Hong X, Wang Y, Li P, Bao K, Zhao D. The correlation between dietary inflammatory index and risk of hyperuricemia in the U.S. population. Medicine (Baltimore) 2023; 102:e33374. [PMID: 37335705 DOI: 10.1097/md.0000000000033374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The dietary inflammatory index (DII) has been reported to be related to chronic diseases as a novel inflammatory marker. However, the correlation between DII score and hyperuricemia in adults in the United States is still unclear. Therefore, our goal was to explore the correlation between them. A total of 19,004 adults were enrolled in the National Health and Nutrition Examination Survey from 2011 to 2018. DII score was calculated according to 28 dietary items obtained by 24-hour dietary interview data. Hyperuricemia was defined by serum uric acid level. We used multilevel logistic regression models and subgroup analysis to determine whether the 2 were associated. DII scores were positively associated with serum uric acid and the risk of hyperuricemia. Per unit increased in DII score was associated with a 3 mmol/L increase in serum uric acid in males (β 3.00, 95% confidence interval (CI) 2.05-3.94) and 0.92mmol/L in females (β 0.92, 95% CI 0.07-1.77), respectively. Compared with the lowest tertile of DII score, the rise of DII grade increased the risk of hyperuricemia among the whole participants (T2: odds ratio (OR) 1.14, 95% CI 1.03, 1.27; T3: OR 1.20 [1.07, 1.34], P for trend = .0012) and males [T2: 1.15 (0.99, 1.33), T3: 1.29 (1.11, 1.50), P for trend = .0008]. For females, the correlation between DII score and hyperuricemia was statistically significant in the subgroup stratified by body mass index (BMI) (BMI < 30, OR 1.08, 95% CI 1.02-1.14, P for interaction = .0134), which indicates that the association depends on BMI. In the United States male population, the DII score has a positive correlation with hyperuricemia. Anti-inflammatory dietary intake can be beneficial for lower serum uric acid.
Collapse
Affiliation(s)
- Lijuan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huoliang Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaofan Hong
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Daixin Zhao
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Liu P, Zhang Z, Cai Y, Yang Y, Yuan J, Chen Q. Inhibition of the pyroptosis-associated inflammasome pathway: The important potential mechanism of ginsenosides in ameliorating diabetes and its complications. Eur J Med Chem 2023; 253:115336. [PMID: 37031528 DOI: 10.1016/j.ejmech.2023.115336] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Diabetes mellitus (DM) and its complications have become an important global public health issue, affecting human health and negatively impacting life and lifespan. Pyroptosis is a recently discovered form of pro-inflammatory programmed cell death (PCD). To date, pyroptosis-associated inflammasome pathways have been identified primarily in the canonical and non-canonical inflammasome pathway, apoptotic caspase-mediated pathway, granzyme-mediated pathway, and streptococcal pyrogenic exotoxin B (SpeB)-mediated pathway. The activation of diabetes-mediated pyroptosis-associated factors play an important role in the pathophysiology of DM and its complications. Studies have shown that ginsenosides exert significant protective effects on DM and its complications. Through inhibiting the activation of pyroptosis-associated inflammasome pathways, and then the DM and its complications are improved. This review summarizes the subtypes of ginsenosides and their chemical characteristics, pharmacokinetics and side effects, the main pyroptosis-associated inflammasome pathways that have been discovered to date, and the potential mechanism of different subtypes of ginsenosides in the treatment of DM and its complications (such as diabetic cardiomyopathy, diabetic nephropathy, diabetic liver injury, diabetic retinopathy, and diabetic ischemic stroke) via anti-pyroptosis-associated inflammasome pathways. These findings may provide ideas for further research to explore ginsenoside mechanism in improving DM and its complications. However, many pyroptosis-associated inflammasome pathways and targets involved in the occurrence and development of DM and its complications are still unknown. In the future, further studies using in vitro cell models, in vivo animal models, and human disease models can be used to further elucidate the mechanism of ginsenosides in the treatment of DM and its complications.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
8
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
9
|
Surya R, Nugroho D. Kimchi throughout millennia: a narrative review on the early and modern history of kimchi. JOURNAL OF ETHNIC FOODS 2023; 10:5. [PMCID: PMC10068239 DOI: 10.1186/s42779-023-00171-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/15/2023] [Indexed: 06/15/2024]
Abstract
Kimchi, the traditional fermented vegetable dish from Korea, has been an integral part of the Korean food culture for thousands of years. Today, it is considered as a symbol of identity for Korean people and is globally appraised as a healthy food. The international standard of kimchi was stipulated by the Codex Alimentarius Commission in 2001, and kimjang, the traditional Korean communal activity of making kimchi, was listed as a UNESCO’s Intangible Cultural Heritage of Humanity in 2013. The international recognition that kimchi has today was not obtained easily since there have been international disputes with regard to its standard and originality. Many historical events have shaped the face of kimchi as it is today. Thus, it appears primordial to understand the hallmark historical events defining the development of kimchi from a traditional food consumed by only Koreans in the past to a renowned global healthy food today. This review explores the historical values of kimchi by focusing on both its early and modern history. The early history of kimchi gathered from different classical literature works suggests the existence of kimchi in Korea since thousands of years ago. The modern history of kimchi highlights different events, including the globalization and commercialization of kimchi, the “kimchi wars” against neighboring countries and the international branding of kimchi as a healthy food. Furthermore, this review also discusses the polemics of kimchi, particularly in terms of its originality. Understanding the historical values of kimchi would make people see kimchi not only as an ethnic food from Korea, but also as a valuable global heritage for the world that needs preserving.
Collapse
Affiliation(s)
- Reggie Surya
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480 Indonesia
| | - David Nugroho
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| |
Collapse
|
10
|
Nasir Ahmed M, Hughes K. Role of ethno-phytomedicine knowledge in healthcare of COVID-19: advances in traditional phytomedicine perspective. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:96. [PMID: 35966214 PMCID: PMC9362587 DOI: 10.1186/s43088-022-00277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background Since the outbreak of the COVID-19 virus, ethnomedicinal plants have been used in diverse geographical locations for their purported prophylactic and pharmacological effects. Medicinal plants have been relied on by people around the globe for centuries, as 80% of the world’s population rely on herbal medicines for some aspect of their primary health care needs, according to the World Health Organization.
Main body This review portrays advances in traditional phytomedicine by bridging the knowledge of ethno-phytomedicine and COVID-19 healthcare. Ethnomedicinal plants have been used for symptoms related to COVID-19 as antiviral, anti-infective, anti-inflammatory, anti-oxidant, antipyretic, and lung–gut immune boosters. Traditionally used medicinal plants have the ability to inhibit virus entry and viral assembly, bind to spike proteins, membrane proteins, and block viral replications and enzymes. The efficacy of traditional medicinal plants in the terms of COVID-19 management can be evaluated by in vitro, in vivo as well as different in silico techniques (molecular docking, molecular dynamics simulations, machine learning, etc.) which have been applied extensively to the quest and design of effective biotherapeutics rapidly. Other advances in traditional phytomedicines against COVID-19 are controlled clinical trials, and notably the roles in the gut microbiome. Targeting the gut microbiome via medicinal plants as prebiotics is also found to be an alternative and potential strategy in the search for a COVID-19 combat strategy. Conclusions Since medicinal plants are the sources of modern biotherapeutics development, it is essential to build collaborations among ethnobotanists, scientists, and technologists toward developing the most efficient and the safest adjuvant therapeutics against the pandemic of the twenty-first century, COVID-19.
Collapse
|
11
|
Luo Q, Cao WW, Cheng YX. Alkaloids, sesquiterpenoids and hybrids of terpenoid with p-hydroxycinnamic acid from Ganoderma sinensis and their biological evaluation. PHYTOCHEMISTRY 2022; 203:113379. [PMID: 36029844 DOI: 10.1016/j.phytochem.2022.113379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The fruiting bodies of Ganoderma sinensis are used as food raw materials of marketed healthcare products. To gain an insight into the chemical and biological profling of G. sinensis, twenty-five compounds including eleven undescribed ones (ganodermasines A‒K) and fourteen known ones were isolated. Among them, ganodermasines A‒D are undescribed diketopiperazine alkaloids, ganodermasines E and F are alkaloids containing a pyridine. The structures of undescribed compounds were identified by spectroscopic, computational, and crystallographic methods. The results of acetylcholinesterase (AchE) inhibitory activity show that ganodermasines I and J could inhibit AchE with IC50 values of 26.05 and 20.40 μM, respectively. In addition, neurotrophic assay in PC-12 cells showed that (+)-ganodermasine E, (-)-ganodermasine E, and ganodermasine I could stimulate neurite outgrowth at 10 μM, while the other isolates are inactive. The present findings will lend a hand for further utilization of G. sinensis.
Collapse
Affiliation(s)
- Qi Luo
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wen-Wen Cao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China; Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, People's Republic of China.
| |
Collapse
|
12
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|
13
|
Lee HW, Yoon SR, Dang YM, Yun JH, Jeong H, Kim KN, Bae JW, Ha JH. Metatranscriptomic and metataxonomic insights into the ultra-small microbiome of the Korean fermented vegetable, kimchi. Front Microbiol 2022; 13:1026513. [PMID: 36274711 PMCID: PMC9581167 DOI: 10.3389/fmicb.2022.1026513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Presently, pertinent information on the ultra-small microbiome (USM) in fermented vegetables is still lacking. This study analyzed the metatranscriptome and metataxonome for the USM of kimchi. Tangential flow filtration was used to obtain a USM with a size of 0.2 μm or less from kimchi. The microbial diversity in the USM was compared with that of the normal microbiome (NM). Alpha diversity was higher in the USM than in NM, and the diversity of bacterial members of the NM was higher than that of the USM. At the phylum level, both USM and NM were dominated by Firmicutes. At the genus level, the USM and NM were dominated by Lactobacillus, Leuconostoc, and Weissella, belonging to lactic acid bacteria. However, as alpha diversity is higher in the USM than in the NM, the genus Akkermansia, belonging to the phylum Verrucomicrobia, was detected only in the USM. Compared to the NM, the USM showed a relatively higher ratio of transcripts related to “protein metabolism,” and the USM was suspected to be involved with the viable-but-nonculturable (VBNC) state. When comparing the sub-transcripts related to the “cell wall and capsule” of USM and NM, USM showed a proportion of transcripts suspected of being VBNC. In addition, the RNA virome was also identified, and both the USM and NM were confirmed to be dominated by pepper mild mottle virus (PMMoV). Additionally, the correlation between metataxonome and metatranscriptome identified USM and NM was estimated, however, only limited correlations between metataxonome and metatranscriptome were estimated. This study provided insights into the relationship between the potential metabolic activities of the USM of kimchi and the NM.
Collapse
Affiliation(s)
- Hae-Won Lee
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
- Department of Biology, Kyung Hee University, Seoul, South Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - So-Ra Yoon
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Yun-Mi Dang
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Ji-Hyun Yun
- Department of Biology, Kyung Hee University, Seoul, South Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
| | - Hoibin Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, South Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kil-Nam Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, South Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, South Korea
- *Correspondence: Jin-Woo Bae,
| | - Ji-Hyoung Ha
- Hygienic Safety Packaging Research Group, World Institute of Kimchi, Gwangju, South Korea
- Ji-Hyoung Ha,
| |
Collapse
|
14
|
Cheng Qian J, Liu D, Ping Lin L, Jing Zhu W, Xiang Tan R. Minor bioactive indoles from kimchi mirror the regioselectivity in indole-3-carbinol oligomerization. Food Chem 2022; 382:132571. [PMID: 35245758 DOI: 10.1016/j.foodchem.2022.132571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
Abstract
Kimchi is a globally consumed food with diverse health-benefits, but the low-abundance bioactive compounds in kimchi remain largely neglected. Here we show that kimchi contains a family of low-abundance (0.5-1.6 μg/g, dried weight) high-order indole oligomers derived from indole-3-carbinol (I3C), a breakdown product released from cruciferous vegetables used for producing the traditional subsidiary food. The structure determination of such complex molecules was accomplished by synthesizing linear indole oligomers as standard materials followed by the LC-HR-MS analysis. One indole tetramer (LTe2) is substantially toxic to tumor MV4-11 (IC50 = 1.94 μM) and THP-1 cells (IC50 = 7.12 μM). Collectively, the work adds valuable information to the knowledge package about kimchi, and may inspire the generation of indole-based molecules, to which many drugs belong.
Collapse
Affiliation(s)
- Jia Cheng Qian
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Jing Zhu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, Islam MR, Najda A, Al-Malky HS, Mohamed HRH, AlGwaiz HIM, Awaji AA, Germoush MO, Kensara OA, Abdel-Daim MM, Saeed M, Kamal MA. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150:113041. [PMID: 35658211 DOI: 10.1016/j.biopha.2022.113041] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Department of Biosciences, Shifa Tameer-e-Milat University, Islamabad, Pakistan.
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudia Arabia
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh; West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
16
|
Abstract
Fermented foods (FFs) hold global attention because of their huge advantages. Their health benefits, palatability, preserved, tasteful, and aromatic properties impart potential importance in the comprehensive evaluation of FFs. The bioactive components, such as minerals, vitamins, fatty acids, amino acids, and other phytochemicals synthesized during fermentation, provide consumers with several health benefits. Fermentation of food is an ancient process that has met with many remarkable changes owing to the development of scientific technologies over the years. Initially, fermentation relied on back-slapping. Nowadays, starter cultures strains are specifically chosen for the type of fermentation process. Modern biotechnological methods are being implemented in the fermentation process to achieve the desired product in high quality. Respiratory and gastrointestinal tract infections are the most severe health issues affecting human beings of all age groups, especially children and older adults, during this COVID-19 pandemic period. Studies suggest that the consumption of probiotic Lactobacillus strains containing fermented foods protects the subjects from common infectious diseases (CIDs, which is classified as upper respiratory tract infections, lower respiratory tract infections and gastrointestinal infections) by improving the host’s immune system. Further studies are obligatory to develop probiotic-based functional FFs that are effective against CIDs. Presently, we are urged to find alternative, safe, and cost-effective prevention measures against CIDs. The current manuscript briefs the production of FFs, functional properties of FFs, and their beneficial effects against respiratory tract infections. It summarizes the outcomes of clinical trials using human subjects on the effects of supplementation of FFs.
Collapse
|
17
|
Wang Y, Zhang C, Liu F, Jin Z, Xia X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit Rev Food Sci Nutr 2022; 63:5841-5855. [PMID: 35014569 DOI: 10.1080/10408398.2021.2025035] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.
Collapse
Affiliation(s)
- Yingyu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| |
Collapse
|
18
|
Ye C, Huang X, Wang R, Halimulati M, Aihemaitijiang S, Zhang Z. Dietary Inflammatory Index and the Risk of Hyperuricemia: A Cross-Sectional Study in Chinese Adult Residents. Nutrients 2021; 13:nu13124504. [PMID: 34960057 PMCID: PMC8708184 DOI: 10.3390/nu13124504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Dietary Inflammatory Index (DII) scores have been consistently associated with several chronic diseases. This study explored the correlation between the DII and hyperuricemia in Chinese adult residents. Methods: The study included 7880 participants from the China Health and Nutrition Survey (CHNS), which was taken in in 2009. A 3-day 24 h meal review method was used to collect diet data and to calculate the DII score. Serum uric acid was obtained to determine hyperuricemia levels. Subjects were divided into a hyperuricemia group and a non-hyperuricemia group, according to their serum uric acid level. Multilevel logistic regression models were used to examine the association between DII scores and hyperuricemia. Results: After adjusting for covariates, a higher DII score was determined to be associated with a higher risk of hyperuricemia. Compared to those in the highest DII score group, the lower DII score group had an inverse association with hyperuricemia risk (Q2: 0.83, 95% CI: 0.70–0.99; Q3: 0.72, 95% CI: 0.60–0.86; Q4: 0.73, 95% CI: 0.61–0.88). The intake of energy-adjusted protein, total fat, MUFAs, PUFAs and saturated fatty acid was higher in the hyperuricemia group. Conclusions: A higher DII score is significantly associated with a higher risk of hyperuricemia. Controlling the intake of pro-inflammatory food may be beneficial to reduce the risk of hyperuricemia.
Collapse
|
19
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|