1
|
Bolat E, Eker F, Yılmaz S, Karav S, Oz E, Brennan C, Proestos C, Zeng M, Oz F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules 2024; 29:2161. [PMID: 38731652 PMCID: PMC11085506 DOI: 10.3390/molecules29092161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, β-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of β-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Selin Yılmaz
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.B.); (F.E.); (S.Y.)
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25030, Türkiye; (E.O.); (F.O.)
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 157 84 Athens, Greece;
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25030, Türkiye; (E.O.); (F.O.)
| |
Collapse
|
2
|
Borş A, Borş SI, Floriștean VC. Health-Related Outcomes and Molecular Methods for the Characterization of A1 and A2 Cow's Milk: Review and Update. Vet Sci 2024; 11:172. [PMID: 38668439 PMCID: PMC11053430 DOI: 10.3390/vetsci11040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
A new trend in cow's milk has emerged in the market called type A1 and A2 milk. These products have piqued the interest of both consumers and researchers. Recent studies suggest that A2 milk may have potential health benefits beyond that of A1 milk, which is why researchers are investigating this product further. It is interesting to note that the A1 and A2 milk types have area-specific characteristics compared to breed-specific characteristics. Extensive research has focused on milk derivatives obtained from cow's milk, primarily through in vitro and animal studies. However, few clinical studies have been conducted in humans, and the results have been unsatisfactory. New molecular techniques for identifying A1 and A2 milk may help researchers develop new studies that can clarify certain controversies surrounding A1 milk. It is essential to exercise extreme caution when interpreting the updated literature. It has the potential to spread panic worldwide and have negative economic implications. Therefore, this study aims to investigate the differences between A1 and A2 milk in various research areas and clarify some aspects regarding these two types of milk.
Collapse
Affiliation(s)
- Alina Borş
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iaşi, Romania; (A.B.); (V.-C.F.)
| | - Silviu-Ionuț Borş
- Research and Development Station for Cattle Breeding Dancu, 707252 Iaşi, Romania
| | - Viorel-Cezar Floriștean
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iaşi, Romania; (A.B.); (V.-C.F.)
| |
Collapse
|
3
|
Feng T, Ma C, Chen S, Zhuang H, Song S, Sun M, Yao L, Wang H, Liu Q, Yu C. Exploring novel Kokumi peptides in Agaricus bisporus: selection, identification, and tasting mechanism investigation through sensory evaluation and computer simulation analysis. Food Funct 2024; 15:2879-2894. [PMID: 38318946 DOI: 10.1039/d3fo05406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Agaricus bisporus contains amino acids associated with thickness and full-mouthfeel, making it a potential candidate for salt substitutes and flavor enhancers in various food applications. Kokumi peptides were isolated from the enzymatic digest of Agaricus bisporus using ultrafiltration nanofiltration, gel chromatographic separation, and RP-HPLC, coupled with sensory evaluation. Subsequently, the peptides, EWVPVTK and EYPPLGR, were selected for solid-phase synthesis based on molecular docking. Sensory analysis, including thresholds, time intensity, and dose-configuration relationships, indicated that EWVPVTK and EYPPLGR exhibited odor thresholds of 0.6021 mmol L-1 and 2.332 mmol L-1 in an aqueous solution. Molecular docking scores correlated with low sensory thresholds, signifying strong taste sensitivities. EWVPVTK, in particular, demonstrated a higher sense of richness at lower concentrations compared to EYPPLGR. Molecular docking and dynamics simulations elucidated that the interactions between Kokumi peptides and the CaSR receptor primarily involved hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Both EWVPVTK and EYPPLGR exhibited stable binding to the CaSR receptor. Active binding sites were identified, with EWVPVTK interacting at Arg 66, Asp 216, Gln 245, and Asn 102, while EYPPLGR engaged with Ser 272, Gln 193, Glu 297, Ala-298, Tyr-2, and Agr-66 in hydrophilic interactions through hydrogen bonds. Notably, these two Kokumi peptides were found to be enriched in umami and sweet amino acids, underscoring their pivotal role in umami perception. This study not only identifies novel Kokumi peptides from Agaricus bisporus but also contributes theoretical foundations and insights for future studies in the realm of Kokumi peptides.
Collapse
Affiliation(s)
- Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Chenwei Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Sha Chen
- College of Life Science and Technology, Xinjiang University, 666 Shengli Road, Xinjiang Urumqi 830000, People's Republic of China.
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, 2080 Nanting Road, Shanghai, 201415, People's Republic of China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China.
| |
Collapse
|
4
|
Dantas A, Pierezan MD, Camelo-Silva C, Zanetti V, Pimentel TC, da Cruz AG, Verruck S. A discussion on A1-free milk: Nuances and comments beyond implications to the health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:197-241. [PMID: 38906587 DOI: 10.1016/bs.afnr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
This chapter provides an overarching view of the multifaceted aspects of milk β-casein, focusing on its genetic variants A1 and A2. The work examines the current landscape of A1-free milk versus regular milk, delving into health considerations, protein detection methods, technological impacts on dairy production, non-bovine protein, and potential avenues for future research. Firstly, it discussed ongoing debates surrounding categorizing milk based on A1 and A2 β-casein variants, highlighting challenges in establishing clear regulatory standards and quality control methods. The chapter also addressed the molecular distinction between A1 and A2 variants at position 67 of the amino acid chain. This trait affects protein conformation, casein micelle properties, and enzymatic susceptibility. Variations in β-casein across animal species are acknowledged, casting doubt on non-bovine claims of "A2-like" milk due to terminology and genetic differences. Lastly, this work explores the burgeoning field of biotechnology in milk production.
Collapse
Affiliation(s)
- Adriana Dantas
- Food Quality and Technology, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet, Monells, Girona, Spain
| | - Milena Dutra Pierezan
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Callebe Camelo-Silva
- Department of Food Chemistry and Engineering, Technological Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vanessa Zanetti
- Food Quality and Technology, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet, Monells, Girona, Spain
| | | | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Hamouda MEA, Salunke P. Changes in Milk Protein Functionality at Low Temperatures and Rennet Concentrations. Foods 2024; 13:447. [PMID: 38338582 PMCID: PMC10855877 DOI: 10.3390/foods13030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to evaluate the influence of low-concentration rennet on the chemical, rheological characteristics, and protein fractions of skim milk (SM) at 4 ± 1 °C. Skimmed milk (SM) was divided into four lots of 500 mL, and diluted rennet (1:10,000) was added at different levels at 4 ± 1 °C. The treatments included control (no rennet), T1 (0.001 mL/rennet), T2 (0.01 mL rennet), and T3 (0.1 mL rennet) treatments, which were incubated for 24 h. The sampling was performed at 0, 1, 2, 6, 12, and 24 h, and the SM after incubation time was heated to 73 °C/16 s to denature the rennet enzyme. Skim milk samples (SMS) (control and rennet-added samples) were evaluated for proximate composition, capillary gel electrophoresis (CGE), hydrodynamic diameter, zeta potential, and rheology at 0, 1, 2, 6, 12, and 24 h. Foaming ability, foaming stability, water-holding capacity (WHC), oil emulsifying activity (OEA), and emulsion stability (ES) were performed at 0, 12, and 24 h of incubation time. There was a significant (p < 0.05) increase in non-proteins by 0.50% and in non-casein nitrogen by 0.81% as incubation progressed. The results showed that aggregation or curd was not formed during storage time. The CGE data indicated that increasing the rennet concentration had a significant (p < 0.05) effect on decreasing κ-CN, and breakdown increased at higher levels of rennet usage. There was a significant (p < 0.05) increase in the hydrodynamic diameter and a decrease in the zeta potential values in rennet-added samples at the end of the incubation time (24 h). The rheological results showed no changes in the storage modulus (G'), loss modulus (G″), or viscosity values. Increasing the rennet amount and storage time led to a significant (p < 0.05) decrease in the foaming ability and foaming stability and a significant (p < 0.05) increase in the oil emulsifying activity and emulsion stability of rennet-added SMS. This study concluded that milk protein functionality can be changed without aggregating or curd formation, and rennet milk can be processed.
Collapse
Affiliation(s)
| | - Prafulla Salunke
- Dairy and Food Science Department, Midwest Dairy Foods and Research Center, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
6
|
Gonzales-Malca JA, Tirado-Kulieva VA, Abanto-López MS, Aldana-Juárez WL, Palacios-Zapata CM. Worldwide research on the health effects of bovine milk containing A1 and A2 β-casein: Unraveling the current scenario and future trends through bibliometrics and text mining. Curr Res Food Sci 2023; 7:100602. [PMID: 37790856 PMCID: PMC10542606 DOI: 10.1016/j.crfs.2023.100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
The possible adverse effect of consuming bovine milk with A1 β-casein (but not with A2 β-casein) on health aspects due to the release of β-casomorphin-7 (BCM-7) is currently under debate. The aim of this study was to perform a bibliometric analysis of studies extracted from Scopus to explore the relationship between BCM-7, A1 or A2 bovine milk with different aspects of health. Over time, several research groups were formed that are no longer active and although some authors have returned to the field of study, they have focused their efforts mainly on conducting reviews that show the same imprecise conclusions due to the few original articles. Research is concentrated in Europe and Asia, where New Zealand, China and Germany are the countries with the most publications, records and citations on the subject, respectively. On the other hand, no country in Africa or South America has scientific production, which opens the possibility of building collaborations between countries and exploring areas that lack scientific studies. Based on conflicting information from primarily in vitro and animal studies, and limited clinical trials with poor designs, A1 milk presents pro-inflammatory and oxidative activity, but the evidence is insufficient to associate its consumption with negative health effects. However, A2 milk may be better tolerated by the digestive system of some individuals, suggesting its possible modulating role in the intestinal microbiota. Stronger scientific evidence is needed to reach a consensus on whether the presence of β-casein A1 can significantly negatively affect health. The information shown will allow a better understanding of the subject and consumers will be able to make their own decisions regarding A1 or A2 milk.
Collapse
Affiliation(s)
- Jhony Alberto Gonzales-Malca
- Laboratorio de Tecnología de Alimentos y Procesos, Universidad Nacional de Frontera, Peru
- Laboratorio de Biología Molecular, Universidad Nacional de Frontera, Peru
| | | | | | | | | |
Collapse
|
7
|
An approach on detection, quantification, technological properties, and trends market of A2 cow milk. Food Res Int 2023; 167:112690. [PMID: 37087212 DOI: 10.1016/j.foodres.2023.112690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The genetic variant A2 β-casein integrates the casein protein group in milk and has been often associated with positive health outcomes. Therefore, this review explores the present understanding of A2 β-casein, including detection methods and the market trends for dairy from A2 milk. Also, the interaction of A2 β-casein with αs1-casein and κ-casein genotypes was examined in terms of technological impacts on A2 milk. A limited number of preliminary studies has aimed to investigate the sensorial and technological impacts of β-casein variants in milk matrices, for instance, in yogurt and other derivatives. Nevertheless, considering studies carried out so far, it is concluded that the manufacture of dairy products from A2 milk is perfectly feasible, as the products presented slight differences when compared to those derived from traditional milk. In one of the works, sensitive drops in rennet coagulation time and curd firmness values were observed in cheese traits. However, it is relevant to point out that variant A of κ-casein plays a negative role in the coagulation features of milk. Therefore, alterations in the pattern of cheese-making properties are not uniquely related to β-casein variants. Attempts to produce A2 β-casein in laboratory (non-natural source), through biosynthesis, for example, have not been found so far. This knowledge gap offers a promising area for future studies concerning proteins and bioactive peptide production.
Collapse
|
8
|
Yan D, Zhang L, Zhu Y, Han M, Wang Y, Tang J, Zhou P. Changes in Caprine Milk Fat Globule Membrane Proteins after Heat Treatment Using a Label-Free Proteomics Technique. Foods 2022; 11:foods11172705. [PMID: 36076890 PMCID: PMC9455663 DOI: 10.3390/foods11172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Milk proteins are prone to changes during the heat treatment process. Here, we aimed to study the changes in caprine milk fat globule membrane (MFGM) proteins with three heat treatment processes—ultra-pasteurization (85 °C, 30 min), ultra-high-temperature instant sterilization (135 °C, 5 s), and spray-drying (inlet, 160 °C and outlet, 80 °C)—using the label-free proteomics technique. A total of 1015, 637, 508, and 738 proteins were identified in the raw milk, ultra-pasteurized milk, ultra-high-temperature instant sterilized milk, and spray-dried reconstituted milk by using label-free proteomics techniques, respectively. Heat treatment resulted in a significant decrease in the relative intensity of MFGM proteins, such as xanthine dehydrogenase/oxidase, butyrophilin subfamily 1 member A, stomatin, and SEA domain-containing protein, which mainly come from the membrane, while the proteins in skimmed milk, such as β-lactoglobulin, casein, and osteopontin, increased in MFGM after heat treatment. Among these different heat treatment groups, the procedure of spray-drying resulted in the least abundance reduction of caprine milk MFGM proteins. Additionally, it showed heating is the key process affecting the stability of caprine MFGM protein rather than the spray-drying process. These findings provide new insights into the effects of heat treatment on caprine MFGM protein composition and potential biological functions.
Collapse
|
9
|
Jiménez-Montenegro L, Alfonso L, Mendizabal JA, Urrutia O. Worldwide Research Trends on Milk Containing Only A2 β-Casein: A Bibliometric Study. Animals (Basel) 2022; 12:ani12151909. [PMID: 35953898 PMCID: PMC9367265 DOI: 10.3390/ani12151909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary A1 β-casein has been correlated with adverse health outcomes, and, as a consequence, milk containing only A2 β-casein has emerged on the market. There has been a relevant increase in publications in this area since 2010. Food Science Technology and Agriculture were the main research areas of this topic. The term β-casomorphin was the most frequently used. The USA, New Zealand, and Australia were the most productive countries, though the most productive research institutions were, in absolute terms, from India, France, and Germany. The majority of the most cited studies that refer to A2 β-casein and health were reviews, and a few clinical trials have also been published. Abstract The protein fraction of β-casein may play a key role in the manifestation of a new intolerance: milk protein intolerance. The most common forms of β-casein among dairy cattle breeds are A1 and A2 β-casein. During gastrointestinal digestion of A1 β-casein, an opioid called peptide β-casomorphin-7 (BCM-7) is more frequently released, which can lead to adverse health outcomes. For that reason, novel products labelled as “A2 milk” or “A1-free dairy products” have appeared on the market. In this context, a bibliometric analysis on A2 β-casein research was carried out through the Web of Science (WoS) database. The main objective of this work was to provide an overview of the state of the art in the field of β-casein A2 by analyzing the number of publications per year, trends in thematic content, the most frequently used terms, and the most important institutions and countries in the field. This bibliometric study showed that a greater effort is needed to determine the possible implications of this novel product for human health and the market.
Collapse
|