1
|
Pereira MAB, Pereira AKDS, Carlos TD, Dornelas ASP, Sarmento RA, Cavallini GS, Soares AMVM. Ecotoxicological evaluation of effluent from bovine slaughterhouses disinfected by peracetic acid (PAA) using the bioindicator Girardia tigrina. ENVIRONMENTAL RESEARCH 2024; 252:118756. [PMID: 38552830 DOI: 10.1016/j.envres.2024.118756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
The evaluation of the ecotoxicological effects of the effluent after treatment with peracetic acid is relevant to help establish reference concentrations for the disinfection process and waste recovery. Therefore, the objective of this work was to evaluate the ecotoxicity of effluent from a bovine slaughterhouse treated with peracetic acid on Girardia tigrina. The toxicity bioassays for planaria were the acute test (LC50) and chronic assays: locomotion, regeneration, reproduction and fertility. The results showed that the effluent treated with peracetic acid showed less toxicity than the effluent without application of peracetic acid. The effluent after peracetic acid application showed a chronic toxic effect in the reduction of locomotor speed in all studied disinfectant concentrations (0.8, 1.6, 3.3 and 6.6 μg L-1 of peracetic acid) and a delay in the formation of G. tigrina photoreceptors at the concentration of 6.6 μg L-1 of peracetic acid. Peracetic acid concentrations of 0.8, 1.6 and 3.3 μg L-1 were not toxic for blastema regeneration, photoreceptor and auricle formation, fecundity and fertility. In addition, this study assists in defining doses of peracetic acid to be recommended in order to ensure the wastewater disinfection process without causing harm to aquatic organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
2
|
Yazdani A, Khamesi N, Keyhani A, Nasibi S, Mohammadi MA, Mousavi SM, Derakhshani A, Fasihi Harandi M. Comparative Analysis of Nanos and Ago Genes Expression in the Germinative Cells Isolated from Germinal Layer and the Neck Region of Echinococcus granulosus. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:131-139. [PMID: 39011528 PMCID: PMC11246205 DOI: 10.18502/ijpa.v19i2.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Background We aimed to evaluate the differential expression of nanos and ago genes in the protoscoleces, germinal layer, the neck, and the sucker regions of adult Echinococcus granulosus. Methods The study was conducted in 2018 at the Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran. In the present study E. granulosus protoscoleces were cultured in a di-phasic medium to obtain strobilated worms. The strobilated worms were harvested and using a sterile razor blade, the neck region was separated. In the molecular study the neck sections were compared with the tissues derived from the suckers from the same worm. The primers were specifically designed for RT-qPCR on nanos and ago. The germinative cells were isolated from the cyst germinal layer and cultured in DMEM for further molecular studies. The Immunohisto-chemical profile was designed to explore the nature of nanos protein in the strobilated worms. Differences between and within groups were statistically assessed relative to the protoscoleces. Results An increasing nanos gene expressions were found in sucker, neck, cells and germinal layer in comparison to the protoscoleces. The expression of ago gene was decreased in sucker, cell and germinal layer, and increased in the neck region in comparison to the protoscoleces. The results showed that both genes were expressed in all developmental stages of E. granulosus. Conclusion nanos and ago genes were differentially expressed at different developmental stages of E. granulosus and may contribute to differentiation of the parasite.
Collapse
Affiliation(s)
- Amin Yazdani
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Narges Khamesi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Nasibi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Akheralie Z, Scidmore TJ, Pearson BJ. aristaless-like homeobox-3 is wound induced and promotes a low-Wnt environment required for planarian head regeneration. Development 2023; 150:dev201777. [PMID: 37681295 PMCID: PMC10560571 DOI: 10.1242/dev.201777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The planarian Schmidtea mediterranea is a well-established model of adult regeneration, which is dependent on a large population of adult stem cells called neoblasts. Upon amputation, planarians undergo transcriptional wounding programs and coordinated stem cell proliferation to give rise to missing tissues. Interestingly, the Wnt signaling pathway is key to guiding what tissues are regenerated, yet less known are the transcriptional regulators that ensure proper activation and timing of signaling pathway components. Here, we have identified an aristaless-like homeobox transcription factor, alx-3, that is enriched in a population of putative neural-fated progenitor cells at homeostasis, and is also upregulated in stem cells and muscle cells at anterior-facing wounds upon amputation. Knockdown of alx-3 results in failure of head regeneration and patterning defects in amputated tail fragments. alx-3 is required for the expression of several early wound-induced genes, including the Wnt inhibitor notum, which is required to establish anterior polarity during regeneration. Together, these findings reveal a role for alx-3 as an early wound-response transcriptional regulator in both muscle cells and stem cells that is required for anterior regeneration by promoting a low-Wnt environment.
Collapse
Affiliation(s)
- Zaleena Akheralie
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| | - Tanner J. Scidmore
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| | - Bret J. Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| |
Collapse
|
4
|
Djck1α Is Required for Proper Regeneration and Maintenance of the Medial Tissues in Planarians. Cells 2023; 12:cells12030473. [PMID: 36766815 PMCID: PMC9913719 DOI: 10.3390/cells12030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
CK1α (Casein kinase 1α) is a member of the casein kinase 1(CK1) family that is involved in diverse cellular processes, but its functions remain unclear in stem cell development. Freshwater planarians are capable of whole-body regeneration, making it a classic model for the study of regeneration, tissue homeostasis, and polarity in vivo. To investigate the roles of CK1α in regeneration and homeostasis progress, we characterize a homolog of CK1α from planarian Dugesia japonica. We find that Djck1α, which shows an enriched expression pattern in the nascent tissues, is widely expressed especially in the medial regions of planarians. Knockdown of CK1α by RNAi presents a thicker body due to dorsal hyperplasia, along with defects in the medial tissues including nerve proliferation, missing epidermis, intestine disturbance, and hyper-proliferation during the progression of regeneration and homeostasis. Moreover, we find that the ck1α RNAi animals exhibit expansion of the midline marker slit. The eye deficiency induced by slit RNAi can be rescued by ck1α and slit double RNAi. These results suggest that ck1α is required for the medial tissue regeneration and maintenance in planarian Dugesia japonica by regulating the expression of slit, which helps to further investigate the regulation of planarian mediolateral axis.
Collapse
|
5
|
Planarians to schistosomes: an overview of flatworm cell-types and regulators. J Helminthol 2023; 97:e7. [PMID: 36644809 DOI: 10.1017/s0022149x22000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that propagate between molluscan and mammalian hosts. Inside the mammalian host, schistosomes rapidly grow over 100-fold in size and develop into a sexually mature male or female that thrives in the bloodstream for several decades. Recent work has identified schistosome stem cells as the source that drives parasite transmission, reproduction and longevity. Moreover, studies have begun to uncover molecular programmes deployed by stem cells that are essential for tissue development and maintenance, parasite survival and immune evasion. Such programmes are reminiscent of neoblast-driven development and regeneration of planarians, the free-living flatworm relative of schistosomes. Over the last few decades, research in planarians has employed modern functional genomic tools that significantly enhanced our understanding of stem cell-driven animal development and regeneration. In this review, we take a broad stroke overview of major flatworm organ systems at the cellular and molecular levels. We summarize recent advances on genetic regulators that play critical roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspectives on how investigation of basic parasite biology is critical to discovering new approaches to battle schistosomiasis.
Collapse
|
6
|
Lee Y, Kim B, Jung J, Koh B, Jhang SY, Ban C, Chi WJ, Kim S, Yu J. Chromosome-level genome assembly of Plazaster borealis sheds light on the morphogenesis of multiarmed starfish and its regenerative capacity. Gigascience 2022; 11:6636911. [PMID: 35809048 PMCID: PMC9270726 DOI: 10.1093/gigascience/giac063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
Background Plazaster borealis has a unique morphology, displaying multiple arms with a clear distinction between disk and arms, rather than displaying pentaradial symmetry, a remarkable characteristic of echinoderms. Herein we report the first chromosome-level reference genome of P. borealis and an essential tool to further investigate the basis of the divergent morphology. Findings In total, 57.76 Gb of a long read and 70.83 Gb of short-read data were generated to assemble a de novo 561-Mb reference genome of P. borealis, and Hi-C sequencing data (57.47 Gb) were used for scaffolding into 22 chromosomal scaffolds comprising 92.38% of the genome. The genome completeness estimated by BUSCO was 98.0% using the metazoan set, indicating a high-quality assembly. Through the comparative genome analysis, we identified evolutionary accelerated genes known to be involved in morphogenesis and regeneration, suggesting their potential role in shaping body pattern and capacity of regeneration. Conclusion This first chromosome-level genome assembly of P. borealis provides fundamental insights into echinoderm biology, as well as the genomic mechanism underlying its unique morphology and regeneration.
Collapse
Affiliation(s)
- Yujung Lee
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| | - Bongsang Kim
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea.,Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehoon Jung
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea.,Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul 08826, Republic of Korea
| | - Bomin Koh
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| | - So Yun Jhang
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaeyoung Ban
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| | - Won-Jae Chi
- Department of Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Soonok Kim
- Department of Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Jaewoong Yu
- Department of Research, eGnome, Inc., 26 Beobwon-ro 9-gil, Sonpa-gu, Seoul 05836, Republic of Korea
| |
Collapse
|
7
|
Vieira MM, Pereira Dornelas AS, Carlos TD, Pallini A, Gravato C, Pereira DH, Sarmento RA, Cavallini GS. When treatment increases the contaminant's ecotoxicity: A study of the Fenton process in the degradation of methylene blue. CHEMOSPHERE 2021; 283:131117. [PMID: 34134044 DOI: 10.1016/j.chemosphere.2021.131117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The degradation of dyes can generate harmful by-products, thereby requiring the need to evaluate the toxicity to aquatic organisms. This study aims to evaluate the chronic ecotoxicity of methylene blue dye degraded by the Fenton process using the non-target planarian Girardia tigrina as a sensitive bioindicator of environmental contamination. The bioassays evaluated the lethality of several concentrations of the untreated and degraded dye methylene blue (MB), as well as, their sub-lethal effects on locomotion, feeding, regeneration, and reproduction. In both acute and chronic tests, the degraded dye had a stronger toxic effect when compared to the untreated dye. This negative effect after treatment was mainly associated with the presence of residual hydrogen peroxide and iron (and consequently the hydroxyl radical formed). We conclude that the utilization of the Fenton process using less oxidizing agents should be considered as important alternatives for the protection of aquatic ecosystems, without compromising the efficient removal of MB.
Collapse
Affiliation(s)
- Mayane Marques Vieira
- Curso de Química Ambiental, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | | | - Thayrine Dias Carlos
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | - Angelo Pallini
- Departamento de Entomologia - Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Douglas Henrique Pereira
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal e Programa de Pós-Graduação Em Biodiversidade e Biotecnologia da Amazônia Legal - Bionorte, Universidade Federal Do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| | | |
Collapse
|
8
|
Scheel A, Stevens A, Tenbrock C. Signaling gradients in surface dynamics as basis for planarian regeneration. J Math Biol 2021; 83:6. [PMID: 34173885 DOI: 10.1007/s00285-021-01627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Based on experimental data, we introduce and analyze a system of reaction-diffusion equations for the regeneration of planarian flatworms. We model dynamics of head and tail cells expressing positional control genes that translate into localized signals which in turn guide stem cell differentiation. Tissue orientation and positional information are encoded in a long range wnt-related signaling gradient. Our system correctly reproduces typical cut and graft experiments, and improves on previous models by preserving polarity in regeneration over orders of magnitude in body size during growth phases. Key to polarity preservation in our model flatworm is the sensitivity of cell differentiation to gradients of wnt-related signals relative to the tissue surface. This process is particularly relevant in small tissue layers close to cuts during their healing, and modeled in a robust fashion through dynamic boundary conditions.
Collapse
Affiliation(s)
- Arnd Scheel
- School of Mathematics, University of Minnesota, 206 Church St. S.E., Minneapolis, MN, 55455, USA.
| | - Angela Stevens
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| | - Christoph Tenbrock
- Applied Mathematics, University of Münster (WWU), Einsteinstr. 62, D-48149, Münster, Germany
| |
Collapse
|
9
|
Can neural signals override cellular decisions in the presence of DNA damage? DNA Repair (Amst) 2021; 103:103127. [PMID: 33990031 DOI: 10.1016/j.dnarep.2021.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Cells within an organism are in constant crosstalk with their surrounding environment. Short and long-range signals influence cellular behavior associated with division, differentiation, and death. This crosstalk among cells underlies tissue renewal to guarantee faithful replacement of old or damaged cells over many years. Renewing tissues also offer recurrent opportunities for DNA damage and cellular transformation that tend to occur with aging. Most cells with extensive DNA damage have limited options such as halting cell cycle to repair DNA, undergo senescence, or programmed cell death. However, in some cases cells carrying toxic forms of DNA damage survive and proliferate. The underlying factors driving survival and proliferation of cells with DNA damage remain unknown. Here we discuss potential roles the nervous system may play in influencing the fate of cells with DNA damage. We present a brief survey highlighting the implications the nervous system has in regeneration, regulation of stem cells, modulation of the immune system, and its contribution to cancer progression. Finally, we propose the use of planarian flatworms as a convenient model organism to molecularly dissect the influence of neural signals over cellular fate regulation in the presence of DNA damage.
Collapse
|
10
|
Wang Z, Bai Y, Nie H, Xu Q, Yin Z, Zhang Y, Yin X, Yan X. Molecular mechanisms of wound healing and regeneration of siphon in the Manila clam Ruditapes philippinarum revealed by transcriptomic analysis. Genomics 2021; 113:1011-1025. [PMID: 33626340 DOI: 10.1016/j.ygeno.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Ruditapes philippinarum is an economically important marine shellfish aquaculture species, and it has the ability to regenerate its siphons. To gain a greater understanding of the molecular mechanisms at work during siphon regeneration and to provide evidence for morphological regeneration, we examined transcriptome responses of siphon tissue of R. philippinarum during regeneration and observed regenerative siphons under the stereomicroscope. The overall process of siphon regeneration was dissected based on the morphological changes of siphon and the identification of up-regulated key differentially expressed genes (DEGs). The protein biosynthesis and metabolism played important roles in wound healing and siphon regeneration of R. philippinarum. Transcriptomic analysis identified the Wnt and TGF-β signaling pathways by focusing on the function and expression pattern of genes in these pathways during siphon regeneration. In addition, we carried out a genome-wide identification and phylogenetic analysis of TGF-β superfamily in R. philippinarum. The expression profiles of the TGF-β superfamily genes were analyzed in eight adult tissues (adductor muscle, mantle, foot, gill, siphon, digestive gland, gonad, and labial palp) and regenerative siphon. This study shed new light on the process of morphological regeneration and regenerative mechanism of siphon of R. philippinarum.
Collapse
Affiliation(s)
- Zhengxing Wang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Yitian Bai
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Qiaoyue Xu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Zhihui Yin
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Yanming Zhang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xuwang Yin
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| |
Collapse
|
11
|
Williams KB, Bischof J, Lee FJ, Miller KA, LaPalme JV, Wolfe BE, Levin M. Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mech Dev 2020; 163:103614. [DOI: 10.1016/j.mod.2020.103614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
|
12
|
The Cellular and Molecular Basis for Planarian Regeneration. Cell 2019; 175:327-345. [PMID: 30290140 DOI: 10.1016/j.cell.2018.09.021] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023]
Abstract
Regeneration is one of the great mysteries of biology. Planarians are flatworms capable of dramatic feats of regeneration, which have been studied for over 2 centuries. Recent findings identify key cellular and molecular principles underlying these feats. A stem cell population (neoblasts) generates new cells and is comprised of pluripotent stem cells (cNeoblasts) and fate-specified cells (specialized neoblasts). Positional information is constitutively active and harbored primarily in muscle, where it acts to guide stem cell-mediated tissue turnover and regeneration. I describe here a model in which positional information and stem cells combine to enable regeneration.
Collapse
|
13
|
Li DJ, McMann CL, Reddien PW. Nuclear receptor NR4A is required for patterning at the ends of the planarian anterior-posterior axis. eLife 2019; 8:42015. [PMID: 31025936 PMCID: PMC6534381 DOI: 10.7554/elife.42015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Positional information is fundamental to animal regeneration and tissue turnover. In planarians, muscle cells express signaling molecules to promote positional identity. At the ends of the anterior-posterior (AP) axis, positional identity is determined by anterior and posterior poles, which are putative organizers. We identified a gene, nr4A, that is required for anterior- and posterior-pole localization to axis extremes. nr4A encodes a nuclear receptor expressed predominantly in planarian muscle, including strongly at AP-axis ends and the poles. nr4A RNAi causes patterning gene expression domains to retract from head and tail tips, and ectopic anterior and posterior anatomy (e.g., eyes) to iteratively appear more internally. Our study reveals a novel patterning phenotype, in which pattern-organizing cells (poles) shift from their normal locations (axis extremes), triggering abnormal tissue pattern that fails to reach equilibrium. We propose that nr4A promotes pattern at planarian AP axis ends through restriction of patterning gene expression domains. Many animals are able to regenerate tissue that has been lost through illness or injury. Flatworms called planarians have long been used to study tissue regeneration because of their remarkable ability to completely regenerate their whole body from small pieces of tissue. Furthermore, the stem cells of adult planarians continually produce new cells to replace dying cells in a process called tissue turnover. For regeneration and tissue turnover to be successful, it is important for the new cells to form in the right location in the body; for example, new eye cells need to form in the head. Genes known as position control genes are active in muscle at specific locations along the body of a flatworm to regulate both regeneration and tissue turnover. However, it was not clear how these genes coordinate with stem cells to produce new cells in the correct positions in the body. Li et al. examined the effects of a gene known as nr4A that is particularly active in muscle at the head and tail ends of planarians. Using a technique called RNA interference to decrease the activity of nr4A in planarians disrupted the patterns of tissues at each end of the flatworms. Over time, the activity of the position control genes also became restricted to locations progressively farther away from the head and tail. As a result, cells that were intended to replace tissues in the head or tail were deposited increasingly far away from these locations. For example, new eyes formed repeatedly in the planarians, with each set farther away from the head tip than the last. Li et al. propose that these disruptions of normal tissue patterning ensue because the cells that organize such patterns at the ends of the planarian (the poles) are themselves misplaced within the existing body pattern. The nr4A gene can be found in a wide range of animal species. Understanding how this gene affects tissue patterns in planarians could therefore also help researchers to discover how adult tissue patterns form and are maintained in animals more generally.
Collapse
Affiliation(s)
- Dayan J Li
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, United States
| | - Conor L McMann
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
14
|
Angerer TB, Chakravarty N, Taylor MJ, Nicora CD, Graham DJ, Anderton CR, Chudler EH, Gamble LJ. Insights into the histology of planarian flatworm Phagocata gracilis based on location specific, intact lipid information provided by GCIB-ToF-SIMS imaging. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:733-743. [PMID: 30731132 DOI: 10.1016/j.bbalip.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/13/2018] [Accepted: 01/25/2019] [Indexed: 11/17/2022]
Abstract
Planarian flatworms are known as the masters of regeneration, re-growing an entire organism from as little as 1/279th part of their body. While the proteomics of these processes has been studied extensively, the planarian lipodome remains relatively unknown. In this study we investigate the lipid profile of planarian tissue sections with imaging Time-of-Flight - Secondary-Ion-Mass-Spectrometry (ToF-SIMS). ToF-SIMS is a label-free technique capable of gathering intact, location specific lipid information on a cellular scale. Lipid identities are confirmed using LC-MS/MS. Our data shows that different organ structures within planarians have unique lipid profiles. The 22-carbon atom poly unsaturated fatty acids (PUFAs) which occur in unusually high amounts in planarians are found to be mainly located in the testes. Additionally, we observe that planarians contain various odd numbered fatty acid species, that are usually found in bacteria, localized in the reproductive and ectodermal structures of the planarian. An abundance of poorly understood ether fatty acids and ether lipids were found in unique areas in planarians as well as a new, yet unidentified class of potential lipids in planarian intestines. Identifying the location of these lipids in the planarian body provides insights into their bodily functions and, in combination with knowledge about their diet and their genome, enables drawing conclusions about planarian fatty acid processing.
Collapse
Affiliation(s)
- Tina B Angerer
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Neil Chakravarty
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Michael J Taylor
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Carrie D Nicora
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Daniel J Graham
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Christopher R Anderton
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Eric H Chudler
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| | - Lara J Gamble
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
15
|
Olson PD, Zarowiecki M, James K, Baillie A, Bartl G, Burchell P, Chellappoo A, Jarero F, Tan LY, Holroyd N, Berriman M. Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms. EvoDevo 2018; 9:21. [PMID: 30455861 PMCID: PMC6225667 DOI: 10.1186/s13227-018-0110-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tapeworms are agents of neglected tropical diseases responsible for significant health problems and economic loss. They also exhibit adaptations to a parasitic lifestyle that confound comparisons of their development with other animals. Identifying the genetic factors regulating their complex ontogeny is essential to understanding unique aspects of their biology and for advancing novel therapeutics. Here we use RNA sequencing to identify up-regulated signalling components, transcription factors and post-transcriptional/translational regulators (genes of interest, GOI) in the transcriptomes of Larvae and different regions of segmented worms in the tapeworm Hymenolepis microstoma and combine this with spatial gene expression analyses of a selection of genes. RESULTS RNA-seq reads collectively mapped to 90% of the > 12,000 gene models in the H. microstoma v.2 genome assembly, demonstrating that the transcriptome profiles captured a high percentage of predicted genes. Contrasts made between the transcriptomes of Larvae and whole, adult worms, and between the Scolex-Neck, mature strobila and gravid strobila, resulted in 4.5-30% of the genes determined to be differentially expressed. Among these, we identified 190 unique GOI up-regulated in one or more contrasts, including a large range of zinc finger, homeobox and other transcription factors, components of Wnt, Notch, Hedgehog and TGF-β/BMP signalling, and post-transcriptional regulators (e.g. Boule, Pumilio). Heatmap clusterings based on overall expression and on select groups of genes representing 'signals' and 'switches' showed that expression in the Scolex-Neck region is more similar to that of Larvae than to the mature or gravid regions of the adult worm, which was further reflected in large overlap of up-regulated GOI. CONCLUSIONS Spatial expression analyses in Larvae and adult worms corroborated inferences made from quantitative RNA-seq data and in most cases indicated consistency with canonical roles of the genes in other animals, including free-living flatworms. Recapitulation of developmental factors up-regulated during larval metamorphosis suggests that strobilar growth involves many of the same underlying gene regulatory networks despite the significant disparity in developmental outcomes. The majority of genes identified were investigated in tapeworms for the first time, setting the stage for advancing our understanding of developmental genetics in an important group of flatworm parasites.
Collapse
Affiliation(s)
- Peter D. Olson
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Magdalena Zarowiecki
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Katherine James
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Andrew Baillie
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Georgie Bartl
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Phil Burchell
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Azita Chellappoo
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Francesca Jarero
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Li Ying Tan
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Matt Berriman
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| |
Collapse
|
16
|
The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol 2018; 87:45-57. [PMID: 29775660 DOI: 10.1016/j.semcdb.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Cell signaling is essential for cells to adequately respond to their environment. One of the most evolutionarily conserved signaling pathways is that of the epidermal growth factor receptor (EGFR). Transmembrane receptors with intracellular tyrosine kinase activity are activated by the binding of their corresponding ligands. This in turn activates a wide variety of intracellular cascades and induces the up- or downregulation of target genes, leading to a specific cellular response. Freshwater planarians are an excellent model in which to study the role of cell signaling in the context of stem-cell based regeneration. Owing to the presence of a population of pluripotent stem cells called neoblasts, these animals can regenerate the entire organism from a tiny piece of the body. Here, we review the current state of knowledge of the planarian EGFR pathway. We describe the main components of the pathway and their functions in other animals, and focus in particular on receptors and ligands identified in the planarian Schmidtea mediterranea. Moreover, we summarize current data on the function of some of these components during planarian regeneration and homeostasis. We hypothesize that the EGFR pathway may act as a key regulator of the terminal differentiation of distinct populations of lineage-committed progenitors.
Collapse
|
17
|
Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 2018; 360:science.aaq1736. [PMID: 29674431 DOI: 10.1126/science.aaq1736] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/05/2018] [Indexed: 12/31/2022]
Abstract
The transcriptome of a cell dictates its unique cell type biology. We used single-cell RNA sequencing to determine the transcriptomes for essentially every cell type of a complete animal: the regenerative planarian Schmidtea mediterranea. Planarians contain a diverse array of cell types, possess lineage progenitors for differentiated cells (including pluripotent stem cells), and constitutively express positional information, making them ideal for this undertaking. We generated data for 66,783 cells, defining transcriptomes for known and many previously unknown planarian cell types and for putative transition states between stem and differentiated cells. We also uncovered regionally expressed genes in muscle, which harbors positional information. Identifying the transcriptomes for potentially all cell types for many organisms should be readily attainable and represents a powerful approach to metazoan biology.
Collapse
Affiliation(s)
- Christopher T Fincher
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thom de Hoog
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kellie M Kravarik
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Pellettieri J. Regenerative tissue remodeling in planarians - The mysteries of morphallaxis. Semin Cell Dev Biol 2018; 87:13-21. [PMID: 29631028 DOI: 10.1016/j.semcdb.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Biologists have long marveled at the ability of planarian flatworms to regenerate any parts of their bodies in just a little over a week. While great progress has been made in deciphering the mechanisms by which new tissue is formed at sites of amputation, we know relatively little about the complementary remodeling response that occurs in uninjured tissues to restore anatomical scale and proportion. This review explores the mysterious biology of this process, first described in hydra by the father of experimental zoology, Abraham Trembley, and later termed 'morphallaxis' by the father of experimental genetics, Thomas Hunt Morgan. The perceptive work of these early pioneers, together with recent studies using modern tools, has revealed some of the key features of regenerative tissue remodeling, including repatterning of the body axes, reproportioning of organs like the brain and gut, and a major increase in the rate of cell death. Yet a mechanistic solution to this longstanding problem in the field will require further study by the next generation of planarian researchers.
Collapse
|
19
|
Hill EM, Petersen CP. Positional information specifies the site of organ regeneration and not tissue maintenance in planarians. eLife 2018; 7:33680. [PMID: 29547123 PMCID: PMC5866098 DOI: 10.7554/elife.33680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Most animals undergo homeostatic tissue maintenance, yet those capable of robust regeneration in adulthood use mechanisms significantly overlapping with homeostasis. Here we show in planarians that modulations to body-wide patterning systems shift the target site for eye regeneration while still enabling homeostasis of eyes outside this region. The uncoupling of homeostasis and regeneration, which can occur during normal positional rescaling after axis truncation, is not due to altered injury signaling or stem cell activity, nor specific to eye tissue. Rather, pre-existing tissues, which are misaligned with patterning factor expression domains, compete with properly located organs for incorporation of migratory progenitors. These observations suggest that patterning factors determine sites of organ regeneration but do not solely determine the location of tissue homeostasis. These properties provide candidate explanations for how regeneration integrates pre-existing tissues and how regenerative abilities could be lost in evolution or development without eliminating long-term tissue maintenance and repair.
Collapse
Affiliation(s)
- Eric M Hill
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States
| |
Collapse
|
20
|
Rossi L, Salvetti A. Planarian stem cell niche, the challenge for understanding tissue regeneration. Semin Cell Dev Biol 2018. [PMID: 29534938 DOI: 10.1016/j.semcdb.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stem cell fate depends on surrounding microenvironment, the so called niche. For this reason, understanding stem cell niche is one of the most challenging target in cell biology field and need to be unraveled with in vivo studies. Planarians offer this unique opportunity, as their stem cells, the neoblasts, are abundant, highly characterized and genetically modifiable by RNA interference in alive animals. However, despite impressive advances have been done in the understanding planarian stem cells and regeneration, only a few information is available in defining signals from differentiated tissues, which affect neoblast stemness and fate. Here, we review on molecular factors that have been found activated in differentiated tissues and directly or indirectly affect neoblast behavior, and we suggest future directions for unravelling this challenge in understanding planarian stem cells.
Collapse
Affiliation(s)
- Leonardo Rossi
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy
| | - Alessandra Salvetti
- Departement of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Via Volta 4 Pisa, Italy.
| |
Collapse
|
21
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
22
|
Abstract
RNA interference (RNAi) is one of the simplest and easiest methods for specifically perturbing gene function in an organism. In planarian research, RNAi is one of the essential methods for defining gene functions not only during regeneration, but also during other life history stages. Since the first report of the efficacy of RNAi in planarians in 1999, several RNAi protocols have been reported. Here, we describe protocols to synthesize and deliver synthetic double-stranded RNA (dsRNA) to planarians, either by injection or by feeding. Both are easy, effective, and economical means of investigating gene functions in planarians.
Collapse
|
23
|
Elliott SA, Alvarado AS. Planarians and the History of Animal Regeneration: Paradigm Shifts and Key Concepts in Biology. Methods Mol Biol 2018; 1774:207-239. [PMID: 29916157 DOI: 10.1007/978-1-4939-7802-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Regeneration has captured human imagination for much of recorded history. Its sociological influence is evident in ancient and modern folklore, art, politics, and even language. In many ways, the study of regeneration helped establish the field of biology as a legitimate scientific discipline. Furthermore, regeneration research yielded critical insights that challenged flawed scientific models and uncovered fundamental principles underpinning the workings of life on this planet. This chapter details some ways in which the study of animal regeneration-with special emphasis on planarian regeneration-influenced the evolution of thought in biology. This includes contributions to the discovery of stem cells, the nature of heredity, and key concepts in pattern formation.
Collapse
|
24
|
Adell T, Barberán S, Sureda-Gómez M, Almuedo-Castillo M, de Sousa N, Cebrià F. Immunohistochemistry on Paraffin-Embedded Planarian Tissue Sections. Methods Mol Biol 2018; 1774:367-378. [PMID: 29916164 DOI: 10.1007/978-1-4939-7802-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Planarians are flatworms with almost unlimited regenerative abilities, which make them an excellent model for stem cell-based regeneration. To study the process of regeneration at the cellular level, immunohistochemical staining methods are an important tool, and the availability of such protocols is one of the prerequisites for mechanistic experiments in any animal model. Here, we detail protocols for paraffin embedding and immunostaining of paraffin sections of the model species Schmidtea mediterranea. This protocol yields robust results with a variety of commercially available antibodies. Further, the procedures provide a useful starting point for customizing staining procedures for new antibodies and/or different planarian species.
Collapse
Affiliation(s)
- Teresa Adell
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Sara Barberán
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Miquel Sureda-Gómez
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - María Almuedo-Castillo
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
25
|
Abstract
Muscles are traditionally considered in the context of force generation. Scimone et al. (2017), reporting in Nature, now examine muscles in a developmental setting and find unexpected roles for distinct planarian muscle fibers. The authors show that muscles provide patterning signals to promote regeneration and guide tissue growth after injury.
Collapse
|
26
|
Lin AYT, Pearson BJ. Yorkie is required to restrict the injury responses in planarians. PLoS Genet 2017; 13:e1006874. [PMID: 28686611 PMCID: PMC5515462 DOI: 10.1371/journal.pgen.1006874] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/18/2017] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Regeneration requires the precise integration of cues that initiate proliferation, direct differentiation, and ultimately re-pattern tissues to the proper size and scale. Yet how these processes are integrated with wounding responses remains relatively unknown. The freshwater planarian, Schmidtea mediterranea, is an ideal model to study the stereotyped proliferative and transcriptional responses to injury due to its high capacity for regeneration. Here, we characterize the effector of the Hippo signalling cascade, yorkie, during planarian regeneration and its role in restricting early injury responses. In yki(RNAi) regenerating animals, wound responses are hyper-activated such that both stem cell proliferation and the transcriptional wound response program are heighted and prolonged. Using this observation, we also uncovered novel wound-induced genes by RNAseq that were de-repressed in yki(RNAi) animals compared with controls. Additionally, we show that yki(RNAi) animals have expanded epidermal and muscle cell populations, which we hypothesize are the increased sources of wound-induced genes. Finally, we show that in yki(RNAi) animals, the sensing of the size of an injury by eyes or the pharynx is not appropriate, and the brain, gut, and midline cannot remodel or scale correctly to the size of the regenerating fragment. Taken together, our results suggest that yki functions as a key molecule that can integrate multiple aspects of the injury response including proliferation, apoptosis, injury-induced transcription, and patterning. The planarian displays a remarkable ability to regenerate any tissue from mere fragments of its original size. This high capacity to regenerate is attributed to the abundant population of pluripotent adult stem cells. In response to an injury, such as an amputation, stem cells proliferate and replace the lost tissues de novo (epimorphosis), whereas existing tissue must rescale to the correct proportions in relation to the new fragment size (morphallaxis). Currently, the molecules that control either the responses to injury or the ones that mediate size and scaling are not well understood. For instance, how are the injury responses precisely activated and shut down to ensure regenerating tissues are not under- or overgrown? Here, we find that Yki, the effector of the Hippo signalling cascade, is a critical molecule that influences several injury processes during regeneration. Loss of Yki function in regenerating animals resulted in increased and temporally dysregulated expression of wound-induced genes, proliferation, and apoptosis. Genes that are injury induced were mis-expressed in yki(RNAi) animals, which also showed increases in the epidermal and muscle cell populations. Taken together, our findings suggest that the injury responses must be restricted to ensure proper regenerative outcomes of correct scale, and that Yki is a key regulator in these processes.
Collapse
Affiliation(s)
- Alexander Y. T. Lin
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bret J. Pearson
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
27
|
Wurtzel O, Oderberg IM, Reddien PW. Planarian Epidermal Stem Cells Respond to Positional Cues to Promote Cell-Type Diversity. Dev Cell 2017; 40:491-504.e5. [PMID: 28292427 DOI: 10.1016/j.devcel.2017.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/08/2016] [Accepted: 02/10/2017] [Indexed: 11/25/2022]
Abstract
Successful regeneration requires that progenitors of different lineages form the appropriate missing cell types. However, simply generating lineages is not enough. Cells produced by a particular lineage often have distinct functions depending on their position within the organism. How this occurs in regeneration is largely unexplored. In planarian regeneration, new cells arise from a proliferative cell population (neoblasts). We used the planarian epidermal lineage to study how the location of adult progenitor cells results in their acquisition of distinct functional identities. Single-cell RNA sequencing of epidermal progenitors revealed the emergence of distinct spatial identities as early in the lineage as the epidermal neoblasts, with further pre-patterning occurring in their post-mitotic migratory progeny. Establishment of dorsal-ventral epidermal identities and functions, in response to BMP signaling, required neoblasts. Our work identified positional signals that activate regionalized transcriptional programs in the stem cell population and subsequently promote cell-type diversity in the epidermis.
Collapse
Affiliation(s)
- Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Isaac M Oderberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
28
|
Loh KM, van Amerongen R, Nusse R. Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. Dev Cell 2017; 38:643-55. [PMID: 27676437 DOI: 10.1016/j.devcel.2016.08.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
Abstract
There were multiple prerequisites to the evolution of multicellular animal life, including the generation of multiple cell fates ("cellular diversity") and their patterned spatial arrangement ("spatial form"). Wnt proteins operate as primordial symmetry-breaking signals. By virtue of their short-range nature and their capacity to activate both lineage-specifying and cell-polarizing intracellular signaling cascades, Wnts can polarize cells at their site of contact, orienting the axis of cell division while simultaneously programming daughter cells to adopt diverging fates in a spatially stereotyped way. By coupling cell fate to position, symmetry-breaking Wnt signals were pivotal in constructing the metazoan body by generating cellular diversity and spatial form.
Collapse
Affiliation(s)
- Kyle M Loh
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Renée van Amerongen
- Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
LoCascio SA, Lapan SW, Reddien PW. Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration. Dev Cell 2017; 40:381-391.e3. [PMID: 28245923 DOI: 10.1016/j.devcel.2017.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 12/28/2022]
Abstract
Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself.
Collapse
Affiliation(s)
- Samuel A LoCascio
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Sylvain W Lapan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Landmarks in Existing Tissue at Wounds Are Utilized to Generate Pattern in Regenerating Tissue. Curr Biol 2017; 27:733-742. [PMID: 28216315 DOI: 10.1016/j.cub.2017.01.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
Regeneration in many organisms involves the formation of a blastema, which differentiates and organizes into the appropriate missing tissues. How blastema pattern is generated and integrated with pre-existing tissues is a central question in the field of regeneration. Planarians are free-living flatworms capable of rapidly regenerating from small body fragments [1]. A cell cluster at the anterior tip of planarian head blastemas (the anterior pole) is required for anterior-posterior (AP) and medial-lateral (ML) blastema patterning [2-4]. Transplantation of the head tip into tails induced host tissues to grow patterned head-like outgrowths containing a midline. Given the important patterning role of the anterior pole, understanding how it becomes localized during regeneration would help explain how wounds establish pattern in new tissue. Anterior pole progenitors were specified at the pre-existing midline of regenerating fragments, even when this location deviated from the ML median plane of the wound face. Anterior pole progenitors were specified broadly on the dorsal-ventral (DV) axis and subsequently formed a cluster at the DV boundary of the animal. We propose that three landmarks of pre-existing tissue at wounds set the location of anterior pole formation: a polarized AP axis, the pre-existing midline, and the dorsal-ventral median plane. Subsequently, blastema pattern is organized around the anterior pole. This process, utilizing positional information in existing tissue at unpredictably shaped wounds, can influence the patterning of new tissue in a manner that facilitates integration with pre-existing tissue in regeneration.
Collapse
|
31
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
32
|
Koziol U. Evolutionary developmental biology (evo-devo) of cestodes. Exp Parasitol 2016; 180:84-100. [PMID: 27939766 DOI: 10.1016/j.exppara.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Cestodes (tapeworms) have complex adaptations to their obligatory parasitic life-style. Among these adaptations, they show many evolutionary innovations in their development, including complex life-cycles with multiple hosts and life-stages, several independent origins of asexual reproduction, and the evolution of segmentation as a mean to generate massive reproductive output. Therefore, cestodes offer many opportunities for the investigation of the evolutionary origins of developmental novelties (evo-devo). However, cestodes have not been exploited as major models for evo-devo research due to the considerable technical difficulties involved in their study. In this review, a panoramic view is given of classical aspects, methods and hypothesis of cestode development, together with recent advances in phylogenetics, genomics, culture methods, and comparative analysis of cestode gene expression. Together with the availability of powerful models for related free-living flatworms, these developments should encourage the incorporation of these fascinating parasites into the first-line of evo-devo research.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Uruguay.
| |
Collapse
|
33
|
Chan JD, Zhang D, Liu X, Zarowiecki M, Berriman M, Marchant JS. Utilizing the planarian voltage-gated ion channel transcriptome to resolve a role for a Ca 2+ channel in neuromuscular function and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1036-1045. [PMID: 27771293 DOI: 10.1016/j.bbamcr.2016.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022]
Abstract
The robust regenerative capacity of planarian flatworms depends on the orchestration of signaling events from early wounding responses through the stem cell enacted differentiative outcomes that restore appropriate tissue types. Acute signaling events in excitable cells play an important role in determining regenerative polarity, rationalized by the discovery that sub-epidermal muscle cells express critical patterning genes known to control regenerative outcomes. These data imply a dual conductive (neuromuscular signaling) and instructive (anterior-posterior patterning) role for Ca2+ signaling in planarian regeneration. Here, to facilitate study of acute signaling events in the excitable cell niche, we provide a de novo transcriptome assembly from the planarian Dugesia japonica allowing characterization of the diverse ionotropic portfolio of this model organism. We demonstrate the utility of this resource by proceeding to characterize the individual role of each of the planarian voltage-operated Ca2+ channels during regeneration, and demonstrate that knockdown of a specific voltage operated Ca2+ channel (Cav1B) that impairs muscle function uniquely creates an environment permissive for anteriorization. Provision of the full transcriptomic dataset should facilitate further investigations of molecules within the planarian voltage-gated channel portfolio to explore the role of excitable cell physiology on regenerative outcomes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- John D Chan
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States
| | - Dan Zhang
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States
| | - Xiaolong Liu
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States
| | - Magdalena Zarowiecki
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Matthew Berriman
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jonathan S Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, United States; The Stem Cell Institute, University of Minnesota Medical School, MN 55455, United States.
| |
Collapse
|
34
|
Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW. Hedgehog signaling regulates gene expression in planarian glia. eLife 2016; 5:e16996. [PMID: 27612382 PMCID: PMC5055395 DOI: 10.7554/elife.16996] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.
Collapse
Affiliation(s)
- Irving E Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Sylvain W Lapan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - M Lucila Scimone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Peter W Reddien
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
35
|
A transcriptional time-course analysis of oral vs. aboral whole-body regeneration in the Sea anemone Nematostella vectensis. BMC Genomics 2016; 17:718. [PMID: 27605362 PMCID: PMC5015328 DOI: 10.1186/s12864-016-3027-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/20/2016] [Indexed: 02/07/2023] Open
Abstract
Background The ability of regeneration is essential for the homeostasis of all animals as it allows the repair and renewal of tissues and body parts upon normal turnover or injury. The extent of this ability varies greatly in different animals with the sea anemone Nematostella vectensis, a basal cnidarian model animal, displaying remarkable whole-body regeneration competence. Results In order to study this process in Nematostella we performed an RNA-Seq screen wherein we analyzed and compared the transcriptional response to bisection in the wound-proximal body parts undergoing oral (head) or aboral (tail) regeneration at several time points up to the initial restoration of the basic body shape. The transcriptional profiles of regeneration responsive genes were analyzed so as to define the temporal pattern of differential gene expression associated with the tissue-specific oral and aboral regeneration. The identified genes were characterized according to their GO (gene ontology) assignations revealing groups that were enriched in the regeneration process with particular attention to their affiliation to the major developmental signaling pathways. While some of the genes and gene groups thus analyzed were previously known to be active in regeneration, we have also revealed novel and surprising candidate genes such as cilia-associated genes that likely participate in this important developmental program. Conclusions This work highlighted the main groups of genes which showed polarization upon regeneration, notably the proteinases, multiple transcription factors and the Wnt pathway genes that were highly represented, all displaying an intricate temporal balance between the two sides. In addition, the evolutionary comparison performed between regeneration in different animal model systems may reveal the basic mechanisms playing a role in this fascinating process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3027-1) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Shibata N, Kashima M, Ishiko T, Nishimura O, Rouhana L, Misaki K, Yonemura S, Saito K, Siomi H, Siomi M, Agata K. Inheritance of a Nuclear PIWI from Pluripotent Stem Cells by Somatic Descendants Ensures Differentiation by Silencing Transposons in Planarian. Dev Cell 2016; 37:226-37. [DOI: 10.1016/j.devcel.2016.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/18/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022]
|
37
|
Lander R, Petersen CP. Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration. eLife 2016; 5. [PMID: 27074666 PMCID: PMC4865369 DOI: 10.7554/elife.12850] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/09/2016] [Indexed: 11/13/2022] Open
Abstract
Mechanisms enabling positional identity re-establishment are likely critical for tissue regeneration. Planarians use Wnt/beta-catenin signaling to polarize the termini of their anteroposterior axis, but little is known about how regeneration signaling restores regionalization along body or organ axes. We identify three genes expressed constitutively in overlapping body-wide transcriptional gradients that control trunk-tail positional identity in regeneration. ptk7 encodes a trunk-expressed kinase-dead Wnt co-receptor, wntP-2 encodes a posterior-expressed Wnt ligand, and ndl-3 encodes an anterior-expressed homolog of conserved FGFRL/nou-darake decoy receptors. ptk7 and wntP-2 maintain and allow appropriate regeneration of trunk tissue position independently of canonical Wnt signaling and with suppression of ndl-3 expression in the posterior. These results suggest that restoration of regional identity in regeneration involves the interpretation and re-establishment of axis-wide transcriptional gradients of signaling molecules.
Collapse
Affiliation(s)
- Rachel Lander
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States
| |
Collapse
|
38
|
Wurtzel O, Cote LE, Poirier A, Satija R, Regev A, Reddien PW. A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. Dev Cell 2016; 35:632-645. [PMID: 26651295 DOI: 10.1016/j.devcel.2015.11.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 12/27/2022]
Abstract
Regeneration starts with injury. Yet how injuries affect gene expression in different cell types and how distinct injuries differ in gene expression remain unclear. We defined the transcriptomes of major cell types of planarians--flatworms that regenerate from nearly any injury--and identified 1,214 tissue-specific markers across 13 cell types. RNA sequencing on 619 single cells revealed that wound-induced genes were expressed either in nearly all cell types or specifically in one of three cell types (stem cells, muscle, or epidermis). Time course experiments following different injuries indicated that a generic wound response is activated with any injury regardless of the regenerative outcome. Only one gene, notum, was differentially expressed early between anterior- and posterior-facing wounds. Injury-specific transcriptional responses emerged 30 hr after injury, involving context-dependent patterning and stem-cell-specialization genes. The regenerative requirement of every injury is different; however, our work demonstrates that all injuries start with a common transcriptional response.
Collapse
Affiliation(s)
- Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lauren E Cote
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amber Poirier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Aviv Regev
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Scimone ML, Cote LE, Rogers T, Reddien PW. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis. eLife 2016; 5. [PMID: 27063937 PMCID: PMC4865367 DOI: 10.7554/elife.12845] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/09/2016] [Indexed: 01/08/2023] Open
Abstract
How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning. DOI:http://dx.doi.org/10.7554/eLife.12845.001 Some animals can regrow tissues that have been amputated. A group of flatworms called planarians are often used as a model to study the regeneration process because they are able to restore any lost tissue or even an entire animal from tiny pieces of the body. For regeneration to be successful, it is important to ensure that the new tissues form in the correct locations in the body. The planarian body is divided into three main parts: head, trunk and tail. Several gene products involved in specifying what tissues regenerate are made by muscle cells along the planarian body. Some of the genes are involved in mechanisms that allow cells to communicate with each other, such as the Wnt signaling pathway. These genes could form a coordinated system to control regeneration, but their precise roles remain poorly understood. Two groups of researchers have now independently identified genes that provide cells with information about their location in the flatworm body. Scimone, Cote et al. used a technique called RNA sequencing in individual muscle cells to identify 44 genes that have different levels of expression across the head, trunk and tail regions. These genes included multiple components of the Wnt signaling pathway and others that encode members of the FGFRL family of signaling proteins. Further experiments revealed two distinct sets of genes, or “gene circuits”, that provide information to correctly position tissues in the head and trunk regions of the worm. For example, inhibiting the activity of the wntP-2 or ndl-3 genes increased the size of the trunk of the worms and caused extra mouths and pharynges (muscular organ used for eating) to form. On the other hand, blocking the activity of genes in the other gene circuit caused the brain to expand and extra eyes to form. Another study by Lander and Petersen found that wntP-2 and ndl-3 act with another gene called ptk7, which encodes another component of the Wnt signaling pathway. Together these findings suggest that the Wnt-FGFRL circuits act in a body-wide system that co-ordinates where and which new tissues form during regeneration. A future challenge is to find out how the genes identified in these studies interact and how the cells of the animal interpret this information to properly regenerate missing tissues. DOI:http://dx.doi.org/10.7554/eLife.12845.002
Collapse
Affiliation(s)
- M Lucila Scimone
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Lauren E Cote
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Travis Rogers
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
40
|
Peiris TH, Ramirez D, Barghouth PG, Ofoha U, Davidian D, Weckerle F, Oviedo NJ. Regional signals in the planarian body guide stem cell fate in the presence of genomic instability. Development 2016; 143:1697-709. [PMID: 27013241 DOI: 10.1242/dev.131318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
Cellular fate decisions are influenced by their topographical location in the adult body. For instance, tissue repair and neoplastic growth are greater in anterior than in posterior regions of adult animals. However, the molecular underpinnings of these regional differences are unknown. We identified a regional switch in the adult planarian body upon systemic disruption of homologous recombination with RNA-interference of Rad51 Rad51 knockdown increases DNA double-strand breaks (DSBs) throughout the body, but stem cells react differently depending on their location along the anteroposterior axis. In the presence of extensive DSBs, cells in the anterior part of the body resist death, whereas cells in the posterior region undergo apoptosis. Furthermore, we found that proliferation of cells with DNA damage is induced in the presence of brain tissue and that the retinoblastoma pathway enables overproliferation of cells with DSBs while attending to the demands of tissue growth and repair. Our results implicate both autonomous and non-autonomous mechanisms as key mediators of regional cell behavior and cellular transformation in the adult body.
Collapse
Affiliation(s)
- T Harshani Peiris
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Daniel Ramirez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Udokanma Ofoha
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Devon Davidian
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Frank Weckerle
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
41
|
Cebrià F. Planarian Body-Wall Muscle: Regeneration and Function beyond a Simple Skeletal Support. Front Cell Dev Biol 2016; 4:8. [PMID: 26904543 PMCID: PMC4744845 DOI: 10.3389/fcell.2016.00008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
Abstract
The body-wall musculature of adult planarians consists of intricately organized muscle fibers, which after amputation are regenerated rapidly and with great precision through the proliferation and differentiation of pluripotent stem cells. These traits make the planarian body-wall musculature a potentially useful model for the study of cell proliferation, differentiation, and pattern formation. Planarian body-wall muscle shows some ambiguous features common to both skeletal and smooth muscle cells. However, its skeletal nature is implied by the expression of skeletal myosin heavy-chain genes and the myogenic transcription factor myoD. Where and when planarian stem cells become committed to the myogenic lineage during regeneration, how the new muscle cells are integrated into the pre-existing muscle net, and the identity of the molecular pathway controlling the myogenic gene program are key aspects of planarian muscle regeneration that need to be addressed. Expression of the conserved transcription factor myoD has been recently demonstrated in putative myogenic progenitors. Moreover, recent studies suggest that differentiated muscle cells may provide positional information to planarian stem cells during regeneration. Here, I review the limited available knowledge on planarian muscle regeneration.
Collapse
Affiliation(s)
- Francesc Cebrià
- Department of Genetics, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of BarcelonaBarcelona, Spain
| |
Collapse
|
42
|
Abstract
The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×108 base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population.
Collapse
Affiliation(s)
- Ali Karami
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajad Shiri
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Hill EM, Petersen CP. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain. Development 2015; 142:4217-29. [PMID: 26525673 DOI: 10.1242/dev.123612] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production.
Collapse
Affiliation(s)
- Eric M Hill
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
44
|
Hubert A, Henderson JM, Cowles MW, Ross KG, Hagen M, Anderson C, Szeterlak CJ, Zayas RM. A functional genomics screen identifies an Importin-α homolog as a regulator of stem cell function and tissue patterning during planarian regeneration. BMC Genomics 2015; 16:769. [PMID: 26459857 PMCID: PMC4603911 DOI: 10.1186/s12864-015-1979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea. Methods We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes. Results Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration. Conclusions Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1979-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Hubert
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA. .,Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-0001, USA.
| | - Jordana M Henderson
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Martis W Cowles
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Kelly G Ross
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Matthew Hagen
- Biological and Medical Informatics Research Center, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Christa Anderson
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Claudia J Szeterlak
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| |
Collapse
|
45
|
Adler CE, Sánchez Alvarado A. Types or States? Cellular Dynamics and Regenerative Potential. Trends Cell Biol 2015; 25:687-696. [PMID: 26437587 DOI: 10.1016/j.tcb.2015.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023]
Abstract
Many of our organs can maintain and repair themselves during homeostasis and injury, as a result of the action of tissue-specific, multipotent stem cells. However, recent evidence from mammalian systems suggests that injury stimulates dramatic plasticity, or transient changes in cell potential, in both stem cells and more differentiated cells. Planarian flatworms possess abundant stem cells, making them an exceptional model for understanding the cellular behavior underlying homeostasis and regeneration. Recent discoveries of cell lineages and regeneration-specific events provide an initial framework for unraveling the complex cellular contributions to regeneration. In this review, we discuss the concept of cellular plasticity in the context of planarian regeneration, and consider the possibility that pluripotency may be a transient, probabilistic state exhibited by stem cells.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Current address: Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
46
|
Tejada-Romero B, Carter JM, Mihaylova Y, Neumann B, Aboobaker AA. JNK signalling is necessary for a Wnt- and stem cell-dependent regeneration programme. Development 2015; 142:2413-24. [PMID: 26062938 DOI: 10.1242/dev.115139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 06/03/2015] [Indexed: 12/23/2022]
Abstract
Regeneration involves the integration of new and old tissues in the context of an adult life history. It is clear that the core conserved signalling pathways that orchestrate development also play central roles in regeneration, and further study of conserved signalling pathways is required. Here we have studied the role of the conserved JNK signalling cascade during planarian regeneration. Abrogation of JNK signalling by RNAi or pharmacological inhibition blocks posterior regeneration and animals fail to express posterior markers. While the early injury-induced expression of polarity markers is unaffected, the later stem cell-dependent phase of posterior Wnt expression is not established. This defect can be rescued by overactivation of the Hh or Wnt signalling pathway to promote posterior Wnt activity. Together, our data suggest that JNK signalling is required to establish stem cell-dependent Wnt expression after posterior injury. Given that Jun is known to be required in vertebrates for the expression of Wnt and Wnt target genes, we propose that this interaction may be conserved and is an instructive part of planarian posterior regeneration.
Collapse
Affiliation(s)
- Belen Tejada-Romero
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Jean-Michel Carter
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Yuliana Mihaylova
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Bjoern Neumann
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
47
|
Henderson JM, Nisperos SV, Weeks J, Ghulam M, Marín I, Zayas RM. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians. Dev Biol 2015; 404:21-34. [PMID: 25956527 DOI: 10.1016/j.ydbio.2015.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/14/2015] [Accepted: 04/27/2015] [Indexed: 12/28/2022]
Abstract
E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation.
Collapse
Affiliation(s)
- Jordana M Henderson
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Sean V Nisperos
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Mahjoobah Ghulam
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
48
|
Laumer CE, Hejnol A, Giribet G. Nuclear genomic signals of the 'microturbellarian' roots of platyhelminth evolutionary innovation. eLife 2015; 4:e05503. [PMID: 25764302 PMCID: PMC4398949 DOI: 10.7554/elife.05503] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
Flatworms number among the most diverse invertebrate phyla and represent the most biomedically significant branch of the major bilaterian clade Spiralia, but to date, deep evolutionary relationships within this group have been studied using only a single locus (the rRNA operon), leaving the origins of many key clades unclear. In this study, using a survey of genomes and transcriptomes representing all free-living flatworm orders, we provide resolution of platyhelminth interrelationships based on hundreds of nuclear protein-coding genes, exploring phylogenetic signal through concatenation as well as recently developed consensus approaches. These analyses robustly support a modern hypothesis of flatworm phylogeny, one which emphasizes the primacy of the often-overlooked 'microturbellarian' groups in understanding the major evolutionary transitions within Platyhelminthes: perhaps most notably, we propose a novel scenario for the interrelationships between free-living and vertebrate-parasitic flatworms, providing new opportunities to shed light on the origins and biological consequences of parasitism in these iconic invertebrates.
Collapse
Affiliation(s)
- Christopher E Laumer
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| |
Collapse
|
49
|
Barghouth PG, Thiruvalluvan M, Oviedo NJ. Bioelectrical regulation of cell cycle and the planarian model system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2629-37. [PMID: 25749155 DOI: 10.1016/j.bbamem.2015.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/27/2022]
Abstract
Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Manish Thiruvalluvan
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Program, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA; Health Sciences Research Institute, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
50
|
Owen JH, Wagner DE, Chen CC, Petersen CP, Reddien PW. teashirt is required for head-versus-tail regeneration polarity in planarians. Development 2015; 142:1062-72. [PMID: 25725068 DOI: 10.1242/dev.119685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regeneration requires that the identities of new cells are properly specified to replace missing tissues. The Wnt signaling pathway serves a central role in specifying posterior cell fates during planarian regeneration. We identified a gene encoding a homolog of the Teashirt family of zinc-finger proteins in the planarian Schmidtea mediterranea to be a target of Wnt signaling in intact animals and at posterior-facing wounds. Inhibition of Smed-teashirt (teashirt) by RNA interference (RNAi) resulted in the regeneration of heads in place of tails, a phenotype previously observed with RNAi of the Wnt pathway genes β-catenin-1, wnt1, Dvl-1/2 or wntless. teashirt was required for β-catenin-1-dependent activation of posterior genes during regeneration. These findings identify teashirt as a transcriptional target of Wnt signaling required for Wnt-mediated specification of posterior blastemas.
Collapse
Affiliation(s)
- Jared H Owen
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Daniel E Wagner
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Chun-Chieh Chen
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Christian P Petersen
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan Hall Room 2-144, Evanston, IL 60208, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, MIT Biology and Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|