1
|
Wang Y, Zhang Y, Gong G, Liu Q, Li L, Zhang M, Shen S, Wang R, Wu J, Xu W. Single-cell analysis of human peripheral blood reveals high immune response activity in successful ageing individuals. Mech Ageing Dev 2024; 223:112011. [PMID: 39622417 DOI: 10.1016/j.mad.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Beneficial remodeling of the immune system in successful ageing individuals (centenarians and supercentenarians) is critical for healthy ageing. However, mechanisms for dynamic regulation of immunity during ageing remain unclear. We use single-cell RNA sequencing (scRNA-seq) as an analytical strategy to study the dynamic regulation of immunity during aging and its molecular mechanisms at the single-cell level. We performed an integrative analysis of 87,215 peripheral blood mononuclear cells, from seven supercentenarians, three centenarians, and four elderly controls, generated by single-cell transcriptomics complemented with fluorescence-activated cell sorting. Animals experiments were also conducted to validate the makers of healthy aging found by our bioinformatic analysis and further explore the dynamic of immune changes during aging process. We found that CD8+ effector memory T cells and terminally differentiated B cells were enriched in the longevity group (centenarians and supercentenarians), whereas naïve T cells and Tregs were enriched in elderly controls. CD56dim NK cells in the longevity group activated Fc-γ receptor signaling. The higher antigen-presenting ability of CD14+ monocytes in the longevity group and the CellChat analysis indicated that CD14+ monocytes might assist active T and B cells. Here, we revealed the adaptive immune remodeling geromarkers of immunosenescence in centenarians and supercentenarians, which could be considered as biomarkers of healthy aging, and might help sustain immune responses and achieve exceptional longevity.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China
| | - Yuxing Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ge Gong
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Quanzhong Liu
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China
| | - Liangyu Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Mingjiong Zhang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuping Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ran Wang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Wang L, Li W, Wu W, Liu Q, You M, Liu X, Ye C, Chen J, Tan Q, Liu G, Du Y. Effects of electroacupuncture on microglia phenotype and epigenetic modulation of C/EBPβ in SAMP8 mice. Brain Res 2024; 1849:149339. [PMID: 39577714 DOI: 10.1016/j.brainres.2024.149339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an age-progressive neurodegenerative disease, is featured by a relentless deterioration of cognitive abilities. In parallel with the hypotheses of Aβ and tau, microglia-mediated neuroinflammation is a core pathological hallmark of AD. Promoting the transition of microglia from M1 to M2 phenotype and inhibition of neuroinflammatory response provide new insights into the treatment of AD. And substantial studies have confirmed that overexpression of C/EBPβ accelerates the progression of AD pathology. Acupuncture is renowned for its unique advantages including safety and effectiveness, which has gained wide application in geriatric diseases, and thoroughly exploring the mechanism for its treatment of AD will provide scientific basis for its clinical application. METHODS In this study, SAMP8 mice were employed and EA therapy was performed as the main intervention. The combination of behavioural experiments (including water maze and novel objective recognition), Immunofluorescence, Western blot, and Chip-qPCR assay were performed to compare between different groups. RESULTS EA therapy facilitates the polarization of microglia from M1 to M2 phenotype, reduces pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and promotes the expression of anti-inflammatory factors (IL-4 and IL-10), as well as attenuates neuroinflammation. Simultaneously, EA also inhibits the enrichment of H3K9ac at C/EBPβ promoter region and expression of C/EBPβ. Thus, it was evident that EA had a favorable effect on ameliorating cognitive decline in SAMP8 mice. CONCLUSION EA therapy may ameliorate cognitive deficits in AD via facilitating microglia shift from M1 to M2 phenotype and epigenetically regulating C/EBPβ. And further studies are required to better understand how the mechanism between microglia and epigenetic modulation of C/EBPβ are effective in reversing AD.
Collapse
Affiliation(s)
- Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China; Hubei Shizhen Laboratory, Wuhan, Hubei, China.
| | - Weixian Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenhui Wu
- Department of Rehabilitation Medicine, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Qing Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Min You
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xinyuan Liu
- Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Ye
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jiangmin Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qian Tan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guangya Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yanjun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China; Hubei Shizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, Hubei, China.
| |
Collapse
|
3
|
Wang X, Jia Q, Yu L, Huang J, Wang X, Zhou L, Mijiti W, Xie Z, Dong S, Xie Z, Ma H. Filamin B knockdown impairs differentiation and function in mouse pre-osteoblasts via aberrant transcription and alternative splicing. Heliyon 2024; 10:e39334. [PMID: 39498024 PMCID: PMC11533582 DOI: 10.1016/j.heliyon.2024.e39334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Filamin B (FLNB) encodes an actin-binding protein that is known to function as a novel RNA-binding protein involved in cell movement and signal transduction and plays a pivotal role in bone growth. This study aimed to investigate possible FLNB function in the skeletal system by characterizing the effecs of FLNB knockdown in mouse preosteoblast cells. Methods Stable FLNB MC3T3-E1 knockdown cells were constructed for RNA-seq and alternative splicing event (ASE) analysis of genes involved in osteoblast differentiation and function that may be regulated by FLNB. Standard transwell, MTT, ALP, qPCR, Western blot, and alizarin red staining assays were used to assess functional changes of FLNB-knockdown MC3T3-E1 cells. Results Analysis of differentially expressed genes (DEGs) in FLNB knockdown cells revealed enrichment for genes related to osteoblast proliferation, differentiation and migration, such as ITGA10, Cebpβ, Grem1, etc. Alternative splicing (AS) analysis showed changes in the predominant mRNA isoforms of skeletal development-related genes, especially Tpx2 and Evc. Functional asslysis indicated that proliferation, migration, and differentiation were all inhibited upon FLNB knockdown in MC3T3-E1 cells compared to that in vector control cells. Conclusions FLNB participates in regulating the transcription and AS of genes required for osteoblast development and function, consequently affecting growth and development in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Jinyong Huang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Xin Wang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Lijun Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Wubulikasimu Mijiti
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zhenzi Xie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Shiming Dong
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zengru Xie
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
4
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
6
|
Silva RCMC. Mitochondria, Autophagy and Inflammation: Interconnected in Aging. Cell Biochem Biophys 2024; 82:411-426. [PMID: 38381268 DOI: 10.1007/s12013-024-01231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
In this manuscript, I discuss the direct link between abnormalities in inflammatory responses, mitochondrial metabolism and autophagy during the process of aging. It is focused on the cytosolic receptors nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) and cyclic GMP-AMP synthase (cGAS); myeloid-derived suppressor cells (MDSCs) expansion and their associated immunosuppressive metabolite, methyl-glyoxal, all of them negatively regulated by mitochondrial autophagy, biogenesis, metabolic pathways and its distinct metabolites.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Chen P, Wang Y, Chen F, Zhou B. Epigenetics in obesity: Mechanisms and advances in therapies based on natural products. Pharmacol Res Perspect 2024; 12:e1171. [PMID: 38293783 PMCID: PMC10828914 DOI: 10.1002/prp2.1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central HospitalAffiliated Hospital of Hubei Polytechnic UniversityHuangshiHubeiP.R. China
| | - Fuchao Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubeiP.R. China
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
8
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
9
|
Qi H, Zheng Z, Liu Q. Activation of BZW1 by CEBPB in macrophages promotes eIF2α phosphorylation-mediated metabolic reprogramming and endoplasmic reticulum stress in MRL/lpr lupus-prone mice. Cell Mol Biol Lett 2023; 28:79. [PMID: 37828427 PMCID: PMC10571419 DOI: 10.1186/s11658-023-00494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is associated with significant mortality and morbidity, while effective therapeutics and biomarkers are limited since the pathogenesis is complex. This study investigated the roles of the CEBPB/BZW1/eIF2α axis in metabolic reprogramming and endoplasmic reticulum stress in LN. METHOD The differentially expressed genes in LN were screened using bioinformatics tools. The expression of CEBPB in the renal tissue of patients with LN and its correlation with the levels of creatinine and urinary protein were analyzed. We used adenoviral vectors to construct LN mice with knockdown CEBPB using MRL/lpr lupus-prone mice and analyzed the physiological and autoimmune indices in mice. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and dual-luciferase reporter assays were conducted to explore the regulation of BZW1 by CEBPB, followed by glycolytic flux analysis, glucose uptake, and enzyme-linked immunosorbent assay (ELISA). Finally, the role of eIF2α phosphorylation by BZW1 in bone marrow-derived macrophages (BMDM) was explored using eIF2α phosphorylation and endoplasmic reticulum stress inhibitors. RESULTS CEBPB was significantly increased in renal tissues of patients with LN and positively correlated with creatinine and urine protein levels in patients. Downregulation of CEBPB alleviated the autoimmune response and the development of nephritis in LN mice. Transcriptional activation of BZW1 by CEBPB-mediated glucose metabolic reprogramming in macrophages, and upregulation of BZW1 reversed the mitigating effect of CEBPB knockdown on LN. Regulation of eIF2α phosphorylation levels by BZW1 promoted endoplasmic reticulum stress-amplified inflammatory responses in BMDM. CONCLUSION Transcriptional activation of BZW1 by CEBPB promoted phosphorylation of eIF2α to promote macrophage glycolysis and endoplasmic reticulum stress in the development of LN.
Collapse
Affiliation(s)
- Huimeng Qi
- Department of General Practice, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, People's Republic of China
| | - Zhaoguo Zheng
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qiang Liu
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Dubourg V, Schulz MC, Terpe P, Ruhs S, Kopf M, Gekle M. Hypothesis-generating analysis of the impact of non-damaging metabolic acidosis on the transcriptome of different cell types: Integrated stress response (ISR) modulation as general transcriptomic reaction to non-respiratory acidic stress? PLoS One 2023; 18:e0290373. [PMID: 37624790 PMCID: PMC10456223 DOI: 10.1371/journal.pone.0290373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular pH is an important parameter influencing cell function and fate. Microenvironmental acidosis accompanies different pathological situations, including inflammation, hypoxia and ischemia. Research focussed mainly on acidification of the tumour micromilieu and the possible consequences on proliferation, migration and drug resistance. Much less is known regarding the impact of microenvironmental acidosis on the transcriptome of non-tumour cells, which are exposed to local acidosis during inflammation, hypoxia, ischemia or metabolic derailment. In the present hypothesis-generating study, we investigated the transcriptional impact of extracellular acidosis on five non-tumour cell types of human and rat origin, combining RNA-Sequencing and extensive bioinformatics analyses. For this purpose, cell type-dependent acidosis resiliences and acidosis-induced transcriptional changes within these resilience ranges were determined, using 56 biological samples. The RNA-Sequencing results were used for dual differential-expression analysis (DESeq and edgeR) and, after appropriate homology mapping, Gene Ontology enrichment analysis (g:Profiler), Ingenuity Pathway Analysis (IPA®), as well as functional enrichment analysis for predicted upstream regulators, were performed. Extracellular acidosis led to substantial, yet different, quantitative transcriptional alterations in all five cell types. Our results identify the regulator of the transcriptional activity NCOA5 as the only general acidosis-responsive gene. Although we observed a species- and cell type-dominated response regarding gene expression regulation, Gene Ontology enrichment analysis and upstream regulator analysis predicted a general acidosis response pattern. Indeed, they suggested the regulation of four general acidosis-responsive cellular networks, which comprised the integrated stress response (ISR), TGF-β signalling, NFE2L2 and TP53. Future studies will have to extend the results of our bioinformatics analyses to cell biological and cell physiological validation experiments, in order to test the refined working hypothesis here.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marie-Christin Schulz
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Philipp Terpe
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefanie Ruhs
- Klinik für Anästhesiologie und Intensivmedizin, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
12
|
Yu Y, Lu S, Li Y, Xu J. Overview of distinct N6-Methyladenosine profiles of messenger RNA in osteoarthritis. Front Genet 2023; 14:1168365. [PMID: 37229206 PMCID: PMC10203613 DOI: 10.3389/fgene.2023.1168365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Although N6-methyladenosine (m6A) modification is closely associated with the pathogenesis of osteoarthritis (OA), the mRNA profile of m6A modification in OA remains unknown. Therefore, our study aimed to identify common m6A features and novel m6A-related therapeutic targets in OA. In the present study, we identified 3962 differentially methylated genes (DMGs) and 2048 differentially expressed genes (DEGs) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) and RNA-sequencing. A co-expression analysis of DMGs and DEGs showed that the expression of 805 genes was significantly affected by m6A methylation. Specifically, we obtained 28 hypermethylated and upregulated genes, 657 hypermethylated and downregulated genes, 102 hypomethylated and upregulated genes, and 18 hypomethylated and downregulated genes. The differential gene expression analysis based on GSE114007 revealed 2770 DEGs. The Weighted Gene Co-expression Network Analysis (WGCNA) based on GSE114007 identified 134 OA-related genes. By taking the intersection of these results, ten novel aberrantly expressed, m6A-modified and OA-related key genes were identified, including SKP2, SULF1, TNC, ZFP36, CEBPB, BHLHE41, SOX9, VEGFA, MKNK2 and TUBB4B. The present study may provide valuable insight into identifying m6A-related pharmacological targets in OA.
Collapse
|
13
|
Coliță CI, Olaru DG, Coliță D, Hermann DM, Coliță E, Glavan D, Popa-Wagner A. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. Int J Mol Sci 2023; 24:ijms24065744. [PMID: 36982814 PMCID: PMC10059721 DOI: 10.3390/ijms24065744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
In the clinic, the death certificate is issued if brain electrical activity is no longer detectable. However, recent research has shown that in model organisms and humans, gene activity continues for at least 96 h postmortem. The discovery that many genes are still working up to 48 h after death questions our definition of death and has implications for organ transplants and forensics. If genes can be active up to 48 h after death, is the person technically still alive at that point? We discovered a very interesting parallel between genes that were upregulated in the brain after death and genes upregulated in the brains that were subjected to medically-induced coma, including transcripts involved in neurotransmission, proteasomal degradation, apoptosis, inflammation, and most interestingly, cancer. Since these genes are involved in cellular proliferation, their activation after death could represent the cellular reaction to escape mortality and raises the question of organ viability and genetics used for transplantation after death. One factor limiting the organ availability for transplantation is religious belief. However, more recently, organ donation for the benefit of humans in need has been seen as “posthumous giving of organs and tissues can be a manifestation of love spreading also to the other side of death”.
Collapse
Affiliation(s)
- Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Denissa-Greta Olaru
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Daniela Glavan
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Correspondence: (D.G.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (D.G.); (A.P.-W.)
| |
Collapse
|
14
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
15
|
Chu X, Hou Y, Zhang X, Li M, Ma D, Tang Y, Yuan C, Sun C, Liang M, Liu J, Wei Q, Chang Y, Wang C, Zhang J. Hepatic Glucose Metabolism Disorder Induced by Adipose Tissue-Derived miR-548ag via DPP4 Upregulation. Int J Mol Sci 2023; 24:ijms24032964. [PMID: 36769291 PMCID: PMC9917501 DOI: 10.3390/ijms24032964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore the molecular mechanism underlying the regulation of glucose metabolism by miR-548ag. For the first time, we found that miR-548ag expression was elevated in the abdominal adipose tissue and serum of subjects with obesity and type 2 diabetes mellitus (T2DM). The conditional knockout of adipose tissue Dicer notably reduced the expression and content of miR-548ag in mouse adipose tissue, serum, and liver tissue. The combined use of RNAseq, an miRNA target gene prediction software, and the dual luciferase reporter assay confirmed that miR-548ag exerts a targeted regulatory effect on DNMT3B and DPP4. miR-548ag and DPP4 expression was increased in the adipose tissue, serum, and liver tissue of diet-induced obese mice, while DNMT3B expression was decreased. It was subsequently confirmed both in vitro and in vivo that adipose tissue-derived miR-548ag impaired glucose tolerance and insulin sensitivity by inhibiting DNMT3B and upregulating DPP4. Moreover, miR-548ag inhibitors significantly improved the adverse metabolic phenotype in both obese mice and db/db mice. These results revealed that the expression of the adipose tissue-derived miR-548ag increased in obese subjects, and that this could upregulate the expression of DPP4 by targeting DNMT3B, ultimately leading to glucose metabolism disorder. Therefore, miR-548ag could be utilized as a potential target in the treatment of T2DM.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Medical Genetics, Medical College of Tarim University, Alaer 843300, China
| | - Yanting Hou
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Xueting Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Menghuan Li
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Dingling Ma
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yihan Tang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chenggang Yuan
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Chaoyue Sun
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Maodi Liang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Jie Liu
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Qianqian Wei
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
| | - Yongsheng Chang
- Medical College, Shihezi University, Shihezi 832000, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Cuizhe Wang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| | - Jun Zhang
- Medical College, Shihezi University, Shihezi 832000, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi 832000, China
- Correspondence: (C.W.); (J.Z.); Tel./Fax: +86-993-205-5801 (C.W. & J.Z.)
| |
Collapse
|
16
|
Liu S, Wang J, Chen S, Han Z, Wu H, Chen H, Duan Y. C/EBPβ Coupled with E2F2 Promoted the Proliferation of hESC-Derived Hepatocytes through Direct Binding to the Promoter Regions of Cell-Cycle-Related Genes. Cells 2023; 12:cells12030497. [PMID: 36766839 PMCID: PMC9914899 DOI: 10.3390/cells12030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPβ during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT&Tag sequencing further revealed that C/EBPβ is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPβ and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPβ could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPβ. Moreover, the results of CUT&Tag sequencing showed that C/EBPβ also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPβ and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPβ first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.
Collapse
Affiliation(s)
- Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sen Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zonglin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Correspondence: (H.C.); (Y.D.)
| |
Collapse
|
17
|
Wang Y, Gao Y, Zhang C, Yue J, Wang R, Liu H, Yang X, Zhang Y, Yang R. Tumor Environment Promotes Lnc57Rik-Mediated Suppressive Function of Myeloid-Derived Suppressor Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1401-1413. [DOI: 10.4049/jimmunol.2200195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022]
|
18
|
The Asparaginyl Endopeptidase Legumain: An Emerging Therapeutic Target and Potential Biomarker for Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231810223. [PMID: 36142134 PMCID: PMC9499314 DOI: 10.3390/ijms231810223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is incurable dementia closely associated with aging. Most cases of AD are sporadic, and very few are inherited; the pathogenesis of sporadic AD is complex and remains to be elucidated. The asparaginyl endopeptidase (AEP) or legumain is the only recognized cysteine protease that specifically hydrolyzes peptide bonds after asparagine residues in mammals. The expression level of AEPs in healthy brains is far lower than that of peripheral organs. Recently, growing evidence has indicated that aging may upregulate and overactivate brain AEPs. The overactivation of AEPs drives the onset of AD through cleaving tau and amyloid precursor proteins (APP), and SET, an inhibitor of protein phosphatase 2A (PP2A). The AEP-mediated cleavage of these peptides enhances amyloidosis, promotes tau hyperphosphorylation, and ultimately induces neurodegeneration and cognitive impairment. Upregulated AEPs and related deleterious reactions constitute upstream events of amyloid/tau toxicity in the brain, and represent early pathological changes in AD. Thus, upregulated AEPs are an emerging drug target for disease modification and a potential biomarker for predicting preclinical AD. However, the presence of the blood–brain barrier greatly hinders establishing body-fluid-based methods to measure brain AEPs. Research on AEP-activity-based imaging probes and our recent work suggest that the live brain imaging of AEPs could be used to evaluate its predictive efficacy as an AD biomarker. To advance translational research in this area, AEP imaging probes applicable to human brain and AEP inhibitors with good druggability are urgently needed.
Collapse
|
19
|
Yu H, Wang Y, Wang D, Yi Y, Liu Z, Wu M, Wu Y, Zhang Q. Landscape of the epigenetic regulation in wound healing. Front Physiol 2022; 13:949498. [PMID: 36035490 PMCID: PMC9403478 DOI: 10.3389/fphys.2022.949498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Wound healing after skin injury is a dynamic and highly coordinated process involving a well-orchestrated series of phases, including hemostasis, inflammation, proliferation, and tissue remodeling. Epigenetic regulation refers to genome-wide molecular events, including DNA methylation, histone modification, and non-coding RNA regulation, represented by microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Epigenetic regulation is pervasively occurred in the genome and emerges as a new role in gene expression at the post-transcriptional level. Currently, it is well-recognized that epigenetic factors are determinants in regulating gene expression patterns, and may provide evolutionary mechanisms that influence the wound microenvironments and the entire healing course. Therefore, this review aims to comprehensively summarize the emerging roles and mechanisms of epigenetic remodeling in wound healing. Moreover, we also pose the challenges and future perspectives related to epigenetic modifications in wound healing, which would bring novel insights to accelerated wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Yiping Wu
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| | - Qi Zhang
- *Correspondence: Min Wu, ; Yiping Wu, ; Qi Zhang,
| |
Collapse
|
20
|
Armaka M, Konstantopoulos D, Tzaferis C, Lavigne MD, Sakkou M, Liakos A, Sfikakis PP, Dimopoulos MA, Fousteri M, Kollias G. Single-cell multimodal analysis identifies common regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med 2022; 14:78. [PMID: 35879783 PMCID: PMC9316748 DOI: 10.1186/s13073-022-01081-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial fibroblasts (SFs) are specialized cells of the synovium that provide nutrients and lubricants for the proper function of diarthrodial joints. Recent evidence appreciates the contribution of SF heterogeneity in arthritic pathologies. However, the normal SF profiles and the molecular networks that govern the transition from homeostatic to arthritic SF heterogeneity remain poorly defined. METHODS We applied a combined analysis of single-cell (sc) transcriptomes and epigenomes (scRNA-seq and scATAC-seq) to SFs derived from naïve and hTNFtg mice (mice that overexpress human TNF, a murine model for rheumatoid arthritis), by employing the Seurat and ArchR packages. To identify the cellular differentiation lineages, we conducted velocity and trajectory analysis by combining state-of-the-art algorithms including scVelo, Slingshot, and PAGA. We integrated the transcriptomic and epigenomic data to infer gene regulatory networks using ArchR and custom-implemented algorithms. We performed a canonical correlation analysis-based integration of murine data with publicly available datasets from SFs of rheumatoid arthritis patients and sought to identify conserved gene regulatory networks by utilizing the SCENIC algorithm in the human arthritic scRNA-seq atlas. RESULTS By comparing SFs from healthy and hTNFtg mice, we revealed seven homeostatic and two disease-specific subsets of SFs. In healthy synovium, SFs function towards chondro- and osteogenesis, tissue repair, and immune surveillance. The development of arthritis leads to shrinkage of homeostatic SFs and favors the emergence of SF profiles marked by Dkk3 and Lrrc15 expression, functioning towards enhanced inflammatory responses and matrix catabolic processes. Lineage inference analysis indicated that specific Thy1+ SFs at the root of trajectories lead to the intermediate Thy1+/Dkk3+/Lrrc15+ SF states and culminate in a destructive and inflammatory Thy1- SF identity. We further uncovered epigenetically primed gene programs driving the expansion of these arthritic SFs, regulated by NFkB and new candidates, such as Runx1. Cross-species analysis of human/mouse arthritic SF data determined conserved regulatory and transcriptional networks. CONCLUSIONS We revealed a dynamic SF landscape from health to arthritis providing a functional genomic blueprint to understand the joint pathophysiology and highlight the fibroblast-oriented therapeutic targets for combating chronic inflammatory and destructive arthritic disease.
Collapse
Affiliation(s)
- Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Dimitris Konstantopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matthieu D Lavigne
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Heraklion, Crete, Greece
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Liakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Petros P Sfikakis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Meletios A Dimopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Fousteri
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
21
|
Xia Y, Qadota H, Wang ZH, Liu P, Liu X, Ye KX, Matheny CJ, Berglund K, Yu SP, Drake D, Bennett DA, Wang XC, Yankner BA, Benian GM, Ye K. Neuronal C/EBPβ/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression. SCIENCE ADVANCES 2022; 8:eabj8658. [PMID: 35353567 PMCID: PMC8967231 DOI: 10.1126/sciadv.abj8658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
The age-related cognitive decline of normal aging is exacerbated in neurodegenerative diseases including Alzheimer's disease (AD). However, it remains unclear whether age-related cognitive regulators in AD pathologies contribute to life span. Here, we show that C/EBPβ, an Aβ and inflammatory cytokine-activated transcription factor that promotes AD pathologies via activating asparagine endopeptidase (AEP), mediates longevity in a gene dose-dependent manner in neuronal C/EBPβ transgenic mice. C/EBPβ selectively triggers inhibitory GABAnergic neuronal degeneration by repressing FOXOs and up-regulating AEP, leading to aberrant neural excitation and cognitive dysfunction. Overexpression of CEBP-2 or LGMN-1 (AEP) in Caenorhabditis elegans neurons but not muscle stimulates neural excitation and shortens life span. CEBP-2 or LGMN-1 reduces daf-2 mutant-elongated life span and diminishes daf-16-induced longevity. C/EBPβ and AEP are lower in humans with extended longevity and inversely correlated with REST/FOXO1. These findings demonstrate a conserved mechanism of aging that couples pathological cognitive decline to life span by the neuronal C/EBPβ/AEP pathway.
Collapse
Affiliation(s)
- Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hiroshi Qadota
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Neuroscience program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karen X. Ye
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Courtney J. Matheny
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken Berglund
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University, Atlanta, GA 30322, USA
| | - Derek Drake
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | | | - Guy M. Benian
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
22
|
Scagliola A, Miluzio A, Ventura G, Oliveto S, Cordiglieri C, Manfrini N, Cirino D, Ricciardi S, Valenti L, Baselli G, D'Ambrosio R, Maggioni M, Brina D, Bresciani A, Biffo S. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat Commun 2021; 12:4878. [PMID: 34385447 PMCID: PMC8361022 DOI: 10.1038/s41467-021-25195-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
A postprandial increase of translation mediated by eukaryotic Initiation Factor 6 (eIF6) occurs in the liver. Its contribution to steatosis and disease is unknown. In this study we address whether eIF6-driven translation contributes to disease progression. eIF6 levels increase throughout the progression from Non-Alcoholic Fatty Liver Disease (NAFLD) to hepatocellular carcinoma. Reduction of eIF6 levels protects the liver from disease progression. eIF6 depletion blunts lipid accumulation, increases fatty acid oxidation (FAO) and reduces oncogenic transformation in vitro. In addition, eIF6 depletion delays the progression from NAFLD to hepatocellular carcinoma, in vivo. Mechanistically, eIF6 depletion reduces the translation of transcription factor C/EBPβ, leading to a drop in biomarkers associated with NAFLD progression to hepatocellular carcinoma and preserves mitochondrial respiration due to the maintenance of an alternative mTORC1-eIF4F translational branch that increases the expression of transcription factor YY1. We provide proof-of-concept that in vitro pharmacological inhibition of eIF6 activity recapitulates the protective effects of eIF6 depletion. We hypothesize the existence of a targetable, evolutionarily conserved translation circuit optimized for lipid accumulation and tumor progression.
Collapse
Affiliation(s)
- Alessandra Scagliola
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Annarita Miluzio
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | - Stefania Oliveto
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Nicola Manfrini
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Delia Cirino
- Department of Biosciences, University of Milan, Milan, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberta D'Ambrosio
- Department of Hepatology, Fondazione IRCCS Ca' Granda Granda Ospedale Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Daniela Brina
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia (Roma), Italy
| | - Stefano Biffo
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
23
|
Orjuela S, Parker HR, Sajibu S, Cereatti F, Sauter M, Buffoli F, Robinson MD, Marra G. Disentangling tumorigenesis-associated DNA methylation changes in colorectal tissues from those associated with ageing. Epigenetics 2021; 17:677-694. [PMID: 34369258 DOI: 10.1080/15592294.2021.1952375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Physiological ageing and tumorigenesis are both associated with epigenomic alterations in human tissue cells, the most extensively investigated of which entails de novo cytosine methylation (i.e., hypermethylation) within the CpG dinucleotides of CpG islands. Genomic regions that become hypermethylated during tumorigenesis are generally believed to overlap regions that acquire methylation in normal tissues as an effect of ageing. To define the extension of this overlap, we analysed the DNA methylomes of 48 large-bowel tissue samples taken from women of different ages during screening colonoscopy: 18 paired samples of normal and lesional tissues from donors harbouring a precancerous lesion and 12 samples of normal mucosa from tumour-free donors. Each sample was subjected to targeted, genome-wide bisulphite sequencing of ~2.5% of the genome, including all CpG islands. In terms of both its magnitude and extension along the chromatin, tumour-associated DNA hypermethylation in these regions was much more conspicuous than that observed in the normal mucosal samples from older (vs. younger) tumour-free donors. 83% of the ageing-associated hypermethylated regions (n = 2501) coincided with hypermethylated regions observed in tumour samples. However, 86% of the regions displaying hypermethylation in precancerous lesions (n = 16,772) showed no methylation changes in the ageing normal mucosa. The tumour-specificity of this latter hypermethylation was validated using published sets of data on DNA methylation in normal and neoplastic colon tissues. This extensive set of genomic regions displaying tumour-specific hypermethylation represents a rich vein of putative biomarkers for the early, non-invasive detection of colorectal tumours in women of all ages.
Collapse
Affiliation(s)
- Stephany Orjuela
- Institute of Molecular Cancer Research, University of Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Hannah R Parker
- Institute of Molecular Cancer Research, University of Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | | | - Matthias Sauter
- Division of Gastroenterology, Triemli Hospital Zurich, Switzerland
| | | | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich and SIB Swiss Institute of Bioinformatics, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| |
Collapse
|
24
|
Ershova AS, Eliseeva IA, Nikonov OS, Fedorova AD, Vorontsov IE, Papatsenko D, Kulakovskiy IV. Enhanced C/EBP binding to G·T mismatches facilitates fixation of CpG mutations in cancer and adult stem cells. Cell Rep 2021; 35:109221. [PMID: 34107262 DOI: 10.1016/j.celrep.2021.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Somatic mutations in regulatory sites of human stem cells affect cell identity or cause malignant transformation. By mining the human genome for co-occurrence of mutations and transcription factor binding sites, we show that C/EBP binding sites are strongly enriched with [C > T]G mutations in cancer and adult stem cells, which is of special interest because C/EBPs regulate cell fate and differentiation. In vitro protein-DNA binding assay and structural modeling of the CEBPB-DNA complex show that the G·T mismatch in the core CG dinucleotide strongly enhances affinity of the binding site. We conclude that enhanced binding of C/EBPs shields CpG·TpG mismatches from DNA repair, leading to selective accumulation of [C > T]G mutations and consequent deterioration of the binding sites. This mechanism of targeted mutagenesis highlights the effect of a mutational process on certain regulatory sites and reveals the molecular basis of putative regulatory alterations in stem cells.
Collapse
Affiliation(s)
- Anna S Ershova
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YN60, Ireland
| | - Ilya E Vorontsov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Papatsenko
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
25
|
Vaginal Aging-What We Know and What We Do Not Know. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094935. [PMID: 34066357 PMCID: PMC8125346 DOI: 10.3390/ijerph18094935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
The aging of the organism is a complex and multifactorial process. It can be viewed in the context of the whole organism, but also of individual tissues and organs. The problem of vaginal aging and the related genitourinary syndrome of menopause significantly reduces the quality of women’s lives. The aging process of the vagina includes estrogen deficiencies, changes in the microbiome, and changes at the genetic level associated with DNA methylation. During the menopause, the number of Lactobacillus colonies decreases, and the number of pathological bacteria colonies increases. The decrease in estrogen levels results in a decrease in vaginal epithelial permeability, perfusion, and elastin levels, resulting in vaginal dryness and atrophy. Changes at the molecular level are the least clear. It can also be assumed that, similarly to the tissues studied so far, there are changes in cytosine methylation and TET (ten-eleven translocation) expression. The interrelationships between DNA methylation, hormonal changes, and the vaginal microbiome have not yet been fully elucidated.
Collapse
|
26
|
Wang S, Xia D, Wang X, Cao H, Wu C, Sun Z, Zhang D, Liu H. C/EBPβ regulates the JAK/STAT signaling pathway in triple-negative breast cancer. FEBS Open Bio 2021; 11:1250-1258. [PMID: 33660927 PMCID: PMC8016132 DOI: 10.1002/2211-5463.13138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
C/EBPβ is a member of the CCAAT/enhancer‐binding protein (C/EBP) family, which consists of a number of b‐ZIP transcription factors. Although C/EBPβ has been implicated in the development of certain cancers, including breast cancer, it remains unknown whether dysregulation of C/EBPβ in breast cancer is subtype‐specific. Moreover, the underlying mechanisms by which C/EBPβ regulates breast cancer carcinogenesis are not fully understood. Here, we present evidence that C/EBPβ is specifically overexpressed in human TNBC samples, but not in non‐TNBC samples. C/EBPβ depletion dramatically suppressed TNBC cell growth, migration, invasion, and colony formation ability. A subsequent mechanistic study revealed that the JAK/STAT signaling pathway was upregulated in C/EBPβ_high TNBC samples compared with C/EBPβ_low TNBC samples. C/EBPβ ChIP‐seq and qPCR were performed to demonstrate that C/EBPβ directly binds to and regulates JAK/STAT signaling pathway genes in TNBC. Taken together, our data indicate the oncogenic role of C/EBPβ in human TNBC and reveal a novel mechanism by which C/EBPβ promotes TNBC carcinogenesis.
Collapse
Affiliation(s)
- Shu Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Dian Xia
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Xianzhi Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China.,School of Pharmacy, Bengbu Medical College, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Chaoshen Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Zhaoran Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Daoyong Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, China
| |
Collapse
|
27
|
McEwan A, Erickson JC, Davidson C, Heijkoop J, Turnbull Y, Delibegovic M, Murgatroyd C, MacKenzie A. The anxiety and ethanol intake controlling GAL5.1 enhancer is epigenetically modulated by, and controls preference for, high-fat diet. Cell Mol Life Sci 2020; 78:3045-3055. [PMID: 33313982 PMCID: PMC8004485 DOI: 10.1007/s00018-020-03705-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Excess maternal fat intake and obesity increase offspring susceptibility to conditions such as chronic anxiety and substance abuse. We hypothesised that environmentally modulated DNA methylation changes (5mC/5hmC) in regulatory regions of the genome that modulate mood and consumptive behaviours could contribute to susceptibility to these conditions. We explored the effects of environmental factors on 5mC/5hmC levels within the GAL5.1 enhancer that controls anxiety-related behaviours and alcohol intake. We first observed that 5mC/5hmC levels within the GAL5.1 enhancer differed significantly in different parts of the brain. Moreover, we noted that early life stress had no significant effect of 5mC/5hmC levels within GAL5.1. In contrast, we identified that allowing access of pregnant mothers to high-fat diet (> 60% calories from fat) had a significant effect on 5mC/5hmC levels within GAL5.1 in hypothalamus and amygdala of resulting male offspring. Cell transfection-based studies using GAL5.1 reporter plasmids showed that 5mC has a significant repressive effect on GAL5.1 activity and its response to known stimuli, such as EGR1 transcription factor expression and PKC agonism. Intriguingly, CRISPR-driven disruption of GAL5.1 from the mouse genome, although having negligible effects on metabolism or general appetite, significantly decreased intake of high-fat diet suggesting that GAL5.1, in addition to being epigenetically modulated by high-fat diet, also actively contributes to the consumption of high-fat diet suggesting its involvement in an environmentally influenced regulatory loop. Furthermore, considering that GAL5.1 also controls alcohol preference and anxiety these studies may provide a first glimpse into an epigenetically controlled mechanism that links maternal high-fat diet with transgenerational susceptibility to alcohol abuse and anxiety.
Collapse
Affiliation(s)
- Andrew McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Johanna Celene Erickson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Connor Davidson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Jenny Heijkoop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Yvonne Turnbull
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Mirela Delibegovic
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
28
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|