1
|
Triana MF, Melo N. Dynamics of Aedes aegypti mating behaviour. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101237. [PMID: 39047975 DOI: 10.1016/j.cois.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The use of pheromones, while common, remains underexplored in mosquito research. Understanding Aedes aegypti's mating behaviour and pheromones is crucial for expanding knowledge and advancing vector control strategies. Unlike other species, Aedes mosquitoes have adaptable mating behaviour, complicating the study of their communication mechanisms. Current literature on Aedes communication is sparse, not due to lack of effort but because of its complexity. Ae. aegypti's mating behaviour is influenced by sensory cues and environmental factors. Swarming, which facilitates mating aggregation, is triggered by host odours, highlighting the role of semiochemicals alongside aggregation pheromones. Cuticular hydrocarbons may act as chemical signals in mating, though their roles are unclear. Acoustic signals significantly contribute to mate attraction and male fitness assessment, showcasing the multidimensional nature of Ae. aegypti sexual communication. Understanding these aspects can enhance targeted control strategies and reduce mosquito populations and disease transmission.
Collapse
Affiliation(s)
- Merybeth F Triana
- Department of Biology, Lund University, Sweden; Max Planck Center next Generation Chemical Ecology, Sweden
| | - Nadia Melo
- Department of Biology, Lund University, Sweden.
| |
Collapse
|
2
|
Weiss L, McBride CS. Mosquitoes as a model for understanding the neural basis of natural behaviors. Curr Opin Neurobiol 2024; 87:102897. [PMID: 39002351 DOI: 10.1016/j.conb.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Mosquito behaviors have been the subject of extensive research for over a century due to their role in the spread of human disease. However, these behaviors are also beginning to be appreciated as excellent models for neurobiological research in their own right. Many of the same behaviors and sensory abilities that help mosquitoes survive and reproduce alongside humans represent striking examples of generalizable phenomena of longstanding neurobiological interest. In this review, we highlight four prominent examples that promise new insight into (1) precise circadian tuning of sensory systems, (2) processing of complex natural odors, (3) multisensory integration, and (4) modulation of behavior by internal states.
Collapse
Affiliation(s)
- Lukas Weiss
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolyn S McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Yadav AK, Asokan R, Yamamoto A, Patil AA, Scott MJ. Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains. INSECT MOLECULAR BIOLOGY 2024; 33:91-100. [PMID: 37819050 DOI: 10.1111/imb.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. D. suzukii is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of D. suzukii have been made, the development of transgenic D. suzukii strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism D. melanogaster. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes white, cinnabar and sepia, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in cinnabar and sepia showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the cinnabar and sepia strains were comparable with the wild type. Although white mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The cinnabar, sepia and white mutant strains developed in this study should facilitate future genetic studies in D. suzukii and the development of strains for genetic control of this pest.
Collapse
Affiliation(s)
- Amarish K Yadav
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Anandrao A Patil
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. Sci Rep 2024; 14:1631. [PMID: 38238397 PMCID: PMC10796395 DOI: 10.1038/s41598-023-50182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024] Open
Abstract
The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin volatiles. We demonstrated that landing behavior is gated by the presence of carbon dioxide and L-(+)-lactic acid. This is similar to the combinatorial coding triggering mosquito short range attraction. Repellency behavior to selected skin volatiles and terpenes was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, the terpene geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of terpenes in mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid change the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Omid Jamshidi
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robyn Raban
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katayoon Atabakhsh
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph A Merriman
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA, 94305, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Fischbach MA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553996. [PMID: 37662338 PMCID: PMC10473644 DOI: 10.1101/2023.08.19.553996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin bacteria volatiles. We demonstrated that this behavioral step is gated by the presence of carbon dioxide and L-(+)-lactic acid, similar to the combinatorial coding triggering short range attraction. Repellency behavior to selected skin volatiles and the geraniol terpene was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of geraniol on mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid changes the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.
Collapse
Affiliation(s)
- Iliano V. Coutinho-Abreu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Omid Jamshidi
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Robyn Raban
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Katayoon Atabakhsh
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
| | - Joseph A. Merriman
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Michael A. Fischbach
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
6
|
Loh YM, Su MP, Ellis DA, Andrés M. The auditory efferent system in mosquitoes. Front Cell Dev Biol 2023; 11:1123738. [PMID: 36923250 PMCID: PMC10009176 DOI: 10.3389/fcell.2023.1123738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Whilst acoustic communication forms an integral component of the mating behavior of many insect species, it is particularly crucial for disease-transmitting mosquitoes; swarming males rely on hearing the faint sounds of flying females for courtship initiation. That males can hear females within the din of a swarm is testament to their fabulous auditory systems. Mosquito hearing is highly frequency-selective, remarkably sensitive and, most strikingly, supported by an elaborate system of auditory efferent neurons that modulate the auditory function - the only documented example amongst insects. Peripheral release of octopamine, serotonin and GABA appears to differentially modulate hearing across major disease-carrying mosquito species, with receptors from other neurotransmitter families also identified in their ears. Because mosquito mating relies on hearing the flight tones of mating partners, the auditory efferent system offers new potential targets for mosquito control. It also represents a unique insect model for studying auditory efferent networks. Here we review current knowledge of the mosquito auditory efferent system, briefly compare it with its counterparts in other species and highlight future research directions to unravel its contribution to mosquito auditory perception.
Collapse
Affiliation(s)
- YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - David A. Ellis
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Marta Andrés
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|