1
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
2
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
3
|
Fan ZC, Zhao WJ, Jiao Y, Guo SC, Kou YP, Chao M, Wang N, Zhou CC, Wang Y, Liu JH, Zhai YL, Ji PG, Fan C, Wang L. Risk Factors and Predictive Nomogram for Survival in Elderly Patients with Brain Glioma. Curr Med Sci 2024; 44:759-770. [PMID: 38990448 DOI: 10.1007/s11596-024-2880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram. METHODS Data from elderly individuals (age ≥65 years) histologically diagnosed with brain glioma were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio. Additionally, data obtained from Tangdu Hospital constituted an external validation cohort for the study. The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, enabling the construction of a nomogram. Model performance was evaluated using C-index, ROC curves, calibration plot and decision curve analysis (DCA). RESULTS A cohort of 20 483 elderly glioma patients was selected from the SEER database. Five prognostic factors (age, marital status, histological type, stage, and treatment) were found to significantly impact overall survival (OS) and cancer-specific survival (CSS), with tumor location emerging as a sixth variable independently linked to CSS. Subsequently, nomogram models were developed to predict the probabilities of survival at 6, 12, and 24 months. The assessment findings from the validation queue indicate a that the model exhibited strong performance. CONCLUSION Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients. They can potentially assist in risk stratification and clinical decision-making.
Collapse
Affiliation(s)
- Zhi-Cheng Fan
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wen-Jian Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Jiao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shao-Chun Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Neurosurgery, Shannxi University of Chinese Medine, Xianyang, 712046, China
| | - Yun-Peng Kou
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Neurosurgery, Shannxi University of Chinese Medine, Xianyang, 712046, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chen-Chen Zhou
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Neurosurgery, Xi'an Medical University, Xi'an, 710021, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jing-Hui Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yu-Long Zhai
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Pei-Gang Ji
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chao Fan
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
4
|
Matsuda Y, Makino T. Comparative genomics reveals convergent signals associated with the high metabolism and longevity in birds and bats. Proc Biol Sci 2024; 291:20241068. [PMID: 39191281 DOI: 10.1098/rspb.2024.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Birds and bats have long lifespans relative to their body size compared with non-flying animals. However, the genomic basis associated with longer lifespan of flying species despite their higher metabolism was unclear. In this study, we hypothesized that genes involved in the regulation of metabolism and lifespan changed with the acquisition of flight and searched for genes that show specific evolutionary patterns in flying species. As a result, we identified several genes that show different evolutionary rates in bird and bat lineages. Genes in pathways involved in lifespan regulation were conserved in birds, while they evolved at an accelerated rate in bats. We also searched for genes in which convergent amino acid substitutions occurred in birds and bats and found such substitutions in genes involved in cancer, reactive oxygen species control and immunity. Our study revealed genomic changes associated with the acquisition of flight in birds and bats and suggested that multiple genes involved in the regulation of lifespan and metabolism support both high metabolism and longevity in flying species.
Collapse
Affiliation(s)
- Yuki Matsuda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho , Fuchu-shi, Tokyo 183-8509, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku , Sendai 980-8578, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Aoba-ku , Sendai 980-8578, Japan
| |
Collapse
|
5
|
Beichman AC, Zhu L, Harris K. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Annu Rev Biomed Data Sci 2024; 7:83-105. [PMID: 38669515 DOI: 10.1146/annurev-biodatasci-102523-104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| | - Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kelley Harris
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
6
|
Ma F, Zheng C. Single-cell phylotranscriptomics of developmental and cell type evolution. Trends Genet 2024; 40:495-510. [PMID: 38490933 DOI: 10.1016/j.tig.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Single-cell phylotranscriptomics is an emerging tool to reveal the molecular and cellular mechanisms of evolution. We summarize its utility in studying the hourglass pattern of ontogenetic evolution and for understanding the evolutionary history of cell types. The developmental hourglass model suggests that the mid-embryonic stage is the most conserved period of development across species, which is supported by morphological and molecular studies. Single-cell phylotranscriptomic analysis has revealed previously underappreciated heterogeneity in transcriptome ages among lineages and cell types throughout development, and has identified the lineages and tissues that drive the whole-organism hourglass pattern. Single-cell transcriptome age analyses also provide important insights into the origin of germ layers, the different selective forces on tissues during adaptation, and the evolutionary relationships between cell types.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|
8
|
Sun Z, Liu X, Pan D, Wang J. Unveiling the panorama and emerging boundaries in the field of aging biomarkers. Asian J Surg 2024; 47:2065-2066. [PMID: 38238139 DOI: 10.1016/j.asjsur.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Dikang Pan
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China.
| |
Collapse
|
9
|
Fisher AG. Cell and developmental biology: grand challenges. Front Cell Dev Biol 2024; 12:1377073. [PMID: 38559812 PMCID: PMC10978741 DOI: 10.3389/fcell.2024.1377073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Amanda G. Fisher
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Marx V. Aging research comes of age. Nat Methods 2024; 21:11-15. [PMID: 38167657 DOI: 10.1038/s41592-023-02140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
|