1
|
Osgerby A, Overton TW. Approaches for high-throughput quantification of periplasmic recombinant proteins. N Biotechnol 2023; 77:149-160. [PMID: 37708933 DOI: 10.1016/j.nbt.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins (such as antibody fragments) for correct folding and function. It also permits simpler protein release and downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant protein requires optimisation including selection of the best signal peptide and growth and production conditions. Traditional methods require separation and analysis of protein compositions of periplasmic and cytoplasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for high throughput quantification of periplasmic protein accumulation offer advantages in rapid process development.
Collapse
Affiliation(s)
- Alexander Osgerby
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering and Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Rogers AR, Turner EE, Johnson DT, Ellermeier JR. Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella. Microbiol Spectr 2022; 10:e0162122. [PMID: 36036643 PMCID: PMC9604234 DOI: 10.1128/spectrum.01621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
The twin arginine translocation system (Tat) is a protein export system that is conserved in bacteria, archaea, and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. In Salmonella, there are 30 proteins that are predicted substrates of Tat, and among these are enzymes required for anaerobic respiration and peptidoglycan remodeling. We have demonstrated that some conditions that induce bacterial envelope stress activate expression of a ΔtatABC-lacZ fusion in Salmonella enterica serovar Typhimurium. Particularly, the addition of bile salts to the growth medium causes a 3-fold induction of a ΔtatABC-lacZ reporter fusion. Our data demonstrate that this induction is mediated via the phage shock protein (Psp) stress response system protein PspA. Further, we show that deletion of tatABC increases the induction of tatABC expression in bile salts. Indeed, the data suggest significant interaction between PspA and the Tat system in the regulatory response to bile salts. Although we have not identified the precise mechanism of Psp regulation of tatABC, our work shows that PspA is involved in the activation of tatABC expression by bile salts and adds another layer of complexity to the Salmonella response to envelope stress. IMPORTANCE Salmonella species cause an array of diseases in a variety of hosts. This research is significant in showing induction of the Tat system as a defense against periplasmic stress. Understanding the underlying mechanism of this regulation broadens our understanding of the Salmonella stress response, which is critical to the ability of the organism to cause infection.
Collapse
Affiliation(s)
- Alexandra R. Rogers
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Ezekeial E. Turner
- College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Deauna T. Johnson
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Jeremy R. Ellermeier
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
3
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
4
|
Alderley CL, Greenrod STE, Friman V. Plant pathogenic bacterium can rapidly evolve tolerance to an antimicrobial plant allelochemical. Evol Appl 2022; 15:735-750. [PMID: 35603031 PMCID: PMC9108312 DOI: 10.1111/eva.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Crop losses to plant pathogens are a growing threat to global food security and more effective control strategies are urgently required. Biofumigation, an agricultural technique where Brassica plant tissues are mulched into soils to release antimicrobial plant allelochemicals called isothiocyanates (ITCs), has been proposed as an environmentally friendly alternative to agrochemicals. Whilst biofumigation has been shown to suppress a range of plant pathogens, its effects on plant pathogenic bacteria remain largely unexplored. Here, we used a laboratory model system to compare the efficacy of different types of ITCs against Ralstonia solanacearum plant bacterial pathogen. Additionally, we evaluated the potential for ITC-tolerance evolution under high, intermediate, and low transfer frequency ITC exposure treatments. We found that allyl-ITC was the most efficient compound at suppressing R. solanacearum growth, and its efficacy was not improved when combined with other types of ITCs. Despite consistent pathogen growth suppression, ITC tolerance evolution was observed in the low transfer frequency exposure treatment, leading to cross-tolerance to ampicillin beta-lactam antibiotic. Mechanistically, tolerance was linked to insertion sequence movement at four positions in genes that were potentially associated with stress responses (H-NS histone like protein), cell growth and competitiveness (acyltransferase), iron storage ([2-Fe-2S]-binding protein) and calcium ion sequestration (calcium-binding protein). Interestingly, pathogen adaptation to the growth media also indirectly selected for increased ITC tolerance through potential adaptations linked with metabolism and antibiotic resistance (dehydrogenase-like protein) and transmembrane protein movement (Tat pathway signal protein). Together, our results suggest that R. solanacearum can rapidly evolve tolerance to allyl-ITC plant allelochemical which could constrain the long-term efficiency of biofumigation biocontrol and potentially shape pathogen evolution with plants.
Collapse
|
5
|
Hao B, Zhou W, Theg SM. Hydrophobic mismatch is a key factor in protein transport across lipid bilayer membranes via the Tat pathway. J Biol Chem 2022; 298:101991. [PMID: 35490783 PMCID: PMC9207671 DOI: 10.1016/j.jbc.2022.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across membranes in bacteria, thylakoids, plant mitochondria, and archaea. In most species, the active Tat machinery consists of three independent subunits: TatA, TatB, and TatC. TatA and TatB possess short transmembrane alpha helices (TMHs), both of which are only 15 residues long in Escherichia coli. Such short TMHs cause a hydrophobic mismatch between Tat subunits and the membrane bilayer, although the functional significance of this mismatch is unclear. Here, we sought to address the functional importance of the hydrophobic mismatch in the Tat transport mechanism in E. coli. We conducted three different assays to evaluate the effect of TMH length mutants on Tat activity and observed that the TMHs of TatA and TatB appear to be evolutionarily tuned to 15 amino acids, with activity dropping off following any modification of this length. Surprisingly, TatA and TatB with as few as 11 residues in their TMHs can still insert into the membrane bilayer, albeit with a decline in membrane integrity. These findings support a model of Tat transport utilizing localized toroidal pores that form when the membrane bilayer is thinned to a critical threshold. In this context, we conclude that the 15-residue length of the TatA and TatB TMHs can be seen as a compromise between the need for some hydrophobic mismatch to allow the membrane to reversibly reach the threshold thinness required for toroidal pore formation and the permanently destabilizing effect of placing even shorter helices into these energy-transducing membranes.
Collapse
Affiliation(s)
- Binhan Hao
- Plant Biology Department, University of California, Davis, CA 95616
| | - Wenjie Zhou
- Plant Biology Department, University of California, Davis, CA 95616
| | - Steven M Theg
- Plant Biology Department, University of California, Davis, CA 95616.
| |
Collapse
|
6
|
M Brauer A, R Rogers A, R Ellermeier J. Twin-arginine translocation (Tat) mutants in Salmonella enterica serovar Typhimurium have increased susceptibility to cell wall targeting antibiotics. FEMS MICROBES 2021; 2:xtab004. [PMID: 34250488 PMCID: PMC8262268 DOI: 10.1093/femsmc/xtab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/15/2022] Open
Abstract
The twin-arginine translocation (Tat) system is a protein secretion system that is conserved in bacteria, archaea and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. There are 30 experimentally verified Tat substrates in Salmonella, including hydrogenase subunits, enzymes required for anaerobic respiration and enzymes involved in peptidoglycan remodeling during cell division. Multiple studies have demonstrated the susceptibility of tat mutants to antimicrobial compounds such as SDS and bile; however, in this work, we use growth curves and viable plate counts to demonstrate that cell wall targeting antibiotics (penicillins, carbapenems, cephalosporins and fosfomycin) have increased killing against a Δtat strain. Further, we demonstrate that this increased killing is primarily due to defects in translocation of critical Tat substrates: MepK, AmiA, AmiC and SufI. Finally, we show that a ΔhyaAB ΔhybABC ΔhydBC strain has an altered ΔΨ that impacts proper secretion of critical Tat substrates in aerobic growth conditions.
Collapse
Affiliation(s)
- Adrienne M Brauer
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
| | - Alexandra R Rogers
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| | - Jeremy R Ellermeier
- Department of Microbiology and Immunology, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
7
|
Dong H, Zhang W, Zhou S, Huang J, Wang P. Engineering bioscaffolds for enzyme assembly. Biotechnol Adv 2021; 53:107721. [PMID: 33631185 DOI: 10.1016/j.biotechadv.2021.107721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
With the demand for green, safe, and continuous biocatalysis, bioscaffolds, compared with synthetic scaffolds, have become a desirable candidate for constructing enzyme assemblages because of their biocompatibility and regenerability. Biocompatibility makes bioscaffolds more suitable for safe and green production, especially in food processing, production of bioactive agents, and diagnosis. The regenerability can enable the engineered biocatalysts regenerate through simple self-proliferation without complex re-modification, which is attractive for continuous biocatalytic processes. In view of the unique biocompatibility and regenerability of bioscaffolds, they can be classified into non-living (polysaccharide, nucleic acid, and protein) and living (virus, bacteria, fungi, spore, and biofilm) bioscaffolds, which can fully satisfy these two unique properties, respectively. Enzymes assembled onto non-living bioscaffolds are based on single or complex components, while enzymes assembled onto living bioscaffolds are based on living bodies. In terms of their unique biocompatibility and regenerability, this review mainly covers the current advances in the research and application of non-living and living bioscaffolds with focus on engineering strategies for enzyme assembly. Finally, the future development of bioscaffolds for enzyme assembly is also discussed. Hopefully, this review will attract the interest of researchers in various fields and empower the development of biocatalysis, biomedicine, environmental remediation, therapy, and diagnosis.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
8
|
Prajapati B, Bernal-Cabas M, López-Álvarez M, Schaffer M, Bartel J, Rath H, Steil L, Becher D, Völker U, Mäder U, van Dijl JM. Double trouble: Bacillus depends on a functional Tat machinery to avoid severe oxidative stress and starvation upon entry into a NaCl-depleted environment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118914. [PMID: 33245978 DOI: 10.1016/j.bbamcr.2020.118914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The widely conserved twin-arginine translocases (Tat) allow the transport of fully folded cofactor-containing proteins across biological membranes. In doing so, these translocases serve different biological functions ranging from energy conversion to cell division. In the Gram-positive soil bacterium Bacillus subtilis, the Tat machinery is essential for effective growth in media lacking iron or NaCl. It was previously shown that this phenomenon relates to the Tat-dependent export of the heme-containing peroxidase EfeB, which converts Fe2+ to Fe3+ at the expense of hydrogen peroxide. However, the reasons why the majority of tat mutant bacteria perish upon dilution in NaCl-deprived medium and how, after several hours, a sub-population adapts to this condition was unknown. Here we show that, upon growth in the absence of NaCl, the bacteria face two major problems, namely severe oxidative stress at the membrane and starvation leading to death. The tat mutant cells can overcome these challenges if they are fed with arginine, which implies that severe arginine depletion is a major cause of death and resumed arginine synthesis permits their survival. Altogether, our findings show that the Tat system of B. subtilis is needed to preclude severe oxidative stress and starvation upon sudden drops in the environmental Na+ concentration as caused by flooding or rain.
Collapse
Affiliation(s)
- Bimal Prajapati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Margarita Bernal-Cabas
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Marina López-Álvarez
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Marc Schaffer
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Jürgen Bartel
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Hermann Rath
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Leif Steil
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Uwe Völker
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany
| | - Ulrike Mäder
- University Medicine Greifswald, Interfaculty Institute of Genetics and Functional Genomics, Department of Functional Genomics, Greifswald, Germany.
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands.
| |
Collapse
|
9
|
Doukyu N, Ishikawa M. Cholesterol oxidase from Rhodococcus erythropolis with high specificity toward β-cholestanol and pytosterols. PLoS One 2020; 15:e0241126. [PMID: 33104755 PMCID: PMC7588053 DOI: 10.1371/journal.pone.0241126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/08/2020] [Indexed: 12/05/2022] Open
Abstract
Two genes (choRI and choRII) encoding cholesterol oxidases belonging to the vanillyl-alcohol oxidase (VAO) family were cloned on the basis of putative cholesterol oxidase gene sequences in the genome sequence data of Rhodococcus erythropolis PR4. The genes corresponding to the mature enzymes were cloned in a pET vector and expressed in Escherichia coli. The two cholesterol oxidases produced from the recombinant E. coli were purified to examine their properties. The amino acid sequence of ChoRI showed significant similarity (57%) to that of ChoRII. ChoRII was more stable than ChoRI in terms of pH and thermal stability. The substrate specificities of these enzymes differed distinctively from one another. Interestingly, the activities of ChoRII toward β-cholestanol, β-sitosterol, and stigmasterol were 2.4-, 2.1-, and 1.7-fold higher, respectively, than those of cholesterol. No cholesterol oxidases with high activity toward these sterols have been reported so far. The cholesterol oxidation products from these two enzymes also differed. ChoRI and ChoRII oxidized cholesterol to form cholest-4-en-3-one and 6β-hydroperoxycholest-4-en-3-one, respectively.
Collapse
Affiliation(s)
- Noriyuki Doukyu
- Department of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan
- Bio-Nano Electronic Research Center, Toyo University, Kawagoe, Saitama, Japan
- * E-mail:
| | - Makoto Ishikawa
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan
| |
Collapse
|
10
|
The Twin-Arginine Translocation System Is Important for Stress Resistance and Virulence of Brucella melitensis. Infect Immun 2020; 88:IAI.00389-20. [PMID: 32778612 DOI: 10.1128/iai.00389-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Brucella, the causative agent of brucellosis, is a stealthy intracellular pathogen that is highly pathogenic to a range of mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane and has been implicated in virulence in many bacterial pathogens. However, the roles of the Tat system and related substrates in Brucella remain unclear. We report here that disruption of Tat increases the sensitivity of Brucella melitensis M28 to the membrane stressor sodium dodecyl sulfate (SDS), indicating cell envelope defects, as well as to EDTA. In addition, mutating Tat renders M28 bacteria more sensitive to oxidative stress caused by H2O2 Further, loss of Tat significantly attenuates B. melitensis infection in murine macrophages ex vivo Using a mouse model for persistent infection, we demonstrate that Tat is required for full virulence of B. melitensis M28. Genome-wide in silico prediction combined with an in vivo amidase reporter assay indicates that at least 23 proteins are authentic Tat substrates, and they are functionally categorized into solute-binding proteins, oxidoreductases, cell envelope biosynthesis enzymes, and others. A comprehensive deletion study revealed that 6 substrates contribute significantly to Brucella virulence, including an l,d-transpeptidase, an ABC transporter solute-binding protein, and a methionine sulfoxide reductase. Collectively, our work establishes that the Tat pathway plays a critical role in Brucella virulence.
Collapse
|
11
|
Russo DA, Zedler JAZ. Genomic insights into cyanobacterial protein translocation systems. Biol Chem 2020; 402:39-54. [PMID: 33544489 DOI: 10.1515/hsz-2020-0247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are ubiquitous oxygenic photosynthetic bacteria with a versatile metabolism that is highly dependent on effective protein targeting. Protein sorting in diderm bacteria is not trivial and, in cyanobacteria, even less so due to the presence of a complex membrane system: the outer membrane, the plasma membrane and the thylakoid membrane. In cyanobacteria, protein import into the thylakoids is essential for photosynthesis, export to the periplasm fulfills a multifunctional role in maintaining cell homeostasis, and secretion mediates motility, DNA uptake and environmental interactions. Intriguingly, only one set of genes for the general secretory and the twin-arginine translocation pathways seem to be present. However, these systems have to operate in both plasma and thylakoid membranes. This raises the question of how substrates are recognized and targeted to their correct, final destination. Additional complexities arise when a protein has to be secreted across the outer membrane, where very little is known regarding the mechanisms involved. Given their ecological importance and biotechnological interest, a better understanding of protein targeting in cyanobacteria is of great value. This review will provide insights into the known knowns of protein targeting, propose hypotheses based on available genomic sequences and discuss future directions.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Julie A Z Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburgerstr. 159, D-07743 Jena, Germany
| |
Collapse
|
12
|
Li L, Lin Q, Li T, He X, Peng S, Tao Y. Transcriptional response of Pseudomonas chenduensis strain MBR to cadmium toxicity. Appl Microbiol Biotechnol 2020; 104:9749-9757. [DOI: 10.1007/s00253-020-10928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022]
|
13
|
Bernal-Cabas M, Miethke M, Antelo-Varela M, Aguilar Suárez R, Neef J, Schön L, Gabarrini G, Otto A, Becher D, Wolf D, van Dijl JM. Functional association of the stress-responsive LiaH protein and the minimal TatAyCy protein translocase in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118719. [DOI: 10.1016/j.bbamcr.2020.118719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/07/2023]
|
14
|
Abstract
The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.
Collapse
|
15
|
Yoshida H, Kojima K, Shiota M, Yoshimatsu K, Yamazaki T, Ferri S, Tsugawa W, Kamitori S, Sode K. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein. Acta Crystallogr D Struct Biol 2019; 75:841-851. [PMID: 31478907 PMCID: PMC6719666 DOI: 10.1107/s2059798319010878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe-4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit. The structure of the complex revealed that these two molecules are connected through disulfide bonds and hydrophobic interactions, and that the formation of disulfide bonds is required to stabilize the catalytic subunit. The structure of the complex revealed the putative position of the electron-transfer subunit. A comparison of the structures of BcGDHγα and membrane-bound fumarate reductases suggested that the whole BcGDH complex, which also includes the membrane-bound β-subunit containing three heme c moieties, may form a similar overall structure to fumarate reductases, thus accomplishing effective electron transfer.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Katsuhiro Kojima
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masaki Shiota
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, Missouri State University, Springfield, MO 65897, USA
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Stefano Ferri
- Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Abstract
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.
Collapse
Affiliation(s)
- Kelly M. Frain
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen (UMCG), Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
17
|
Tidhar A, Levy Y, Zauberman A, Vagima Y, Gur D, Aftalion M, Israeli O, Chitlaru T, Ariel N, Flashner Y, Zvi A, Mamroud E. Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system. PLoS Negl Trop Dis 2019; 13:e0007449. [PMID: 31170147 PMCID: PMC6553720 DOI: 10.1371/journal.pntd.0007449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that the cell morphogenesis NlpD lipoprotein is essential for virulence of the plague bacteria, Yersinia pestis. To elucidate the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis of the wild-type Y. pestis strain and an nlpD mutant under conditions mimicking early stages of infection. The analysis suggested that NlpD is involved in three phenomena: (i) Envelope stability/integrity evidenced by compensatory up-regulation of the Cpx and Psp membrane stress-response systems in the mutant; (ii) iron acquisition, supported by modulation of iron metabolism genes and by limited growth in iron-deprived medium; (iii) activity of the twin-arginine (Tat) system, which translocates folded proteins across the cytoplasmic membrane. Virulence studies of Y. pestis strains mutated in individual Tat components clearly indicated that the Tat system is central in Y. pestis pathogenicity and substantiated the assumption that NlpD essentiality in iron utilization involves the activity of the Tat system. This study reveals a new role for NlpD in Tat system activity and iron assimilation suggesting a modality by which this lipoprotein is involved in Y. pestis pathogenesis. We have previously shown that the NlpD lipoprotein, which is involved in the regulation of cell morphogenesis, is essential for virulence of the plague bacteria, Yersinia pestis. To uncover the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis as well as phenotypic and virulence evaluation analyses of the nlpD and related mutants. The study reveals a new role for the Y. pestis NlpD lipoprotein in iron assimilation and Tat system activity.
Collapse
Affiliation(s)
- Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Naomi Ariel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| |
Collapse
|
18
|
Sinha AK, Dutta A, Chandravanshi M, Kanaujia SP. An insight into bacterial phospholipase C classification and their translocation through Tat and Sec pathways: A data mining study. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Gudla R, Konduru GV, Nagarajaram HA, Siddavattam D. Organophosphate hydrolase interacts with Ton components and is targeted to the membrane only in the presence of the ExbB/ExbD complex. FEBS Lett 2019; 593:581-593. [DOI: 10.1002/1873-3468.13345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ramurthy Gudla
- Department of Animal Biology School of Life Sciences University of Hyderabad India
| | | | | | | |
Collapse
|
20
|
Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium. PLoS One 2019; 14:e0211584. [PMID: 30716090 PMCID: PMC6361445 DOI: 10.1371/journal.pone.0211584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Cpx-envelope stress system regulates the expression of virulence factors in many Gram-negative pathogens. In Salmonella enterica serovar Typhimurium deletion of the sensor kinase CpxA but not of the response regulator CpxR results in the down regulation of the key regulator for invasion, HilA encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we provide evidence that cpxA deletion interferes with dephosphorylation of CpxR resulting in increased levels of active CpxR and consequently in misregulation of target genes. 14 potential operons were identified to be under direct control of CpxR. These include the virulence determinants ecotin, the omptin PgtE, and the SPI-2 regulator SsrB. The Tat-system and the PocR regulator that together promote anaerobic respiration of tetrathionate on 1,2-propanediol are also under direct CpxR control. Notably, 1,2-propanediol represses hilA expression. Thus, our work demonstrates for the first time the involvement of the Cpx system in a complex network mediating metabolism and virulence function.
Collapse
|
21
|
Far-reaching cellular consequences of tat deletion in Escherichia coli revealed by comprehensive proteome analyses. Microbiol Res 2019; 218:97-107. [DOI: 10.1016/j.micres.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2018] [Accepted: 10/27/2018] [Indexed: 11/22/2022]
|
22
|
Measurement of Internal pH in Helicobacter pylori by Using Green Fluorescent Protein Fluorimetry. J Bacteriol 2018; 200:JB.00178-18. [PMID: 29735759 DOI: 10.1128/jb.00178-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori is an organism known to colonize the normal human stomach. Previous studies have shown that the bacterium does this by elevating its periplasmic pH via the hydrolysis of urea. However, the value of the periplasmic pH was calculated indirectly from the proton motive force equation. To measure the periplasmic pH directly in H. pylori, we fused enhanced green fluorescent protein (EGFP) to the predicted twin-arginine signal peptides of HydA and KapA from H. pylori and TorA from Escherichia coli The fusion proteins were expressed in the H. pylori genome under the control of the cagA promoter. Confocal microscopic and cell fractionation/immunoblotting analyses detected TorA-EGFP in the periplasm and KapA-EGFP in both the periplasm and cytoplasm, while the mature form of HydA-EGFP was seen at low levels in the periplasm, with major cytoplasmic retention of the precursor form. With H. pylori expressing TorA-EGFP, we established a system to directly measure periplasmic pH based on the pH-sensitive fluorimetry of EGFP. These measurements demonstrated that the addition of 5 mM urea has little effect on the periplasmic pH at a medium pH higher than pH 6.5 but rapidly increases the periplasmic pH to pH 6.1 at an acidic medium pH (pH 5.0), corresponding to the opening of the proton-gated channel, UreI, and confirming the basis of gastric colonization. Measurements of the periplasmic pH in an HP0244 (FlgS)-deficient mutant of H. pylori expressing TorA-EGFP revealed a significant loss of the urea-dependent increase in the periplasmic pH at an acidic medium pH, providing additional evidence that FlgS is responsible for recruitment of urease to the inner membrane in association with UreI.IMPORTANCEHelicobacter pylori has been identified as the major cause of chronic superficial gastritis and peptic ulcer disease. In addition, persistent infection with H. pylori, which, if untreated, lasts for the lifetime of an infected individual, predisposes one to gastric malignancies, such as adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. A unique feature of the neutralophilic bacterium H. pylori is its ability to survive in the extremely acidic environment of the stomach through its acid acclimation mechanism. The presented results on measurements of periplasmic pH in H. pylori based on fluorimetry of fully active green fluorescent protein fusion proteins exported with the twin-arginine translocase system provide a reliable and rapid tool for the investigation of acid acclimation in H. pylori.
Collapse
|
23
|
Gullón S, Mellado RP. The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces. Antibiotics (Basel) 2018; 7:E33. [PMID: 29661993 PMCID: PMC6022935 DOI: 10.3390/antibiotics7020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Gram-positive soil bacteria included in the genus Streptomyces produce a large variety of secondary metabolites in addition to extracellular hydrolytic enzymes. From the industrial and commercial viewpoints, the S. lividans strain has generated greater interest as a host bacterium for the overproduction of homologous and heterologous hydrolytic enzymes as an industrial application, which has considerably increased scientific interest in the characterization of secretion routes in this bacterium. This review will focus on the secretion machinery in S. lividans.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| | - Rafael P Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
|
25
|
Adhikari R, Singh D, Chandravanshi M, Dutta A, Kanaujia SP. UgpB, a periplasmic component of the UgpABCE ATP-binding cassette transporter, predominantly follows the Sec translocation pathway. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Tan W, Xi B, Wang G, Jiang J, He X, Mao X, Gao R, Huang C, Zhang H, Li D, Jia Y, Yuan Y, Zhao X. Increased Electron-Accepting and Decreased Electron-Donating Capacities of Soil Humic Substances in Response to Increasing Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3176-3186. [PMID: 28212017 DOI: 10.1021/acs.est.6b04131] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The electron transfer capacities (ETCs) of soil humic substances (HSs) are linked to the type and abundance of redox-active functional moieties in their structure. Natural temperature can affect the chemical structure of natural organic matter by regulating their oxidative transformation and degradation in soil. However, it is unclear if there is a direct correlation between ETC of soil HS and mean annual temperature. In this study, we assess the response of the electron-accepting and -donating capacities (EAC and EDC) of soil HSs to temperature by analyzing HSs extracted from soil set along glacial-interglacial cycles through loess-palaeosol sequences and along natural temperature gradients through latitude and altitude transects. We show that the EAC and EDC of soil HSs increase and decrease, respectively, with increasing temperature. Increased temperature facilitates the prevalence of oxidative degradation and transformation of HS in soils, thus potentially promoting the preferentially oxidative degradation of phenol moieties of HS or the oxidative transformation of electron-donating phenol moieties to electron-accepting quinone moieties in the HS structure. Consequently, the EAC and EDC of HSs in soil increase and decrease, respectively. The results of this study could help to understand biogeochemical processes, wherein the redox functionality of soil organic matter is involved in the context of increasing temperature.
Collapse
Affiliation(s)
| | - Beidou Xi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University , Lanzhou 730070, China
| | - Guoan Wang
- College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
| | - Jie Jiang
- College of Environmental Science and Engineering, Beijing Forestry University , Beijing 100083, China
| | | | - Xuhui Mao
- School of Resource and Environmental Science, Wuhan University , Wuhan 430079, China
| | | | | | | | | | - Yufu Jia
- College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
| | | | | |
Collapse
|
27
|
Arias-Cartin R, Ceccaldi P, Schoepp-Cothenet B, Frick K, Blanc JM, Guigliarelli B, Walburger A, Grimaldi S, Friedrich T, Receveur-Brechot V, Magalon A. Redox cofactors insertion in prokaryotic molybdoenzymes occurs via a conserved folding mechanism. Sci Rep 2016; 6:37743. [PMID: 27886223 PMCID: PMC5123574 DOI: 10.1038/srep37743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/01/2016] [Indexed: 01/28/2023] Open
Abstract
A major gap of knowledge in metalloproteins is the identity of the prefolded state of the protein before cofactor insertion. This holds for molybdoenzymes serving multiple purposes for life, especially in energy harvesting. This large group of prokaryotic enzymes allows for coordination of molybdenum or tungsten cofactors (Mo/W-bisPGD) and Fe/S clusters. Here we report the structural data on a cofactor-less enzyme, the nitrate reductase respiratory complex and characterize the conformational changes accompanying Mo/W-bisPGD and Fe/S cofactors insertion. Identified conformational changes are shown to be essential for recognition of the dedicated chaperone involved in cofactors insertion. A solvent-exposed salt bridge is shown to play a key role in enzyme folding after cofactors insertion. Furthermore, this salt bridge is shown to be strictly conserved within this prokaryotic molybdoenzyme family as deduced from a phylogenetic analysis issued from 3D structure-guided multiple sequence alignment. A biochemical analysis with a distantly-related member of the family, respiratory complex I, confirmed the critical importance of the salt bridge for folding. Overall, our results point to a conserved cofactors insertion mechanism within the Mo/W-bisPGD family.
Collapse
Affiliation(s)
| | - Pierre Ceccaldi
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France.,Aix-Marseille Univ, CNRS, IMM, BIP UMR7281, Marseille, France
| | | | - Klaudia Frick
- Institut für Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | - Anne Walburger
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France
| | | | | | | | - Axel Magalon
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France
| |
Collapse
|
28
|
Effect of culture conditions on the whole cell activity of recombinant Escherichia coli expressing periplasmic organophosphorus hydrolase and cytosolic GroEL/ES chaperone. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0342-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Transcriptomic and Phenotypic Analysis Reveals New Functions for the Tat Pathway in Yersinia pseudotuberculosis. J Bacteriol 2016; 198:2876-86. [PMID: 27501981 DOI: 10.1128/jb.00352-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The twin-arginine translocation (Tat) system mediates the secretion of folded proteins that are identified via an N-terminal signal peptide in bacteria, plants, and archaea. Tat systems are associated with virulence in many bacterial pathogens, and our previous studies revealed that Tat-deficient Yersinia pseudotuberculosis was severely attenuated for virulence. Aiming to identify Tat-dependent pathways and phenotypes of relevance for in vivo infection, we analyzed the global transcriptome of parental and ΔtatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ΔtatC mutant were seen at 26°C during stationary-phase growth, and these included the altered expression of genes related to virulence, stress responses, and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat-dependent phenotypes, including decreased YadA expression, impaired growth under iron-limited and high-copper conditions, as well as acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypic defects observed in the Tat-deficient strain were generally more pronounced than those in mutants lacking the Tat substrate predicted to contribute to that specific function. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection. IMPORTANCE In addition to its established role in mediating the secretion of housekeeping enzymes, the Tat system has been recognized as being involved in infection. In some clinically relevant bacteria, such as Pseudomonas spp., several key virulence determinants can readily be identified among the Tat substrates. In enteropathogens, such as Yersinia spp., there are no obvious virulence determinants among the Tat substrates. Tat mutants show no growth defect in vitro but are highly attenuated in in vivo This makes Tat an attractive target for the development of novel antimicrobials. Therefore, it is important to establish the causes of the attenuation. Here, we show that the attenuation is likely due to synergistic effects of different Tat-dependent phenotypes that each contributes to lowered in vivo fitness.
Collapse
|
30
|
Surface Immobilization of Human Arginase-1 with an Engineered Ice Nucleation Protein Display System in E. coli. PLoS One 2016; 11:e0160367. [PMID: 27479442 PMCID: PMC4968799 DOI: 10.1371/journal.pone.0160367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/18/2016] [Indexed: 01/18/2023] Open
Abstract
Ice nucleation protein (INP) is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N) to improve its surface display efficiency for human Arginase1 (ARG1). Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1) by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg) to L-Ornithine (L-Orn) in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.
Collapse
|
31
|
Bageshwar UK, VerPlank L, Baker D, Dong W, Hamsanathan S, Whitaker N, Sacchettini JC, Musser SM. High Throughput Screen for Escherichia coli Twin Arginine Translocation (Tat) Inhibitors. PLoS One 2016; 11:e0149659. [PMID: 26901445 PMCID: PMC4764201 DOI: 10.1371/journal.pone.0149659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/03/2016] [Indexed: 01/29/2023] Open
Abstract
The twin arginine translocation (Tat) pathway transports fully-folded and assembled proteins in bacteria, archaea and plant thylakoids. The Tat pathway contributes to the virulence of numerous bacterial pathogens that cause disease in humans, cattle and poultry. Thus, the Tat pathway has the potential to be a novel therapeutic target. Deciphering the Tat protein transport mechanism has been challenging since the active translocon only assembles transiently in the presence of substrate and a proton motive force. To identify inhibitors of Tat transport that could be used as biochemical tools and possibly as drug development leads, we developed a high throughput screen (HTS) to assay the effects of compounds in chemical libraries against protein export by the Escherichia coli Tat pathway. The primary screen is a live cell assay based on a fluorescent Tat substrate that becomes degraded in the cytoplasm when Tat transport is inhibited. Consequently, low fluorescence in the presence of a putative Tat inhibitor was scored as a hit. Two diverse chemical libraries were screened, yielding average Z'-factors of 0.74 and 0.44, and hit rates of ~0.5% and 0.04%, respectively. Hits were evaluated by a series of secondary screens. Electric field gradient (Δψ) measurements were particularly important since the bacterial Tat transport requires a Δψ. Seven low IC50 hits were eliminated by Δψ assays, suggesting ionophore activity. As Δψ collapse is generally toxic to animal cells and efficient membrane permeability is generally favored during the selection of library compounds, these results suggest that secondary screening of hits against electrochemical effects should be done early during hit validation. Though none of the short-listed compounds inhibited Tat transport directly, the screening and follow-up assays developed provide a roadmap to pursue Tat transport inhibitors.
Collapse
Affiliation(s)
- Umesh K. Bageshwar
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
| | - Lynn VerPlank
- Broad Institute, Cambridge, MA, United States of America
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
| | - Wen Dong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
| | - Shruthi Hamsanathan
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
| | - Neal Whitaker
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America
| | - Siegfried M. Musser
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
The transition element molybdenum (Mo) is of primordial importance for biological systems as it is required by enzymes catalyzing key reactions in global carbon, sulfur, and nitrogen metabolism. In order to gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo enzymes in prokaryotes, including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox ones. Mo enzymes are widespread in prokaryotes, and many of them were likely present in LUCA. To date, more than 50-mostly bacterial-Mo enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Moco is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.
Collapse
|
33
|
Abstract
Escherichia coli is a versatile facultative anaerobe that can respire on a number of terminal electron acceptors, including oxygen, fumarate, nitrate, and S- and N-oxides. Anaerobic respiration using S- and N-oxides is accomplished by enzymatic reduction of these substrates by dimethyl sulfoxide reductase (DmsABC) and trimethylamine N-oxide reductase (TorCA). Both DmsABC and TorCA are membrane-associated redox enzymes that couple the oxidation of menaquinol to the reduction of S- and N-oxides in the periplasm. DmsABC is membrane bound and is composed of a membrane-extrinsic dimer with a 90.4-kDa catalytic subunit (DmsA) and a 23.1-kDa electron transfer subunit (DmsB). These subunits face the periplasm and are held to the membrane by a 30.8-kDa membrane anchor subunit (DmsC). The enzyme provides the scaffold for an electron transfer relay composed of a quinol binding site, five [4Fe-4S] clusters, and a molybdo-bis(molybdopterin guanine dinucleotide) (present nomenclature: Mo-bis-pyranopterin) (Mo-bisMGD) cofactor. TorCA is composed of a soluble periplasmic subunit (TorA, 92.5 kDa) containing a Mo-bis-MGD. TorA is coupled to the quinone pool via a pentaheme c subunit (TorC, 40.4 kDa) in the membrane. Both DmsABC and TorCA require system-specific chaperones (DmsD or TorD) for assembly, cofactor insertion, and/or targeting to the Tat translocon. In this chapter, we discuss the complex regulation of the dmsABC and torCAD operons, the poorly understood paralogues, and what is known about the assembly and translocation to the periplasmic space by the Tat translocon.
Collapse
|
34
|
A Tat ménage à trois — The role of Bacillus subtilis TatAc in twin-arginine protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2745-53. [DOI: 10.1016/j.bbamcr.2015.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 11/19/2022]
|
35
|
Cholesterol oxidase with high catalytic activity from Pseudomonas aeruginosa: Screening, molecular genetic analysis, expression and characterization. J Biosci Bioeng 2015; 120:24-30. [PMID: 25573142 DOI: 10.1016/j.jbiosc.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 11/23/2022]
Abstract
An extracellular cholesterol oxidase producer, Pseudomonas aeruginosa strain PA157, was isolated by a screening method to detect 6β-hydroperoxycholest-4-en-3-one-forming cholesterol oxidase. On the basis of a putative cholesterol oxidase gene sequence in the genome sequence data of P. aeruginosa strain PAO1, the cholesterol oxidase gene from strain PA157 was cloned. The mature form of the enzyme was overexpressed in Escherichia coli cells. The overexpressed enzyme formed inclusion bodies in recombinant E. coli cells grown at 20 °C and 30 °C. A soluble and active PA157 enzyme was obtained when the recombinant cells were grown at 10 °C. The purified enzyme was stable at pH 5.5 to 10 and was most active at pH 7.5-8.0, showing optimal activity at pH 7.0 and 70 °C. The enzyme retained about 90% of its activity after incubation for 30 min at 70 °C. The enzyme oxidized 3β-hydroxysteroids such as cholesterol, β-cholestanol, and β-sitosterol at high rates. The Km value and Vmax value for the cholesterol were 92.6 μM and 15.9 μmol/min/mg of protein, respectively. The Vmax value of the enzyme was higher than those of commercially available cholesterol oxidases. This is the first report to characterize a cholesterol oxidase from P. aeruginosa.
Collapse
|
36
|
An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism. Sci Rep 2014; 4:7570. [PMID: 25531212 PMCID: PMC4273604 DOI: 10.1038/srep07570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/02/2014] [Indexed: 12/29/2022] Open
Abstract
The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary “hitchhiker” mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.
Collapse
|
37
|
‘Come into the fold’: A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2971-2984. [DOI: 10.1016/j.bbamem.2014.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
|
38
|
Nayak CR, Brown AI, Rutenberg AD. Protein translocation without specific quality control in a computational model of the Tat system. Phys Biol 2014; 11:056005. [PMID: 25154305 DOI: 10.1088/1478-3975/11/5/056005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The twin-arginine translocation (Tat) system transports folded proteins of various sizes across both bacterial and plant thylakoid membranes. The membrane-associated TatA protein is an essential component of the Tat translocon, and a broad distribution of different sized TatA-clusters is observed in bacterial membranes. We assume that the size dynamics of TatA clusters are affected by substrate binding, unbinding, and translocation to associated TatBC clusters, where clusters with bound translocation substrates favour growth and those without associated substrates favour shrinkage. With a stochastic model of substrate binding and cluster dynamics, we numerically determine the TatA cluster size distribution. We include a proportion of targeted but non-translocatable (NT) substrates, with the simplifying hypothesis that the substrate translocatability does not directly affect cluster dynamical rate constants or substrate binding or unbinding rates. This amounts to a translocation model without specific quality control. Nevertheless, NT substrates will remain associated with TatA clusters until unbound and so will affect cluster sizes and translocation rates. We find that the number of larger TatA clusters depends on the NT fraction f. The translocation rate can be optimized by tuning the rate of spontaneous substrate unbinding, [Formula: see text]. We present an analytically solvable three-state model of substrate translocation without cluster size dynamics that follows our computed translocation rates, and that is consistent with in vitro Tat-translocation data in the presence of NT substrates.
Collapse
Affiliation(s)
- Chitra R Nayak
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| | | | | |
Collapse
|
39
|
|
40
|
Patel R, Smith SM, Robinson C. Protein transport by the bacterial Tat pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1620-8. [PMID: 24583120 DOI: 10.1016/j.bbamcr.2014.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
The twin-arginine translocation (Tat) system accomplishes the remarkable feat of translocating large - even dimeric - proteins across tightly sealed energy-transducing membranes. All of the available evidence indicates that it is unique in terms of both structure and mechanism; however its very nature has hindered efforts to probe the core translocation events. At the heart of the problem is the fact that two large sub-complexes are believed to coalesce to form the active translocon, and 'capturing' this translocation event has been too difficult. Nevertheless, studies on the individual components have come a long way in recent years, and structural studies have reached the point where educated guesses can be made concerning the most interesting aspects of Tat. In this article we review these studies and the emerging ideas in this field. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Roshani Patel
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
41
|
Twin-arginine translocation system in Helicobacter pylori: TatC, but not TatB, is essential for viability. mBio 2014; 5:e01016-13. [PMID: 24449753 PMCID: PMC3903283 DOI: 10.1128/mbio.01016-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The twin-arginine translocation (Tat) system, needed to transport folded proteins across biological membranes, has not been characterized in the gastric pathogen Helicobacter pylori. Analysis of all H. pylori genome sequences available thus far reveals the presence of single copies of tatA, tatB, and tatC needed for the synthesis of a fully functional Tat system. Based on the presence of the twin-arginine hallmark in their signal sequence, only four H. pylori proteins appear to be Tat dependent: hydrogenase (HydA), catalase-associated protein (KapA), biotin sulfoxide reductase (BisC), and the ubiquinol cytochrome oxidoreductase Rieske protein (FbcF). In the present study, targeted mutations were aimed at tatA, tatB, tatC, or queA (downstream gene control). While double homologous recombination mutations in tatB and queA were easily obtained, attempts at disrupting tatA proved unsuccessful, while deletion of tatC led to partial mutants following single homologous recombination, with cells retaining a chromosomal copy of tatC. Double homologous recombination tatC mutants were obtained only when a plasmid-borne, isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible copy of tatC was introduced prior to transformation. These conditional tatC mutants could grow only in the presence of IPTG, suggesting that tatC is essential in H. pylori. tatB and tatC mutants had lower hydrogenase and catalase activities than the wild-type strain did, and the ability of tatC mutants to colonize mouse stomachs was severely affected compared to the wild type. Chromosomal complementation of tatC mutants restored hydrogenase and catalase activities to wild-type levels, and additional expression of tatC in wild-type cells resulted in elevated Tat-dependent enzyme activities. Unexpectedly, the tat strains had cell envelope defects. This work reports the first characterization of the twin-arginine translocation (Tat) system in the gastric pathogen Helicobacter pylori. While tatB mutants were easily obtained, only single-crossover partial tatC mutants or conditional tatC mutants could be generated, indicating that tatC is essential in H. pylori, a surprising finding given the fact that only four proteins are predicted to be translocated by the Tat system in this bacterium. The levels of activity of hydrogenase and catalase, two of the predicted Tat-dependent enzymes, were affected in these mutants. In addition, all tat mutants displayed cell envelope defects, and tatC mutants were deficient in mouse colonization.
Collapse
|
42
|
Dow JM, Grahl S, Ward R, Evans R, Byron O, Norman DG, Palmer T, Sargent F. Characterization of a periplasmic nitrate reductase in complex with its biosynthetic chaperone. FEBS J 2013; 281:246-60. [PMID: 24314029 PMCID: PMC4159696 DOI: 10.1111/febs.12592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
Abstract
Escherichia coli is a Gram‐negative bacterium that can use nitrate during anaerobic respiration. The catalytic subunit of the periplasmic nitrate reductase NapA contains two types of redox cofactor and is exported across the cytoplasmic membrane by the twin‐arginine protein transport pathway. NapD is a small cytoplasmic protein that is essential for the activity of the periplasmic nitrate reductase and binds tightly to the twin‐arginine signal peptide of NapA. Here we show, using spin labelling and EPR, that the isolated twin‐arginine signal peptide of NapA is structured in its unbound form and undergoes a small but significant conformational change upon interaction with NapD. In addition, a complex comprising the full‐length NapA protein and NapD could be isolated by engineering an affinity tag onto NapD only. Analytical ultracentrifugation demonstrated that the two proteins in the NapDA complex were present in a 1 : 1 molar ratio, and small angle X‐ray scattering analysis of the complex indicated that NapA was at least partially folded when bound by its NapD partner. A NapDA complex could not be isolated in the absence of the NapA Tat signal peptide. Taken together, this work indicates that the NapD chaperone binds primarily at the NapA signal peptide in this system and points towards a role for NapD in the insertion of the molybdenum cofactor. Structured digital abstract NapD and NapAbind by x ray scattering (View interaction) NapA and NapD physically interact by molecular sieving (View interaction) NapA and NapDbind by electron paramagnetic resonance (View interaction)
Collapse
Affiliation(s)
- Jennifer M Dow
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Simone D, Bay DC, Leach T, Turner RJ. Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS One 2013; 8:e78742. [PMID: 24236045 PMCID: PMC3827258 DOI: 10.1371/journal.pone.0078742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial classes and its specialization may be driven by the substrates it transports and the environment of its host.
Collapse
Affiliation(s)
- Domenico Simone
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Bari, Italy
| | - Denice C. Bay
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thorin Leach
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
44
|
The twin arginine translocation system is essential for aerobic growth and full virulence of Burkholderia thailandensis. J Bacteriol 2013; 196:407-16. [PMID: 24214943 DOI: 10.1128/jb.01046-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some β-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated.
Collapse
|
45
|
Akiba K, Ando T, Isogai E, Nakae T, Yoneyama H. Tat pathway-mediated translocation of the Sec pathway substrate OprM, an outer membrane subunit of the resistance nodulation division xenobiotic extrusion pumps, in Pseudomonas Aeruginosa. Chemotherapy 2013; 59:129-37. [PMID: 24051688 DOI: 10.1159/000353894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa produces the Sec and Tat protein secretion machineries. The latter appears to be involved in the secretion of virulence factors, including phospholipase C (PlcH), and hence is a potential target of chemotherapeutic agents. METHODS The signal sequence of OprM, the outer membrane subunit of the xenobiotic extrusion pumps, was substituted with that of PlcH. The antibiotic susceptibility of oprM-deficient cells expressing the hybrid protein PlcH-OprM was evaluated using the agar dilution method. RESULTS The PlcH-OprM-expressing cells showed resistance to various MexAB-OprM substrate antibiotics. To evaluate the translocation route of PlcH-OprM, tatC encoding an indispensable component of the Tat machinery was knocked out in oprM-deficient cells. The tatC-oprM double mutant expressing PlcH-OprM exhibited antibiotic hypersusceptibility like the oprM-deficient cells, indicating that PlcH-OprM was translocated across the inner membrane exclusively through the Tat system. CONCLUSIONS This system can be used for the screening of Tat system inhibitors and will be an excellent model for the study of secretion and biogenesis of the β-barrel outer membrane proteins.
Collapse
Affiliation(s)
- K Akiba
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
46
|
Blume A, Kerth A. Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2294-305. [PMID: 23816442 DOI: 10.1016/j.bbamem.2013.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
Lipid monolayers at the air-water interface represent half of a lipid bilayer and are therefore suitable model systems for studying the binding of peripheral proteins and polypeptides as well as proteins containing hydrophobic membrane anchors to membrane interfaces. Infrared reflection-absorption spectroscopy (IRRAS) of these monolayer films at the air-water interface provides information on the state of the lipid monolayers as well as on the conformational and orientational order of the film constituents. We will review shortly the experimental set-up and the possibilities for obtaining structural information before several applications of the method to lipid-protein monolayers will be described. We will focus on examples where the analysis of the protein and peptide bands for pure monolayers of these compounds are combined with experiments where the same compounds are bound to lipid monolayers. Combination of these experiments leads to detailed information about the conformational properties and the orientation of the molecules at the air-water interface in contrast to being bound to the lipid-water interface. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Alfred Blume
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle Saale, Germany.
| | | |
Collapse
|
47
|
Engineering microbial cells for the biosynthesis of natural compounds of pharmaceutical significance. BIOMED RESEARCH INTERNATIONAL 2013; 2013:780145. [PMID: 23710459 PMCID: PMC3655478 DOI: 10.1155/2013/780145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/30/2013] [Indexed: 12/19/2022]
Abstract
Microbes constitute important platforms for the biosynthesis of numerous molecules of pharmaceutical interest such as antitumor, anticancer, antiviral, antihypertensive, antiparasitic, antioxidant, immunological agents, and antibiotics as well as hormones, belonging to various chemical families, for instance, terpenoids, alkaloids, polyphenols, polyketides, amines, and proteins. Engineering microbial factories offers rich opportunities for the production of natural products that are too complex for cost-effective chemical synthesis and whose extraction from their originating plants needs the use of many solvents. Recent progresses that have been made since the millennium beginning with metabolic engineering of microorganisms for the biosynthesis of natural products of pharmaceutical significance will be reviewed.
Collapse
|
48
|
Lohner ST, Spormann AM. Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120326. [PMID: 23479755 PMCID: PMC3638466 DOI: 10.1098/rstb.2012.0326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genome sequence of psychrophilic Shewanella sediminis revealed the presence of five putative reductive dehalogenases (Rdhs). We found that cell extracts of pyruvate/fumarate-grown S. sediminis cells catalysed reduced methyl viologen-dependent reductive dechlorination of tetrachloroethene (PCE) to trichloroethene (TCE) at a specific activity of approximately 1 nmol TCE min(-1) (mg protein)(-1). Dechlorination of PCE followed Michaelis-Menten kinetics with an apparent Km of 120 μM PCE. No PCE dechlorination was observed with heat-denatured extract or when cyanocobalamin was omitted from the growth medium; however, the presence of PCE in the growth medium increased PCE transformation rates. Analysis of mutants carrying in-frame deletions of all five Rdhs encoding genes showed that only deletion of Ssed_3769 resulted in the loss of PCE dechlorination activity suggesting that Ssed_3769 is a functional Rdh. This is the first study to show reductive dechlorination activity of PCE in a sediment-dwelling Shewanella species that may be important for linking the flux of organohalogens to organic carbon via reductive dehalogenation in marine sediments.
Collapse
Affiliation(s)
- Svenja T. Lohner
- Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alfred M. Spormann
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Wang Y, Wang Q, Yang M, Zhang Y. Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogenEdwardsiella tarda. FEMS Microbiol Lett 2013; 343:145-55. [DOI: 10.1111/1574-6968.12140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yamin Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Minjun Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| |
Collapse
|
50
|
Whitaker N, Bageshwar U, Musser SM. Effect of cargo size and shape on the transport efficiency of the bacterial Tat translocase. FEBS Lett 2013; 587:912-6. [PMID: 23422074 DOI: 10.1016/j.febslet.2013.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
The Tat machinery translocates fully-folded and oligomeric substrates. The passage of large, bulky cargos across an ion-tight membrane suggests the need to match pore and cargo size, and therefore that Tat transport efficiency may depend on both cargo size and shape. A series of cargos of different sizes and shapes were generated using the natural Tat substrate pre-SufI as a base. Four (of 17) cargos transported with significant (>20% of wild-type) efficiencies. These results indicate that cargo size and shape significantly influence Tat transportability.
Collapse
Affiliation(s)
- Neal Whitaker
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, 1114 TAMU, College Station, TX 77843, USA
| | | | | |
Collapse
|