1
|
Biryukov SS, Wu H, Dankmeyer JL, Rill NO, Klimko CP, Egland KA, Shoe JL, Hunter M, Fetterer DP, Qiu J, Davies ML, Bausch CL, Sullivan EJ, Luke T, Cote CK. Polyclonal Antibodies Derived from Transchromosomic Bovines Vaccinated with the Recombinant F1-V Vaccine Increase Bacterial Opsonization In Vitro and Protect Mice from Pneumonic Plague. Antibodies (Basel) 2023; 12:antib12020033. [PMID: 37218899 DOI: 10.3390/antib12020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Plague is an ancient disease that continues to be of concern to both the public health and biodefense research communities. Pneumonic plague is caused by hematogenous spread of Yersinia pestis bacteria from a ruptured bubo to the lungs or by directly inhaling aerosolized bacteria. The fatality rate associated with pneumonic plague is significant unless effective antibiotic therapy is initiated soon after an early and accurate diagnosis is made. As with all bacterial pathogens, drug resistance is a primary concern when developing strategies to combat these Yersinia pestis infections in the future. While there has been significant progress in vaccine development, no FDA-approved vaccine strategy exists; thus, other medical countermeasures are needed. Antibody treatment has been shown to be effective in animal models of plague. We produced fully human polyclonal antibodies in transchromosomic bovines vaccinated with the recombinant F1-V plague vaccine. The resulting human antibodies opsonized Y. pestis bacteria in the presence of RAW264.7 cells and afforded significant protection to BALB/c mice after exposure to aerosolized Y. pestis. These data demonstrate the utility of this technology to produce large quantities of non-immunogenic anti-plague human antibodies to prevent or possibly treat pneumonic plague in human.
Collapse
Affiliation(s)
- Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Hua Wu
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Kristi A Egland
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - David P Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Ju Qiu
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | | | - Eddie J Sullivan
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Thomas Luke
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
2
|
Kinoshita M, Shimizu M, Akiyama K, Kato H, Moriyama K, Sawa T. Epidemiological survey of serum titers from adults against various Gram-negative bacterial V-antigens. PLoS One 2020; 15:e0220924. [PMID: 32155175 PMCID: PMC7064248 DOI: 10.1371/journal.pone.0220924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
The V-antigen, a virulence-associated protein, was first identified in Yersinia pestis more than half a century ago. Since then, other V-antigen homologs and orthologs have been discovered and are now considered as critical molecules for the toxic effects mediated by the type III secretion system during infections caused by various pathogenic Gram-negative bacteria. After purifying recombinant V-antigen proteins, including PcrV from Pseudomonas aeruginosa, LcrV from Yersinia, LssV from Photorhabdus luminescens, AcrV from Aeromonas salmonicida, and VcrV from Vibrio parahaemolyticus, we developed an enzyme-linked immunoabsorbent assay to measure titers against each V-antigen in sera collected from 186 adult volunteers. Different titer-specific correlation levels were determined for the five V-antigens. The anti-LcrV and anti-AcrV titers shared the highest correlation with each other with a correlation coefficient of 0.84. The next highest correlation coefficient was between anti-AcrV and anti-VcrV titers at 0.79, while the lowest correlation was found between anti-LcrV and anti-VcrV titers, which were still higher than 0.7. Sera from mice immunized with one of the five recombinant V-antigens displayed cross-antigenicity with some of the other four V-antigens, supporting the results from the human sera. Thus, the serum anti-V-antigen titer measurement system may be used for epidemiological investigations of various pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Mao Kinoshita
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaru Shimizu
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Akiyama
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideya Kato
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
3
|
Sawa T, Kinoshita M, Inoue K, Ohara J, Moriyama K. Immunoglobulin for Treating Bacterial Infections: One More Mechanism of Action. Antibodies (Basel) 2019; 8:antib8040052. [PMID: 31684203 PMCID: PMC6963986 DOI: 10.3390/antib8040052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The mechanisms underlying the effects of immunoglobulins on bacterial infections are thought to involve bacterial cell lysis via complement activation, phagocytosis via bacterial opsonization, toxin neutralization, and antibody-dependent cell-mediated cytotoxicity. Nevertheless, recent advances in the study of the pathogenicity of Gram-negative bacteria have raised the possibility of an association between immunoglobulin and bacterial toxin secretion. Over time, new toxin secretion systems like the type III secretion system have been discovered in many pathogenic Gram-negative bacteria. With this system, the bacterial toxins are directly injected into the cytoplasm of the target cell through a special secretory apparatus without any exposure to the extracellular environment, and therefore with no opportunity for antibodies to neutralize the toxin. However, antibodies against the V-antigen, which is located on the needle-shaped tip of the bacterial secretion apparatus, can inhibit toxin translocation, thus raising the hope that the toxin may be susceptible to antibody targeting. Because multi-drug resistant bacteria are now prevalent, inhibiting this secretion mechanism is an attractive alternative or adjunctive therapy against lethal bacterial infections. Thus, it is not unreasonable to define the blocking effect of anti-V-antigen antibodies as the fifth mechanism for immunoglobulin action against bacterial infections.
Collapse
Affiliation(s)
- Teiji Sawa
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Keita Inoue
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Junya Ohara
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Kiyoshi Moriyama
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| |
Collapse
|
4
|
Picking WD, Barta ML. The Tip Complex: From Host Cell Sensing to Translocon Formation. Curr Top Microbiol Immunol 2019; 427:173-199. [PMID: 31218507 DOI: 10.1007/82_2019_171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type III secretion systems are used by some Gram-negative bacteria to inject effector proteins into targeted eukaryotic cells for the benefit of the bacterium. The type III secretion injectisome is a complex nanomachine comprised of four main substructures including a cytoplasmic sorting platform, an envelope-spanning basal body, an extracellular needle and an exposed needle tip complex. Upon contact with a host cell, secretion is induced, resulting in the formation of a translocon pore in the host membrane. Translocon formation completes the conduit needed for effector secretion into the host cell. Control of type III secretion occurs in response to environmental signals, with the final signal being host cell contact. Secretion control occurs primarily at two sites-the cytoplasmic sorting platform, which determines secretion hierarchy, and the needle tip complex, which is critical for sensing and responding to environmental signals. The best-characterized injectisomes are those from Yersinia, Shigella and Salmonella species where there is a wealth of information on the tip complex and the two translocator proteins. Of these systems, the best characterized from a secretion regulation standpoint is Shigella. In the Shigella system, the tip complex and the first secreted translocon both contribute to secretion control and, thus, both are considered components of the tip complex. In this review, all three of these type III secretion systems are described with discussion focused on the structure and formation of the injectisome tip complex and what is known of the transition from nascent tip complex to assembled translocon pore.
Collapse
Affiliation(s)
- William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, 66047, KS, USA.
| | - Michael L Barta
- Higuchi Biosciences, 2099 Constant Ave., Lawrence, 66047, KS, USA.,Catalent Pharma Solutions, 10245 Hickman Mills Drive, Kansas City, 64137, MO, USA
| |
Collapse
|
5
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
6
|
Coleman MA, Cappuccio JA, Blanchette CD, Gao T, Arroyo ES, Hinz AK, Bourguet FA, Segelke B, Hoeprich PD, Huser T, Laurence TA, Motin VL, Chromy BA. Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles. PLoS One 2016; 11:e0150166. [PMID: 27015536 PMCID: PMC4807764 DOI: 10.1371/journal.pone.0150166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.
Collapse
Affiliation(s)
- Matthew A. Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
- University of California Davis, NSF, Center for Biophotonics, Sacramento, CA, United States of America, 95817
- * E-mail: (MAC); (BAC)
| | - Jenny A. Cappuccio
- Humboldt State University, Department of Chemistry, Arcata, CA, United States of America, 95521
| | - Craig D. Blanchette
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
| | - Tingjuan Gao
- University of California Davis, NSF, Center for Biophotonics, Sacramento, CA, United States of America, 95817
| | - Erin S. Arroyo
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
| | - Angela K. Hinz
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
| | - Feliza A. Bourguet
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
| | - Brent Segelke
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
| | - Paul D. Hoeprich
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
| | - Thomas Huser
- University of California Davis, NSF, Center for Biophotonics, Sacramento, CA, United States of America, 95817
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, CA, United States of America, 94550
| | - Vladimir L. Motin
- University of Texas Medical Branch, Galveston, TX, United States of America, 77555
| | - Brett A. Chromy
- University of California Davis, NSF, Center for Biophotonics, Sacramento, CA, United States of America, 95817
- * E-mail: (MAC); (BAC)
| |
Collapse
|
7
|
Chang JH, Desveaux D, Creason AL. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:317-45. [PMID: 24906130 DOI: 10.1146/annurev-phyto-011014-015624] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria have many export and secretion systems that translocate cargo into and across biological membranes. Seven secretion systems contribute to pathogenicity by translocating proteinaceous cargos that can be released into the extracellular milieu or directly into recipient cells. In this review, we describe these secretion systems and how their complexities and functions reflect differences in the destinations, states, functions, and sizes of the translocated cargos as well as the architecture of the bacterial cell envelope. We examine the secretion systems from the perspective of pathogenic bacteria that proliferate within plant tissues and highlight examples of translocated proteins that contribute to the infection and disease of plant hosts.
Collapse
Affiliation(s)
- Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331; ,
| | | | | |
Collapse
|
8
|
Galle M, Carpentier I, Beyaert R. Structure and function of the Type III secretion system of Pseudomonas aeruginosa. Curr Protein Pept Sci 2012; 13:831-42. [PMID: 23305368 PMCID: PMC3706959 DOI: 10.2174/138920312804871210] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa is a dangerous pathogen particularly because it harbors multiple virulence factors. It causes several types of infection, including dermatitis, endocarditis, and infections of the urinary tract, eye, ear, bone, joints and, of particular interest, the respiratory tract. Patients with cystic fibrosis, who are extremely susceptible to Pseudomonas infections, have a bad prognosis and high mortality. An important virulence factor of P. aeruginosa, shared with many other gram-negative bacteria, is the type III secretion system, a hollow molecular needle that transfers effector toxins directly from the bacterium into the host cell cytosol. This complex macromolecular machine works in a highly regulated manner and can manipulate the host cell in many different ways. Here we review the current knowledge of the structure of the P. aeruginosa T3SS, as well as its function and recognition by the immune system. Furthermore, we describe recent progress in the development and use of therapeutic agents targeting the T3SS.
Collapse
Affiliation(s)
- Marlies Galle
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Isabelle Carpentier
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; the
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
9
|
Abstract
The TTSS encoding "translocator operon" of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an α-helical model for PopB, PcrH and PopB-PcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB-PcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (K(d) ~ 0.37 μM) of PopB for PcrH at pH 7.8, which reduces to ~0.68 μM at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.
Collapse
|
10
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
11
|
Gupta G, Ali R, Khan AA, Rao D. Evaluation of CD4+/CD8+ T-cell expression and IFN-γ, perforin secretion for B–T constructs of F1 and V antigens of Yersinia pestis. Int Immunopharmacol 2012; 12:64-73. [DOI: 10.1016/j.intimp.2011.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/04/2011] [Accepted: 10/18/2011] [Indexed: 12/23/2022]
|
12
|
Rathinavelan T, Tang C, De Guzman RN. Characterization of the interaction between the Salmonella type III secretion system tip protein SipD and the needle protein PrgI by paramagnetic relaxation enhancement. J Biol Chem 2010; 286:4922-30. [PMID: 21138848 DOI: 10.1074/jbc.m110.159434] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many Gram-negative bacteria that cause major diseases and mortality worldwide require the type III secretion system (T3SS) to inject virulence proteins into their hosts and cause infections. A structural component of the T3SS is the needle apparatus, which consists of a base, an external needle, and a tip complex. In Salmonella typhimurium, the external needle is assembled by the polymerization of the needle protein PrgI. On top of this needle sits a tip complex, which is partly formed by the tip protein SipD. How SipD interacts with PrgI during the assembly of the T3SS needle apparatus remains unknown. The central region of PrgI forms an α-helical hairpin, whereas SipD has a long central coiled-coil, which is a defining structural feature of other T3SS tip proteins as well. Using NMR paramagnetic relaxation enhancement, we have identified a specific region on the SipD coiled-coil that interacts directly with PrgI. We present a model of how SipD might dock at the tip of the needle based on our paramagnetic relaxation enhancement results, thus offering new insight about the mechanism of assembly of the T3SS needle apparatus.
Collapse
|
13
|
Betts-Hampikian HJ, Fields KA. The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut. Front Microbiol 2010; 1:114. [PMID: 21738522 PMCID: PMC3125583 DOI: 10.3389/fmicb.2010.00114] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/22/2010] [Indexed: 12/22/2022] Open
Abstract
Present-day members of the Chlamydiaceae contain parasitic bacteria that have been co-evolving with their eukaryotic hosts over hundreds of millions of years. Likewise, a type III secretion system encoded within all genomes has been refined to complement the unique obligate intracellular niche colonized so successfully by Chlamydia spp. All this adaptation has occurred in the apparent absence of the horizontal gene transfer responsible for creating the wide range of diversity in other Gram-negative, type III-expressing bacteria. The result is a system that is, in many ways, uniquely chlamydial. A critical mass of information has been amassed that sheds significant light on how the chlamydial secretion system functions and contributes to an obligate intracellular lifestyle. Although the overall mechanism is certainly similar to homologous systems, an image has emerged where the chlamydial secretion system is essential for both survival and virulence. Numerous apparent differences, some subtle and some profound, differentiate chlamydial type III secretion from others. Herein, we provide a comprehensive review of the current state of knowledge regarding the Chlamydia type III secretion mechanism. We focus on the aspects that are distinctly chlamydial and comment on how this important system influences chlamydial pathogenesis. Gaining a grasp on this fascinating system has been challenging in the absence of a tractable genetic system. However, the surface of this tough nut has been scored and the future promises to be fruitful and revealing.
Collapse
|
14
|
Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 2010; 17:788-92. [PMID: 20543831 DOI: 10.1038/nsmb.1822] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 04/01/2010] [Indexed: 12/30/2022]
Abstract
Pathogenic Gram-negative bacteria use a type three secretion system (TTSS) to deliver virulence factors into host cells. Although the order in which proteins incorporate into the growing TTSS is well described, the underlying assembly mechanisms are still unclear. Here we show that the TTSS needle protomer refolds spontaneously to extend the needle from the distal end. We developed a functional mutant of the needle protomer from Shigella flexneri and Salmonella typhimurium to study its assembly in vitro. We show that the protomer partially refolds from alpha-helix into beta-strand conformation to form the TTSS needle. Reconstitution experiments show that needle growth does not require ATP. Thus, like the structurally related flagellar systems, the needle elongates by subunit polymerization at the distal end but requires protomer refolding. Our studies provide a starting point to understand the molecular assembly mechanisms and the structure of the TTSS at atomic level.
Collapse
|
15
|
Amino acid and structural variability of Yersinia pestis LcrV protein. INFECTION GENETICS AND EVOLUTION 2009; 10:137-45. [PMID: 19835996 DOI: 10.1016/j.meegid.2009.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 01/09/2023]
Abstract
The LcrV protein is a multifunctional virulence factor and protective antigen of the plague bacterium and is generally conserved between the epidemic strains of Yersinia pestis. We investigated the diversity in the LcrV sequences among non-epidemic Y. pestis strains which have a limited virulence in selected animal models and for humans. Sequencing of lcrV genes from 19 Y. pestis strains belonging to different phylogenetic groups (subspecies) showed that the LcrV proteins possess four major variable hotspots at positions 18, 72, 273, and 324-326. These major variations, together with other minor substitutions in amino acid sequences, allowed us to classify the LcrV alleles into five sequence types (A-E). We observed that the strains of different Y. pestis "subspecies" can have the same type of LcrV, including that conserved in epidemic strains, and different types of LcrV can exist within the same natural plague focus. Therefore, the phenomenon of "selective virulence" characteristic of the strains of the microtus biovar is unlikely to be the result of polymorphism of the V antigen. The LcrV polymorphisms were structurally analyzed by comparing the modeled structures of LcrV from all available strains. All changes except one occurred either in flexible regions or on the surface of the protein, but local chemical properties (i.e. those of a hydrophobic, hydrophilic, amphipathic, or charged nature) were conserved across all of the strains. Polymorphisms in flexible and surface regions are likely subject to less selective pressure, and have a limited impact on the structure. In contrast, the substitution of tryptophan at position 113 with either glutamic acid or glycine likely has a serious influence on the regional structure of the protein, and these mutations might have an effect on the function of LcrV. The polymorphisms at positions 18, 72 and 273 were accountable for differences in the oligomerization of LcrV.
Collapse
|
16
|
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa uses a complex type III secretion apparatus to inject effector proteins into host cells. The configuration of this secretion machinery, the activities of the proteins that are injected by it and the consequences of this process for infection are now being elucidated. This Review summarizes our current knowledge of P. aeruginosa type III secretion, including the secretion and translocation machinery, the regulation of this machinery, and the associated chaperones and effector proteins. The features of this interesting secretion system have important implications for the pathogenesis of P. aeruginosa infections and for other type III secretion systems.
Collapse
Affiliation(s)
- Alan R Hauser
- Departments of MicrobiologyImmunology and Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
17
|
Abstract
Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.
Collapse
Affiliation(s)
- Marijo S Roiko
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
18
|
Saier MH, Ma CH, Rodgers L, Tamang DG, Yen MR. Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles. ADVANCES IN APPLIED MICROBIOLOGY 2009; 65:141-97. [PMID: 19026865 DOI: 10.1016/s0065-2164(08)00606-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | |
Collapse
|
19
|
Feodorova VA, Pan'kina LN, Savostina EP, Kuznetsov OS, Konnov NP, Sayapina LV, Dentovskaya SV, Shaikhutdinova RZ, Ageev SA, Lindner B, Kondakova AN, Bystrova OV, Kocharova NA, Senchenkova SN, Holst O, Pier GB, Knirel YA, Anisimov AP, Motin VL. Pleiotropic effects of the lpxM mutation in Yersinia pestis resulting in modification of the biosynthesis of major immunoreactive antigens. Vaccine 2009; 27:2240-50. [PMID: 19428838 DOI: 10.1016/j.vaccine.2009.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/01/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Deletion mutants in the lpxM gene in two Yersinia pestis strains, the live Russian vaccine strain EV NIIEG and a fully virulent strain, 231, synthesise a less toxic penta-acylated lipopolysaccharide (LPS). Analysis of these mutants revealed they possessed marked reductions in expression and immunoreactivity of numerous major proteins and carbohydrate antigens, including F1, Pla, Ymt, V antigen, LPS, and ECA. Moreover, both mutants demonstrated altered epitope specificities of the antigens as determined in immunodot-ELISAs and immunoblotting analyses using a panel of monoclonal antibodies. The strains also differed in their susceptibility to the diagnostic plague bacteriophage L-413C. These findings indicate that the effects of the lpxM mutation on reduced virulence and enhanced immunity of the Y. pestis EV DeltalpxM is also associated with these pleiotropic changes and not just to changes in the lipid A acylation.
Collapse
Affiliation(s)
- V A Feodorova
- Russian State Anti-Plague Research Institute "Microbe," 46, Universitetskaya Street, Saratov, 410005, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Medhekar B, Shrivastava R, Mattoo S, Gingery M, Miller JF. Bordetella Bsp22 forms a filamentous type III secretion system tip complex and is immunoprotective in vitro and in vivo. Mol Microbiol 2008; 71:492-504. [PMID: 19040642 DOI: 10.1111/j.1365-2958.2008.06543.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type III secretion system (T3SS) tip complexes serve as adaptors that bridge the T3SS needle and the pore-forming translocation apparatus. In this report we demonstrate that Bsp22, the most abundantly secreted substrate of the Bordetella T3SS, self-polymerizes to form the Bordetella bronchiseptica tip complex. Bsp22 is required for both T3SS-mediated cytotoxicity against eukaryotic cells and haemoglobin release from erythrocytes. Bacterial two-hybrid analysis and protein pull-down assays demonstrated the ability of Bsp22 to associate with itself and to bind BopD, a component of the Bordetella translocation pore. Immunoblot and cross-linking analysis of secreted proteins or purified Bsp22 showed extensive multimerization which was shown by transmission electron microscopy to lead to the formation of variable length flexible filaments. Immunoelectron microscopy revealed Bsp22 filaments on the surface of bacterial cells. Given its required role in secretion and cell-surface exposure, we tested the protective effects of antibodies against Bsp22 in vitro and in vivo. Polyclonal antisera against Bsp22 fully protected epithelial cells from T3SS-dependent killing and immunization with Bsp22 protected mice against Bordetella infection. Of the approximately 30 genes which encode the Bordetella T3SS apparatus, bsp22 is the only one without characterized orthologues in other well-characterized T3SS loci. A maximum likelihood phylogenetic analysis indicated that Bsp22 defines a new subfamily of T3SS tip complex proteins. Given its immunogenic and immunoprotective properties and high degree of conservation among Bordetella species, Bsp22 and its homologues may prove useful for diagnostics and next-generation subunit vaccines.
Collapse
Affiliation(s)
- Bob Medhekar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
21
|
Khan AA, Babu JP, Gupta G, Rao D. Identifying B and T cell epitopes and studying humoral, mucosal and cellular immune responses of peptides derived from V antigen of Yersinia pestis. Vaccine 2008; 26:316-32. [DOI: 10.1016/j.vaccine.2007.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/04/2007] [Accepted: 11/07/2007] [Indexed: 12/18/2022]
|
22
|
Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234. J Bacteriol 2007; 190:750-4. [PMID: 17981961 DOI: 10.1128/jb.01116-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pili synthesized by the type III secretion system of Rhizobium species strain NGR234 are essential for protein secretion and thus for efficient symbiosis with many legumes. Isolation and partial purification of these pili showed that they are composed of at least three proteins, NopA, NopB, and NopX. Using biochemical assays, we show here that these proteins interact directly with one another.
Collapse
|
23
|
Veenendaal AKJ, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 2007; 63:1719-30. [PMID: 17367391 DOI: 10.1111/j.1365-2958.2007.05620.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.
Collapse
Affiliation(s)
- Andreas K J Veenendaal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
24
|
Sani M, Botteaux A, Parsot C, Sansonetti P, Boekema EJ, Allaoui A. IpaD is localized at the tip of the Shigella flexneri type III secretion apparatus. Biochim Biophys Acta Gen Subj 2007; 1770:307-11. [PMID: 17110044 DOI: 10.1016/j.bbagen.2006.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/03/2006] [Accepted: 10/11/2006] [Indexed: 12/23/2022]
Abstract
Type III secretion (T3S) systems are used by numerous Gram-negative pathogenic bacteria to inject virulence proteins into animal and plant host cells. The core of the T3S apparatus, known as the needle complex, is composed of a basal body transversing both bacterial membranes and a needle protruding above the bacterial surface. In Shigella flexneri, IpaD is required to inhibit the activity of the T3S apparatus prior to contact of bacteria with host and has been proposed to assist translocation of bacterial proteins into host cells. We investigated the localization of IpaD by electron microscopy analysis of cross-linked bacteria and mildly purified needle complexes. This analysis revealed the presence of a distinct density at the needle tip. A combination of single particle analysis, immuno-labeling and biochemical analysis, demonstrated that IpaD forms part of the structure at the needle tip. Anti-IpaD antibodies were shown to block entry of bacteria into epithelial cells.
Collapse
Affiliation(s)
- Musa Sani
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Roles of YopN, LcrG and LcrV in Controlling Yops Secretion by Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:225-34. [DOI: 10.1007/978-0-387-72124-8_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Roversi P, Johnson S, Field T, Deane JE, Galyov EE, Lea SM. Expression, purification, crystallization and preliminary crystallographic analysis of BipD, a component of the Burkholderia pseudomallei type III secretion system. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:861-4. [PMID: 16946464 PMCID: PMC1894745 DOI: 10.1107/s1744309106027035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/12/2006] [Indexed: 01/01/2023]
Abstract
A construct consisting of residues 10-310 of BipD, a component of the Burkholderia pseudomallei type III secretion system (T3SS), has been overexpressed as a GST fusion, cleaved from the GST tag and purified. Crystals were grown of native and selenomethionine-labelled BipD. The crystals grow in two different polymorphs from the same condition. The first polymorph belongs to space group C222, with unit-cell parameters a = 103.98, b = 122.79, c = 49.17 A, a calculated Matthews coefficient of 2.4 A(3) Da(-1) (47% solvent content) and one molecule per asymmetric unit. The second polymorph belongs to space group P2(1)2(1)2, with unit-cell parameters a = 136.47, b = 89.84, c = 50.15 A, and a calculated Matthews coefficient of 2.3 A(3) Da(-1) (45% solvent content) for two molecules per asymmetric unit (analysis of the self-rotation function indicates the presence of a weak twofold non-crystallographic symmetry axis in this P2(1)2(1)2 form). The native crystals of both forms give diffraction data to 2.7 A resolution, while the SeMet-labelled P2(1)2(1)2 crystals diffract to 3.3 A resolution. A K(2)PtCl(4) derivative of the P2(1)2(1)2 form was also obtained and data were collected to 2.7 A with radiation of wavelength lambda = 0.933 A. The Pt-derivative anomalous difference Patterson map revealed two self-peaks on the Harker sections.
Collapse
Affiliation(s)
- Pietro Roversi
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Steven Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Terry Field
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, England
| | - Janet E. Deane
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
| | - Edouard E. Galyov
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, England
| | - Susan M. Lea
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| |
Collapse
|