1
|
Goossens PL. Bacillus anthracis, "la maladie du charbon", Toxins, and Institut Pasteur. Toxins (Basel) 2024; 16:66. [PMID: 38393144 PMCID: PMC10891547 DOI: 10.3390/toxins16020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Institut Pasteur and Bacillus anthracis have enjoyed a relationship lasting almost 120 years, starting from its foundation and the pioneering work of Louis Pasteur in the nascent fields of microbiology and vaccination, and blooming after 1986 following the molecular biology/genetic revolution. This contribution will give a historical overview of these two research eras, taking advantage of the archives conserved at Institut Pasteur. The first era mainly focused on the production, characterisation, surveillance and improvement of veterinary anthrax vaccines; the concepts and technologies with which to reach a deep understanding of this research field were not yet available. The second period saw a new era of B. anthracis research at Institut Pasteur, with the anthrax laboratory developing a multi-disciplinary approach, ranging from structural analysis, biochemistry, genetic expression, and regulation to bacterial-host cell interactions, in vivo pathogenicity, and therapy development; this led to the comprehensive unravelling of many facets of this toxi-infection. B. anthracis may exemplify some general points on how science is performed in a given society at a given time and how a scientific research domain evolves. A striking illustration can be seen in the additive layers of regulations that were implemented from the beginning of the 21st century and their impact on B. anthracis research. B. anthracis and anthrax are complex systems that raise many valuable questions regarding basic research. One may hope that B. anthracis research will be re-initiated under favourable circumstances later at Institut Pasteur.
Collapse
|
2
|
El-Sayed A, Kamel M. Future threat from the past. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1287-1291. [PMID: 33068243 PMCID: PMC7567650 DOI: 10.1007/s11356-020-11234-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/12/2020] [Indexed: 05/03/2023]
Abstract
Global warming is one of the major challenges facing humanity. The increase in the Earth's temperature and thawing of ancient ice release viable viruses, bacteria, fungi, and other microorganisms which were trapped for thousands and millions of years. Such microorganisms may belong to novel microbial species, unknown genotypes of present pathogens, already eradicated pathogens, or even known pathogens that gained extremely robust characteristics due to their subjection to long-term stress. These worries drew more attention following the death of a child by ancient anthrax spores in Siberian in 2016 and the reconstruction of smallpox and Spanish flu genomes from ancient frozen biological samples. The present review illustrates some examples of recently recovered pathogens after being buried for millions of years, including some identified viable ancient viruses, bacteria and even other forms of life. While some pathogens could be revived, genomes of other ancient pathogens which could not be revived were re-constructed. The present study aims to highlight and alarm the hidden aspect of global warming on the international public health, which represents future threats from the past for humanity.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Liang R, Lau MCY, Baars O, Robb FT, Onstott TC. Aspartic acid racemization constrains long-term viability and longevity of endospores. FEMS Microbiol Ecol 2019; 95:5553460. [DOI: 10.1093/femsec/fiz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/20/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Certain microorganisms survive long periods of time as endospores to cope with adverse conditions. Since endospores are metabolically inactive, the extent of aspartic acid (Asp) racemization will increase over time and might kill the spores by preventing their germination. Therefore, understanding the relationship between endospore survivability and Asp racemization is important for constraining the long-term survivability and global dispersion of spore-forming bacteria in nature. Geobacillus stearothermophilus was selected as a model organism to investigate racemization kinetics and survivability of its endospores at 65°C, 75°C and 98°C. This study found that the Asp racemization rates of spores and autoclaved spores were similar at all temperatures. The Asp racemization rate of spores was not significantly different from that of vegetative cells at 65°C. The Asp racemization rate of G. stearothermophilus spores was not significantly different from that of Bacillus subtilis spores at 98°C. The viability of spores and vegetative cells decreased dramatically over time, and the mortality of spores correlated exponentially with the degree of racemization (R2 = 0.9). This latter correlation predicts spore half-lives on the order of hundreds of years for temperatures typical of shallow marine sediments, a result consistent with studies about the survivability of thermophilic spores found in these environments.
Collapse
Affiliation(s)
- Renxing Liang
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Maggie C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Oliver Baars
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Frank T Robb
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21202, USA
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
4
|
Predominance of Anaerobic, Spore-Forming Bacteria in Metabolically Active Microbial Communities from Ancient Siberian Permafrost. Appl Environ Microbiol 2019; 85:AEM.00560-19. [PMID: 31152014 DOI: 10.1128/aem.00560-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/22/2019] [Indexed: 11/20/2022] Open
Abstract
The prevalence of microbial life in permafrost up to several million years (Ma) old has been well documented. However, the long-term survivability, evolution, and metabolic activity of the entombed microbes over this time span remain underexplored. We integrated aspartic acid (Asp) racemization assays with metagenomic sequencing to characterize the microbial activity, phylogenetic diversity, and metabolic functions of indigenous microbial communities across a ∼0.01- to 1.1-Ma chronosequence of continuously frozen permafrost from northeastern Siberia. Although Asp in the older bulk sediments (0.8 to 1.1 Ma) underwent severe racemization relative to that in the youngest sediment (∼0.01 Ma), the much lower d-Asp/l-Asp ratio (0.05 to 0.14) in the separated cells from all samples suggested that indigenous microbial communities were viable and metabolically active in ancient permafrost up to 1.1 Ma. The microbial community in the youngest sediment was the most diverse and was dominated by the phyla Actinobacteria and Proteobacteria In contrast, microbial diversity decreased dramatically in the older sediments, and anaerobic, spore-forming bacteria within Firmicutes became overwhelmingly dominant. In addition to the enrichment of sporulation-related genes, functional genes involved in anaerobic metabolic pathways such as fermentation, sulfate reduction, and methanogenesis were more abundant in the older sediments. Taken together, the predominance of spore-forming bacteria and associated anaerobic metabolism in the older sediments suggest that a subset of the original indigenous microbial community entrapped in the permafrost survived burial over geological time.IMPORTANCE Understanding the long-term survivability and associated metabolic traits of microorganisms in ancient permafrost frozen millions of years ago provides a unique window into the burial and preservation processes experienced in general by subsurface microorganisms in sedimentary deposits because of permafrost's hydrological isolation and exceptional DNA preservation. We employed aspartic acid racemization modeling and metagenomics to determine which microbial communities were metabolically active in the 1.1-Ma permafrost from northeastern Siberia. The simultaneous sequencing of extracellular and intracellular genomic DNA provided insight into the metabolic potential distinguishing extinct from extant microorganisms under frozen conditions over this time interval. This in-depth metagenomic sequencing advances our understanding of the microbial diversity and metabolic functions of extant microbiomes from early Pleistocene permafrost. Therefore, these findings extend our knowledge of the survivability of microbes in permafrost from 33,000 years to 1.1 Ma.
Collapse
|
5
|
Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A 2014; 111:4274-9. [PMID: 24591590 DOI: 10.1073/pnas.1320670111] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The largest known DNA viruses infect Acanthamoeba and belong to two markedly different families. The Megaviridae exhibit pseudo-icosahedral virions up to 0.7 μm in diameter and adenine-thymine (AT)-rich genomes of up to 1.25 Mb encoding a thousand proteins. Like their Mimivirus prototype discovered 10 y ago, they entirely replicate within cytoplasmic virion factories. In contrast, the recently discovered Pandoraviruses exhibit larger amphora-shaped virions 1 μm in length and guanine-cytosine-rich genomes up to 2.8 Mb long encoding up to 2,500 proteins. Their replication involves the host nucleus. Whereas the Megaviridae share some general features with the previously described icosahedral large DNA viruses, the Pandoraviruses appear unrelated to them. Here we report the discovery of a third type of giant virus combining an even larger pandoravirus-like particle 1.5 μm in length with a surprisingly smaller 600 kb AT-rich genome, a gene content more similar to Iridoviruses and Marseillevirus, and a fully cytoplasmic replication reminiscent of the Megaviridae. This suggests that pandoravirus-like particles may be associated with a variety of virus families more diverse than previously envisioned. This giant virus, named Pithovirus sibericum, was isolated from a >30,000-y-old radiocarbon-dated sample when we initiated a survey of the virome of Siberian permafrost. The revival of such an ancestral amoeba-infecting virus used as a safe indicator of the possible presence of pathogenic DNA viruses, suggests that the thawing of permafrost either from global warming or industrial exploitation of circumpolar regions might not be exempt from future threats to human or animal health.
Collapse
|
6
|
Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G, Taberlet P, Brochmann C. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 2012; 15:1176-89. [DOI: 10.1111/1462-2920.12020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/04/2012] [Indexed: 01/28/2023]
Affiliation(s)
- Eva Bellemain
- National Centre for Biosystematics; Natural History Museum; University of Oslo; P.O. Box 117 Blindern; NO-0318; Oslo; Norway
| | | | - Håvard Kauserud
- Microbial Evolution Research Group (MERG); Department of Biology; University of Oslo; P.O. Box 1066 Blindern; N-0316; Oslo; Norway
| | - Laura S. Epp
- National Centre for Biosystematics; Natural History Museum; University of Oslo; P.O. Box 117 Blindern; NO-0318; Oslo; Norway
| | - Sanne Boessenkool
- National Centre for Biosystematics; Natural History Museum; University of Oslo; P.O. Box 117 Blindern; NO-0318; Oslo; Norway
| | - Eric Coissac
- Laboratoire d'Ecologie Alpine CNRS UMR 5553; Univ. Joseph Fourier; BP 53; 38041 Grenoble Cedex 9; France
| | - Jozsef Geml
- Kits van Waveren Foundation; Nationaal Herbarium Nederland; Universiteit Leiden; P.O. Box 9514; 2300 RA; Leiden; The Netherlands
| | - Mary Edwards
- Geography and Environment; University of Southampton; University Road; Southampton; UK
| | - Eske Willerslev
- Centre for GeoGenetics; Natural History Museum of Denmark; Øster Voldgade 5-7; 1350; Copenhagen K; Denmark
| | - Galina Gussarova
- National Centre for Biosystematics; Natural History Museum; University of Oslo; P.O. Box 117 Blindern; NO-0318; Oslo; Norway
| | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine CNRS UMR 5553; Univ. Joseph Fourier; BP 53; 38041 Grenoble Cedex 9; France
| | - Christian Brochmann
- National Centre for Biosystematics; Natural History Museum; University of Oslo; P.O. Box 117 Blindern; NO-0318; Oslo; Norway
| |
Collapse
|
7
|
Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, Erséus C, Gusarov VI, Edwards ME, Johnsen A, Stenøien HK, Hassel K, Kauserud H, Yoccoz NG, Bråthen KA, Willerslev E, Taberlet P, Coissac E, Brochmann C. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol 2012; 21:1821-33. [PMID: 22486821 DOI: 10.1111/j.1365-294x.2012.05537.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Metabarcoding approaches use total and typically degraded DNA from environmental samples to analyse biotic assemblages and can potentially be carried out for any kinds of organisms in an ecosystem. These analyses rely on specific markers, here called metabarcodes, which should be optimized for taxonomic resolution, minimal bias in amplification of the target organism group and short sequence length. Using bioinformatic tools, we developed metabarcodes for several groups of organisms: fungi, bryophytes, enchytraeids, beetles and birds. The ability of these metabarcodes to amplify the target groups was systematically evaluated by (i) in silico PCRs using all standard sequences in the EMBL public database as templates, (ii) in vitro PCRs of DNA extracts from surface soil samples from a site in Varanger, northern Norway and (iii) in vitro PCRs of DNA extracts from permanently frozen sediment samples of late-Pleistocene age (~16,000-50,000 years bp) from two Siberian sites, Duvanny Yar and Main River. Comparison of the results from the in silico PCR with those obtained in vitro showed that the in silico approach offered a reliable estimate of the suitability of a marker. All target groups were detected in the environmental DNA, but we found large variation in the level of detection among the groups and between modern and ancient samples. Success rates for the Pleistocene samples were highest for fungal DNA, whereas bryophyte, beetle and bird sequences could also be retrieved, but to a much lesser degree. The metabarcoding approach has considerable potential for biodiversity screening of modern samples and also as a palaeoecological tool.
Collapse
Affiliation(s)
- Laura S Epp
- National Centre for Biosystematics, Natural History Museum, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Brushkov AV, Bezrukov VV, Griva GI, Muradyan KK. The effects of the relict microorganism B. sp. on development, gas exchange, spontaneous motor activity, stress resistance, and survival of Drosophila melanogaster. ADVANCES IN GERONTOLOGY 2012. [DOI: 10.1134/s2079057012010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Chronáková A, Kristůfek V, Tichý M, Elhottová D. Biodiversity of streptomycetes isolated from a succession sequence at a post-mining site and their evidence in Miocene lacustrine sediment. Microbiol Res 2009; 165:594-608. [PMID: 20015625 DOI: 10.1016/j.micres.2009.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 10/05/2009] [Accepted: 10/31/2009] [Indexed: 11/18/2022]
Abstract
The genetic diversity of streptomycetes in colliery spoil heaps (Sokolov, Czech Republic) was investigated by restriction pattern analysis of 16S-internal transcribed spacer rDNA and 16S sequences. We sampled freshly excavated Miocene sediment (17-19-million-year-old) and four sites of primary succession (initial, early, middle, and late stages; aged 1-44 years) on the same sediment. Active bacteria were present even in fresh Miocene sediment, and the relative proportion of actinomycetes among total bacterial and their genetic diversity increased significantly with the age of the sampling site. The replacement of pioneer species by late succession species during succession was observed. Plate assays of Streptomyces strains revealed 27% antibiotic-producing strains. Screening for nonribosomal peptide synthases and type I polyketide synthases systems suggested that 90% and 55% streptomycetes, respectively, are putative producers of biologically active compounds. The frequencies of tetracycline-, amoxicillin-, and chloramphenicol-resistant streptomycetes were 6%, 9%, and 15%, respectively. These findings document the occurrence of genetic elements encoding antibiotic resistance genes and the production of antibiotics by streptomycetes located in pristine environments. Our results indicate key roles for ancient streptomycetes related to S. microflavus, S. spororaveus, and S. flavofuscus in pioneering community development in freshly excavated substrates.
Collapse
Affiliation(s)
- Alica Chronáková
- Biology Centre of the Academy of Sciences of the Czech Republic, V. V. I.-Institute of Soil Biology, Na Sádkách 7, 37005 Ceské Budejovice, Czech Republic.
| | | | | | | |
Collapse
|