1
|
Liao J, Zhuo X, Pan B, Zou Y, Chai X, Wu Q, Yu S, Pan W, Zhao Q. Synthesis and preliminary immunologic properties of di-/trisaccharide-conjugates related to Bacillus anthracis. Bioorg Med Chem Lett 2022; 76:128986. [PMID: 36113670 DOI: 10.1016/j.bmcl.2022.128986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Herein, the di- and trisaccharide mimics of the hexasaccharide antigen related to Bacillus anthracis were synthesized and covalently coupled with carrier proteins, such as keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA), to form the corresponding glycoconjugates 1-6. 2,3,4,6-Tetra-O-benzyl thioglycoside and 2-deoxyl-2-phthalylamino-3,4,6-tri-O-benzyl thioglycoside were applied as glycosyl donors to guarantee α or β-configuration of the newly formed glycosidic bonds. Glutaraldehyde was used as a homobifunctional cross-linker for high-efficiency coupling. The synthetic KLH-glycoconjugates 2, 4 and 6 were also used to vaccinate female Balb/c mice and the preliminary results of ELISA uncovered that all three KLH-conjugates could induce immune responses and generate oligosaccharide-specific total IgG antibodies. The trisaccharide 8, the glycosyl part of glycoconjugate 4, is of great immunogenicity.
Collapse
Affiliation(s)
- Jun Liao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaobin Zhuo
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Bo Pan
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaoyun Chai
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Qiuye Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Shichong Yu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Weihua Pan
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Jelinski J, Cortez M, Terwilliger A, Clark J, Maresso A. Loss of Dihydroxyacid Dehydratase Induces Auxotrophy in Bacillus anthracis. J Bacteriol 2021; 203:e0041521. [PMID: 34570623 PMCID: PMC8604071 DOI: 10.1128/jb.00415-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Anthrax disease is caused by infection with the bacteria Bacillus anthracis which, if left untreated, can result in fatal bacteremia and toxemia. Current treatment for infection requires prolonged administration of antibiotics. Despite this, inhalational and gastrointestinal anthrax still result in lethal disease. By identifying key metabolic steps that B. anthracis uses to grow in host-like environments, new targets for antibacterial strategies can be identified. Here, we report that the ilvD gene, which encodes dihydroxyacid dehydratase in the putative pathway for synthesizing branched chain amino acids, is necessary for B. anthracis to synthesize isoleucine de novo in an otherwise limiting microenvironment. We observed that ΔilvD B. anthracis cannot grow in media lacking isoleucine, but growth is restored when exogenous isoleucine is added. In addition, ΔilvD bacilli are unable to utilize human hemoglobin or serum albumin to overcome isoleucine auxotrophy, but can when provided with the murine forms. This species-specific effect is due to the lack of isoleucine in human hemoglobin. Furthermore, even when supplemented with physiological levels of human serum albumin, apotransferrin, fibrinogen, and IgG, the ilvD knockout strain grew poorly relative to nonsupplemented wild type. In addition, comparisons upon infecting humanized mice suggest that murine hemoglobin is a key source of isoleucine for both WT and ΔilvD bacilli. Further growth comparisons in murine and human blood show that the auxotrophy is detrimental for growth in human blood, not murine. This report identifies ilvD as necessary for isoleucine production in B. anthracis, and that it plays a key role in allowing the bacilli to effectively grow in isoleucine poor hosts. IMPORTANCE Anthrax disease, caused by B. anthracis, can cause lethal bacteremia and toxemia, even following treatment with antibiotics. This report identifies the ilvD gene, which encodes a dihydroxyacid dehydratase, as necessary for B. anthracis to synthesize the amino acid isoleucine in a nutrient-limiting environment, such as its mammalian host. The use of this strain further demonstrated a unique species-dependent utilization of hemoglobin as an exogenous source of extracellular isoleucine. By identifying mechanisms that B. anthracis uses to grow in host-like environments, new targets for therapeutic intervention are revealed.
Collapse
Affiliation(s)
- Joseph Jelinski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Madeline Cortez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Austen Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Progress towards the Development of a NEAT Vaccine for Anthrax II: Immunogen Specificity and Alum Effectiveness in an Inhalational Model. Infect Immun 2020; 88:IAI.00082-20. [PMID: 32393506 DOI: 10.1128/iai.00082-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax disease, presents with high mortality, and has been at the center of bioweapon efforts. The only currently U.S. FDA-approved vaccine to prevent anthrax in humans is anthrax vaccine adsorbed (AVA), which is protective in several animal models and induces neutralizing antibodies against protective antigen (PA), the cell-binding component of anthrax toxin. However, AVA requires a five-course regimen to induce immunity, along with an annual booster, and is composed of undefined culture supernatants from a PA-secreting strain. In addition, it appears to be ineffective against strains that lack anthrax toxin. Here, we investigated a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease. The cocktail of five NEAT domains was protective against a lethal challenge of inhaled bacillus spores at 3 and 28 weeks after vaccination. The reduction of the formulation to three NEATs (IsdX1, IsdX2, and Bslk) was as effective as a five-NEAT domain cocktail. The adjuvant alum, approved for use in humans, was as protective as Freund's Adjuvant, and protective vaccination correlated with increased anti-NEAT antibody reactivity and reduced bacterial levels in organs. Finally, the passive transfer of anti-NEAT antisera reduced mortality and disease severity, suggesting the protective component is comprised of antibodies. Collectively, these results provide evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.
Collapse
|
4
|
Pillai SP, Prentice KW, Ramage JG, DePalma L, Sarwar J, Parameswaran N, Bell M, Plummer A, Santos A, Singh A, Pillai CA, Thirunavvukarasu N, Manickam G, Avila JR, Sharma SK, Hoffmaster A, Anderson K, Morse SA, Venkateswaran KV, Hodge DR. Rapid Presumptive Identification of Bacillus anthracis Isolates Using the Tetracore RedLine Alert™ Test. Health Secur 2020; 17:334-343. [PMID: 31433282 DOI: 10.1089/hs.2019.0038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A comprehensive laboratory evaluation of the Tetracore RedLine Alert test, a lateral flow immunoassay (LFA) for the rapid presumptive identification of Bacillus anthracis, was conducted at 2 different test sites. The study evaluated the sensitivity of this assay using 16 diverse strains of B. anthracis grown on sheep blood agar (SBA) plates. In addition, 83 clinically relevant microorganisms were tested to assess the specificity of the RedLine Alert test. The results indicated that the RedLine Alert test for the presumptive identification of B. anthracis is highly robust, specific, and sensitive. RedLine Alert is a rapid test that has applicability for use in a clinical setting for ruling-in or ruling-out nonhemolytic colonies of Bacillus spp. grown on SBA medium as presumptive isolates of B. anthracis.
Collapse
Affiliation(s)
- Segaran P Pillai
- Segaran P. Pillai, PhD, is Director, Office of Laboratory Science and Safety, FDA Office of the Commissioner, Department of Health and Human Services, Silver Spring, MD
| | - Kristin W Prentice
- Kristin W. Prentice, MS, is an Associate, and Lindsay DePalma, MS, is a Staff Life Scientist; both at Booz Allen Hamilton, Rockville, MD
| | - Jason G Ramage
- Jason G. Ramage, MS, MBA, PMP, is Assistant Vice Chancellor for Research and Innovation and Director of Research Compliance, University of Arkansas, Fayetteville, AR
| | - Lindsay DePalma
- Kristin W. Prentice, MS, is an Associate, and Lindsay DePalma, MS, is a Staff Life Scientist; both at Booz Allen Hamilton, Rockville, MD
| | - Jawad Sarwar
- Jawad Sarwar, MS, is a Senior Research Scientist, and Nishanth Parameswaran is a Research Scientist; both at Omni Array Biotechnology, Rockville, MD
| | - Nishanth Parameswaran
- Jawad Sarwar, MS, is a Senior Research Scientist, and Nishanth Parameswaran is a Research Scientist; both at Omni Array Biotechnology, Rockville, MD
| | - Melissa Bell
- Melissa Bell, MS, is a Microbiologist, and Alex Hoffmaster, PhD, is Chief, Bacterial Special Pathogens Branch; both in the National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrea Plummer
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - Alan Santos
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - Ajay Singh
- Ajay Singh, PhD, is a Research Scientist, Laulima Government Solutions, Contractor Support to USAMRICD Neurobiological Toxicology Branch, Analytical Toxicology Division, Aberdeen Proving Ground, MD
| | - Christine A Pillai
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Nagarajan Thirunavvukarasu
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Gowri Manickam
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Julie R Avila
- Julie R. Avila, MS, is a Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| | - Shashi K Sharma
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Alex Hoffmaster
- Melissa Bell, MS, is a Microbiologist, and Alex Hoffmaster, PhD, is Chief, Bacterial Special Pathogens Branch; both in the National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Kevin Anderson
- Kevin Anderson, PhD, and David R. Hodge, PhD, are Program Managers, Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Stephen A Morse
- Stephen A. Morse, MSPH, PhD, is a Senior Advisor, CDC Division of Select Agents and Toxins, and is currently with IHRC, Inc., Atlanta, GA
| | - Kodumudi Venkat Venkateswaran
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - David R Hodge
- Kevin Anderson, PhD, and David R. Hodge, PhD, are Program Managers, Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| |
Collapse
|
5
|
Senthilnathan N, Gaurav K, Venkata Ramana C, Radhakrishnan TP. Zwitterionic small molecule based fluorophores for efficient and selective imaging of bacterial endospores. J Mater Chem B 2020; 8:4601-4608. [PMID: 32391841 DOI: 10.1039/d0tb00470g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the emerging scenario of increasing antibiotic resistance and pathogen transmission channels, the grave danger posed by bacterial endospores in critical fields like food industry, health and medicine highlights the urgent need to develop efficient probes for their detection; their sturdy and impermeable multilayer coat makes desirable methods like fluorescence imaging extremely difficult. Selective imaging of the endospores in the presence of the bacteria is even more challenging. Furthermore, it is preferable to maintain the dormant state of endospores through the imaging process, if extended monitoring is required; many of the available techniques involve lethal germination or destruction of the endospores. We show that simple zwitterionic diaminodicyanoquinodimethane (DADQ) molecules with selected functionalities are efficient dyes for fluorescence imaging due to their dipolar structure that facilitates the penetration into the endospore system, and the enhanced fluorescence in their rigid/aggregated state. The facile structural tailorability allows DADQs with various appendage moieties to be synthesized; a derivative with ionic substituents (BT2), and another with optimally long alkyl chains and the resultant hydrophobic character (BHADQ) are shown to be excellent fluorescent probes for endospores. Nanomolar amounts of dyes provide effective staining; while BT2 stains bacteria and endospores, most significantly, BHADQ stains endospores selectively. To the best of our knowledge, this is the first example of selective fluorescence imaging of endospores in their dormant state. A range of spectroscopy, microscopy and calorimetry studies provide insight into the molecular level interactions that enable efficient staining and bright images. DADQ fluorophores are photostable and non-cytotoxic, hence useful in practical applications. The versatile structural tailorability of these dye molecules holds great promise for targeted imaging.
Collapse
Affiliation(s)
- N Senthilnathan
- School of Chemistry, University of Hyderabad, Hyderabad - 500 046, India.
| | | | | | | |
Collapse
|
6
|
An Optimal Control Model to Reduce and Eradicate Anthrax Disease in Herbivorous Animals. Bull Math Biol 2018; 81:235-255. [PMID: 30357598 DOI: 10.1007/s11538-018-0525-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
Anthrax is a fatal infectious disease which can affect animals and humans alike. Anthrax outbreaks occur periodically in animals, and they are of particular concern in herbivores, due to substantial economic consequences associated with animal death. The purpose of this study is to develop optimal control interventions that focus on vaccinating susceptible animals and/or removing infected carcasses. Our mathematical goal is to minimize the infectious animal population while reducing the cost of interventions. Optimal control interventions are derived theoretically, and numerical results with conclusions are presented.
Collapse
|
7
|
De Ricco R, Ventura CL, Carboni F, Saksena R, Kováč P, Adamo R. Structure-Immunogenicity Relationship of α- and β-Tetrasaccharide Glycoforms from Bacillus anthracis Exosporium and Fragments Thereof. Molecules 2018; 23:molecules23082079. [PMID: 30127242 PMCID: PMC6222408 DOI: 10.3390/molecules23082079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022] Open
Abstract
The tetrasaccharide (2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-α-d-glucopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-l-rhamnopyranose) from the major exosporium protein (BclA) of Bacillus anthracis has been proposed as a target for development of diagnostics and immune therapy or prophylaxis. While the immunodominant character of the anthrose residue has been previously elucidated, the role of the stereochemical configuration of the downstream rhamnose is unknown. Because the linkage of this residue to the GlcNAc bridging the glycan and the protein is lost during isolation of the tetrasaccharide, its α- and β-glycoforms have been synthesized. Herein, we prepared neoglycoconjugates from a series of fragments of the tetrasaccharide, including the complete α- and β-tetrasaccharide glycoforms, a 2-demethoxylated version of the α-tetrasaccharide, and the α- and β-trirhamnosides and CRM197. By immunization of mice, we showed that the anti α- and β-tetrasaccharide serum equally recognized both glycoforms. In contrast the sera produced following immunization with the α- and β-trirhamnoside fragments exhibited higher recognition for their own antigens than for their anomeric counterparts. The anti α- and β-tetrasaccharide sera recognized Sterne spores in a comparable fashion. ΔBclA spores not expressing the major exosporium protein were also recognized by the same sera, while mutants that produced the carbohydrate antigen with deletion of either rhamnose or anthrose were not. The tetrasaccharide could, therefore, be expressed in proteins other than BlcA. This work proves that α- and β-tetrasaccharide are equally potent immunogens.
Collapse
Affiliation(s)
| | - Christy L Ventura
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Rina Saksena
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA.
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA.
| | - Roberto Adamo
- GSK, Research Centre, via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
8
|
Claunch KM, Bush M, Evans CR, Malmquist JA, Hale MC, McGillivray SM. Transcriptional profiling of the clpX mutant in Bacillus anthracis reveals regulatory connection with the lrgAB operon. MICROBIOLOGY-SGM 2018; 164:659-669. [PMID: 29473820 DOI: 10.1099/mic.0.000628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ClpX functions as either an independent chaperone or a component of the ClpXP protease, a conserved intracellular protease that acts as a global regulator in the bacterial cell by degrading regulatory proteins, stress response proteins and rate-limiting enzymes. Previously, we found that loss of clpX in Bacillus anthracis Sterne leads to increased susceptibility to antimicrobial agents that target the cell envelope. The aim of this study was to identify genes within the regulatory network of clpX that contribute to antimicrobial resistance. Using microarray analysis, we found 119 genes that are highly differentially expressed in the ∆clpX mutant, with the majority involved in metabolic, transport or regulatory functions. Several of these differentially expressed genes, including glpF, sigM, mrsA, lrgA and lrgB, are associated with cell wall-active antibiotics in other bacterial species. We focused on lrgA and lrgB, which form the lrgAB operon and are downregulated in ∆clpX, because loss of lrgAB increases autolytic activity and penicillin susceptibility in Staphylococcus aureus. While we observed no changes in autolytic activity in either ∆clpX or ∆lrgAB B. anthracis Sterne, we find that both mutants have increased susceptibility to the antimicrobial peptide LL-37 and daptomycin. However, phenotypes between ∆clpX and ∆lrgAB are not identical as ∆clpX also displays increased susceptibility to penicillin and nisin but ∆lrgAB does not. Therefore, while decreased expression of lrgAB may be partially responsible for the increased antimicrobial susceptibility seen in the ∆clpX mutant, disruption of other pathways must also contribute to this phenotype.
Collapse
Affiliation(s)
- Kevin M Claunch
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.,Present address: Texas A&M Health Science Center College of Medicine, Bryan, TX, USA
| | - Madeline Bush
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.,Present address: St. Jude Graduate School of Biomedical Sciences, Memphis TN, USA
| | - Christopher R Evans
- Department of Biology, Texas Christian University, Fort Worth, TX, USA.,Present address: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - Jacob A Malmquist
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | - Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | | |
Collapse
|
9
|
Li Y, Pi QM, You HH, Li JQ, Wang PC, Yang X, Wu Y. A smart multi-functional coating based on anti-pathogen micelles tethered with copper nanoparticlesviaa biosynthesis method usingl-vitamin C. RSC Adv 2018; 8:18272-18283. [PMID: 35541145 PMCID: PMC9080516 DOI: 10.1039/c8ra01985a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/13/2018] [Indexed: 01/29/2023] Open
Abstract
A multi-functional anti-pathogen coating with “release-killing”, “contact-killing” and “anti-adhesion” properties was prepared from biocompatible polymer encapsulated chlorine dioxide (ClO2) which protected the active ingredient from the outside environment.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University)
- Ministry of Education
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan 430023
| | - Qing-meng Pi
- Department of Plastic and Reconstructive Surgery
- Renji Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 200129
- P. R. China
| | - Hui-hui You
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Sciences
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jin-quan Li
- Brain and Cognitive Dysfunction Research Center
- School of Medicine
- Wuhan University of Science and Technology
- Wuhan 430081
- P. R. China
| | - Peng-cheng Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University)
- Ministry of Education
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan 430023
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Sciences
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Yang Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University)
- Ministry of Education
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan 430023
| |
Collapse
|
10
|
Ramage JG, Prentice KW, DePalma L, Venkateswaran KS, Chivukula S, Chapman C, Bell M, Datta S, Singh A, Hoffmaster A, Sarwar J, Parameswaran N, Joshi M, Thirunavkkarasu N, Krishnan V, Morse S, Avila JR, Sharma S, Estacio PL, Stanker L, Hodge DR, Pillai SP. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples. Health Secur 2017; 14:351-65. [PMID: 27661796 DOI: 10.1089/hs.2016.0041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert(®) test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 10(6) spores/mL (ca. 1.5 × 10(5) spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores.
Collapse
|
11
|
Cardona-Correa A, Rios-Velazquez C. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening. Mol Med Rep 2016; 13:3797-804. [PMID: 27035230 PMCID: PMC4838128 DOI: 10.3892/mmr.2016.5031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Albin Cardona-Correa
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| | - Carlos Rios-Velazquez
- Department of Biology, College of Arts and Sciences, University of Puerto Rico‑Mayagüez, Mayagüez 00681‑9000, PR, USA
| |
Collapse
|
12
|
Green KD, Biswas T, Chang C, Wu R, Chen W, Janes BK, Chalupska D, Gornicki P, Hanna PC, Tsodikov OV, Joachimiak A, Garneau-Tsodikova S. Biochemical and structural analysis of an Eis family aminoglycoside acetyltransferase from bacillus anthracis. Biochemistry 2015; 54:3197-206. [PMID: 25928210 DOI: 10.1021/acs.biochem.5b00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was also different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.
Collapse
Affiliation(s)
- Keith D Green
- ⊥Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | | | - Changsoo Chang
- ∇Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ruiying Wu
- ∇Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | | | | | | | | - Oleg V Tsodikov
- ⊥Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Andrzej Joachimiak
- ∇Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Sylvie Garneau-Tsodikova
- ⊥Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
13
|
Beniac DR, Hiebert SL, Siemens CG, Corbett CR, Booth TF. A mobile biosafety microanalysis system for infectious agents. Sci Rep 2015; 5:9505. [PMID: 25820944 PMCID: PMC4377622 DOI: 10.1038/srep09505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/03/2015] [Indexed: 11/10/2022] Open
Abstract
Biological threats posed by pathogens such as Ebola virus must be quickly diagnosed, while protecting the safety of personnel. Scanning electron microscopy and microanalysis requires minimal specimen preparation and can help to identify hazardous agents or substances. Here we report a compact biosafety system for rapid imaging and elemental analysis of specimens, including powders, viruses and bacteria, which is easily transportable to the site of an incident.
Collapse
Affiliation(s)
- Daniel R Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba. R3E 3R2, Canada
| | - Shannon L Hiebert
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba. R3E 3R2, Canada
| | - Christine G Siemens
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba. R3E 3R2, Canada
| | - Cindi R Corbett
- 1] National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba. R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba. R3E 0W3, Canada
| | - Tim F Booth
- 1] National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba. R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba. R3E 0W3, Canada
| |
Collapse
|
14
|
Puerini R, Caum J, Francis N, Alles S. The 49th Hour: Analysis of a Follow-up Medication and Vaccine Dispensing Field Test. Health Secur 2015; 13:54-63. [DOI: 10.1089/hs.2014.0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Roldán MV, de Oña P, Castro Y, Durán A, Faccendini P, Lagier C, Grau R, Pellegri NS. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:630-40. [DOI: 10.1016/j.msec.2014.07.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/13/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022]
|
16
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
17
|
Adamo R. Glycan surface antigens fromBacillus anthracisas vaccine targets: current status and future perspectives. Expert Rev Vaccines 2014; 13:895-907. [DOI: 10.1586/14760584.2014.924404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Arévalo MT, Navarro A, Arico CD, Li J, Alkhatib O, Chen S, Diaz-Arévalo D, Zeng M. Targeted silencing of anthrax toxin receptors protects against anthrax toxins. J Biol Chem 2014; 289:15730-8. [PMID: 24742682 DOI: 10.1074/jbc.m113.538587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.
Collapse
Affiliation(s)
- Maria T Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Ashley Navarro
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Chenoa D Arico
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Junwei Li
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Omar Alkhatib
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Shan Chen
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Diana Diaz-Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Mingtao Zeng
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
19
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
20
|
Gutting B. Deterministic models of inhalational anthrax in New Zealand white rabbits. Biosecur Bioterror 2014; 12:29-41. [PMID: 24527843 PMCID: PMC3934436 DOI: 10.1089/bsp.2013.0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/09/2013] [Indexed: 11/12/2022]
Abstract
Computational models describing bacterial kinetics were developed for inhalational anthrax in New Zealand white (NZW) rabbits following inhalation of Ames strain B. anthracis. The data used to parameterize the models included bacterial numbers in the airways, lung tissue, draining lymph nodes, and blood. Initial bacterial numbers were deposited spore dose. The first model was a single exponential ordinary differential equation (ODE) with 3 rate parameters that described mucociliated (physical) clearance, immune clearance (bacterial killing), and bacterial growth. At 36 hours postexposure, the ODE model predicted 1.7×10⁷ bacteria in the rabbit, which agreed well with data from actual experiments (4.0×10⁷ bacteria at 36 hours). Next, building on the single ODE model, a physiological-based biokinetic (PBBK) compartmentalized model was developed in which 1 physiological compartment was the lumen of the airways and the other was the rabbit body (lung tissue, lymph nodes, blood). The 2 compartments were connected with a parameter describing transport of bacteria from the airways into the body. The PBBK model predicted 4.9×10⁷ bacteria in the body at 36 hours, and by 45 hours the model showed all clearance mechanisms were saturated, suggesting the rabbit would quickly succumb to the infection. As with the ODE model, the PBBK model results agreed well with laboratory observations. These data are discussed along with the need for and potential application of the models in risk assessment, drug development, and as a general aid to the experimentalist studying inhalational anthrax.
Collapse
Affiliation(s)
- Bradford Gutting
- Bradford Gutting, PhD, is a Toxicologist, Naval Surface Warfare Center Dahlgren Division (NSWCDD) , Dahlgren, Virginia
| |
Collapse
|
21
|
Saldanha RJ, Pemberton A, Shiflett P, Perutka J, Whitt JT, Ellington A, Lambowitz AM, Kramer R, Taylor D, Lamkin TJ. Rapid targeted gene disruption in Bacillus anthracis. BMC Biotechnol 2013; 13:72. [PMID: 24047152 PMCID: PMC3848504 DOI: 10.1186/1472-6750-13-72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/13/2013] [Indexed: 01/12/2023] Open
Abstract
Background Anthrax is a zoonotic disease recognized to affect herbivores since Biblical times and has the widest range of susceptible host species of any known pathogen. The ease with which the bacterium can be weaponized and its recent deliberate use as an agent of terror, have highlighted the importance of gaining a deeper understanding and effective countermeasures for this important pathogen. High quality sequence data has opened the possibility of systematic dissection of how genes distributed on both the bacterial chromosome and associated plasmids have made it such a successful pathogen. However, low transformation efficiency and relatively few genetic tools for chromosomal manipulation have hampered full interrogation of its genome. Results Group II introns have been developed into an efficient tool for site-specific gene inactivation in several organisms. We have adapted group II intron targeting technology for application in Bacillus anthracis and generated vectors that permit gene inactivation through group II intron insertion. The vectors developed permit screening for the desired insertion through PCR or direct selection of intron insertions using a selection scheme that activates a kanamycin resistance marker upon successful intron insertion. Conclusions The design and vector construction described here provides a useful tool for high throughput experimental interrogation of the Bacillus anthracis genome and will benefit efforts to develop improved vaccines and therapeutics.
Collapse
Affiliation(s)
- Roland J Saldanha
- Air Force Research Laboratory, Air Force Research Laboratory, 711th HPW/RHXBC, Molecular Signatures Section, 2510 Fifth Street, Area B, Bldg 840, Room W220, Wright-Patterson AFB, OH 45433-7913, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
23
|
Nusca TD, Kim Y, Maltseva N, Lee JY, Eschenfeldt W, Stols L, Schofield MM, Scaglione JB, Dixon SD, Oves-Costales D, Challis GL, Hanna PC, Pfleger BF, Joachimiak A, Sherman DH. Functional and structural analysis of the siderophore synthetase AsbB through reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis. J Biol Chem 2012; 287:16058-72. [PMID: 22408253 PMCID: PMC3346087 DOI: 10.1074/jbc.m112.359349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 01/03/2023] Open
Abstract
Petrobactin, a mixed catechol-carboxylate siderophore, is required for full virulence of Bacillus anthracis, the causative agent of anthrax. The asbABCDEF operon encodes the biosynthetic machinery for this secondary metabolite. Here, we show that the function of five gene products encoded by the asb operon is necessary and sufficient for conversion of endogenous precursors to petrobactin using an in vitro system. In this pathway, the siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin assembly through use of biosynthetic intermediates, as opposed to primary metabolites, as carboxylate donors. In solving the crystal structure of the B. anthracis siderophore biosynthesis protein B (AsbB), we disclose a three-dimensional model of a nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. Structural characteristics provide new insight into how this bifunctional condensing enzyme can bind and adenylate multiple citrate-containing substrates followed by incorporation of both natural and unnatural polyamine nucleophiles. This activity enables formation of multiple end-stage products leading to final assembly of petrobactin. Subsequent enzymatic assays with the nonribosomal peptide synthetase-like AsbC, AsbD, and AsbE polypeptides show that the alternative products of AsbB are further converted to petrobactin, verifying previously proposed convergent routes to formation of this siderophore. These studies identify potential therapeutic targets to halt deadly infections caused by B. anthracis and other pathogenic bacteria and suggest new avenues for the chemoenzymatic synthesis of novel compounds.
Collapse
Affiliation(s)
- Tyler D. Nusca
- From the Life Sciences Institute and
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Youngchang Kim
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Natalia Maltseva
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | - William Eschenfeldt
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lucy Stols
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | | | - Shandee D. Dixon
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Daniel Oves-Costales
- the Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gregory L. Challis
- the Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Philip C. Hanna
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brian F. Pfleger
- From the Life Sciences Institute and
- the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
- the Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, and
| | - David H. Sherman
- From the Life Sciences Institute and
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- the Departments of Medicinal Chemistry and Chemistry, University of Michigan, Arbor, Michigan 48109
| |
Collapse
|
24
|
Mouse monoclonal antibodies to anthrax edema factor protect against infection. Infect Immun 2011; 79:4609-16. [PMID: 21911463 DOI: 10.1128/iai.05314-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax, and the tripartite anthrax toxin is an essential element of its pathogenesis. Edema factor (EF), a potent adenylyl cyclase, is one of the toxin components. In this work, anti-EF monoclonal antibodies (MAb) were produced following immunization of mice, and four of the antibodies were fully characterized. MAb 3F2 has an affinity of 388 pM, was most effective for EF detection, and appears to be the first antibody reported to neutralize EF by binding to the catalytic C(B) domain. MAb 7F10 shows potent neutralization of edema toxin activity in vitro and in vivo; it targets the N-terminal protective antigen binding domain. The four MAb react with three different domains of edema factor, and all were able to detect purified edema factor in Western blot analysis. None of the four MAb cross-reacted with the lethal factor toxin component. Three of the four MAb protected mice in both a systemic edema toxin challenge model and a subcutaneous spore-induced foreleg edema model. A combination of three of the MAb also significantly delayed the time to death in a third subcutaneous spore challenge model. This appears to be the first direct evidence that monoclonal antibody-mediated neutralization of EF alone is sufficient to delay anthrax disease progression.
Collapse
|
25
|
Xie T, Auth RD, Frucht DM. The effects of anthrax lethal toxin on host barrier function. Toxins (Basel) 2011; 3:591-607. [PMID: 22069727 PMCID: PMC3202839 DOI: 10.3390/toxins3060591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 01/08/2023] Open
Abstract
The pathological actions of anthrax toxin require the activities of its edema factor (EF) and lethal factor (LF) enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA). LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs), but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT) leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.
Collapse
Affiliation(s)
- Tao Xie
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
26
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
27
|
Sainath Rao S, Mohan KVK, Nguyen N, Abraham B, Abdouleva G, Zhang P, Atreya CD. Peptides panned from a phage-displayed random peptide library are useful for the detection of Bacillus anthracis surrogates B. cereus 4342 and B. anthracis Sterne. Biochem Biophys Res Commun 2010; 395:93-8. [PMID: 20350526 DOI: 10.1016/j.bbrc.2010.03.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/24/2010] [Indexed: 11/18/2022]
Abstract
Recent use of Bacillus anthracis as a bioweapon has highlighted the need for a sensitive monitoring system. Current bacterial detection tests use antibodies as bio-molecular recognition elements which have limitations with regard to time, specificity and sensitivity, creating the need for new and improved cost-effective high-affinity detection probes. In this study, we screened a commercially available bacteriophage-displayed random peptide library using Bacillus cereus 4342 cells as bait to identify peptides that could be used for detection of Bacillus. The method enabled us to identify two 12-amino acid consensus peptide sequences that specifically bind to B. cereus 4342 and B. anthracis Sterne, the nonpathogenic surrogates of B. anthracis strain. The two Bacillus-binding peptides (named BBP-1 and BBP-2) were synthesized with biotin tag to confirm their binding by four independent detection assays. Dot-blot analysis revealed that the peptides bind specifically to B. cereus 4342 and B. anthracis Sterne. Quantitative analysis of this interaction by ELISA and fluorometry demonstrated a detection sensitivity of 10(2) colony forming U/ml (CFU/ml) by both assays. When the peptides were used in combination with Qdots, the sensitivity was enhanced further by enabling detection of even a single bacterium by fluorescence microscopy. Immunoblot analysis and protein sequencing showed that BBP-1 and BBP-2 bound to the S-layer protein of B. anthracis Sterne. Overall, our findings validate the usefulness of synthetic versions of phage-derived peptides in combination with Qdot-liquid nanocrystals as high sensitivity bioprobes for various microbial detection platforms.
Collapse
Affiliation(s)
- Shilpakala Sainath Rao
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|