1
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Roy RK, Bera A, Patra N. Insights into Allosteric Inhibition of the AcrB Efflux Pump: Role of Distinct Binding Pockets, Protomer Preferences, and Crosstalk Disruption. J Chem Inf Model 2024; 64:5964-5976. [PMID: 39011748 DOI: 10.1021/acs.jcim.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AcrB, a key component in bacterial efflux processes, exhibits distinct binding pockets that influence inhibitor interactions. In addition to the well-known distal binding pocket within the periplasmic domain, a noteworthy pocket amidst the transmembrane (TM) helices serves as an alternate binding site for inhibitors. The bacterial efflux mechanism involves a pivotal functional rotation of the TM protein, inducing conformational changes in each protomer and propelling drugs toward the outer membrane domain. Surprisingly, inhibitors binding to the TM domain display a preference for L protomers over T protomers. Metadynamics simulations elucidate that Lys940 in the TM domain of AcrB can adopt two conformations in L protomers, whereas the energy barrier for such transitions is higher in T protomers. This phenomenon results in stable inhibitor binding in l protomers. Upon a detailed analysis of unbinding pathways using random accelerated molecular dynamics and umbrella sampling, we have identified three distinct routes for ligand exit from the allosteric site, specifically involving regions within the TM domains─TM4, TM5, and TM10. To explore allosteric crosstalk, we focused on the following key residues: Val452 from the TM domain and Ala831 from the porter domain. Surprisingly, our findings reveal that inhibitor binding disrupts this communication. The shortest path connecting Val452 and Ala831 increases upon inhibitor binding, suggesting sabotage of the natural interdomain communication dynamics. This result highlights the intricate interplay between inhibitor binding and allosteric signaling within our studied system.
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Abhishek Bera
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
3
|
Suslov AV, Panas A, Sinelnikov MY, Maslennikov RV, Trishina AS, Zharikova TS, Zharova NV, Kalinin DV, Pontes-Silva A, Zharikov YO. Applied physiology: gut microbiota and antimicrobial therapy. Eur J Appl Physiol 2024; 124:1631-1643. [PMID: 38683402 DOI: 10.1007/s00421-024-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The gut microbiota plays an important role in maintaining human health and in the pathogenesis of several diseases. Antibiotics are among the most commonly prescribed drugs and have a significant impact on the structure and function of the gut microbiota. The understanding that a healthy gut microbiota prevents the development of many diseases has also led to its consideration as a potential therapeutic target. At the same time, any factor that alters the gut microbiota becomes important in this approach. Exercise and antibacterial therapy have a direct effect on the microbiota. The review reflects the current state of publications on the mechanisms of intestinal bacterial involvement in the pathogenesis of cardiovascular, metabolic, and neurodegenerative diseases. The physiological mechanisms of the influence of physical activity on the composition of the gut microbiota are considered. The mechanisms of the common interface between exercise and antibacterial therapy will be considered using the example of several socially important diseases. The aim of the study is to show the physiological relationship between the effects of exercise and antibiotics on the gut microbiota.
Collapse
Affiliation(s)
- Andrey V Suslov
- Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, 117418, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alin Panas
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119048, Russia
| | - Roman V Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Aleksandra S Trishina
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya V Zharova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, 115093, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), Universidade Federal de São Carlos (UFSCar), São Carlos (SP), Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| |
Collapse
|
4
|
Elitas M, Kalayci Demir G, Vural Kaymaz S. Mathematical Model for Growth and Rifampicin-Dependent Killing Kinetics of Escherichia coli Cells. ACS OMEGA 2023; 8:38452-38458. [PMID: 37867679 PMCID: PMC10586251 DOI: 10.1021/acsomega.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Antibiotic resistance is a global health threat. We urgently need better strategies to improve antibiotic use to combat antibiotic resistance. Currently, there are a limited number of antibiotics in the treatment repertoire of existing bacterial infections. Among them, rifampicin is a broad-spectrum antibiotic against various bacterial pathogens. However, during rifampicin exposure, the appearance of persisters or resisters decreases its efficacy. Hence, to benefit more from rifampicin, its current standard dosage might be reconsidered and explored using both computational tools and experimental or clinical studies. In this study, we present the mathematical relationship between the concentration of rifampicin and the growth and killing kinetics of Escherichia coli cells. We generated time-killing curves of E. coli cells in the presence of 4, 16, and 32 μg/mL rifampicin exposures. We specifically focused on the oscillations with decreasing amplitude over time in the growth and killing kinetics of rifampicin-exposed E. coli cells. We propose the solution form of a second-order linear differential equation for a damped oscillator to represent the mathematical relationship. We applied a nonlinear curve fitting solver to time-killing curve data to obtain the model parameters. The results show a high fitting accuracy.
Collapse
Affiliation(s)
- Meltem Elitas
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkiye
| | - Guleser Kalayci Demir
- Faculty
of Engineering, Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir 35397, Turkey
| | - Sumeyra Vural Kaymaz
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkiye
| |
Collapse
|
5
|
Xu X, Sun Y, Zhang M, Zhao R, Zeng S, Xu Y, Nie W, Zhou Y, Chen P. Boosting the visible-light-driven photocatalytic antibacterial performance of MoS 2 nanosheets by poly(3-(4-methyl-3'-thiophenoxy))propyltrimethylammonium chloride (PThM) modification. J Mater Chem B 2022; 10:4405-4415. [PMID: 35587685 DOI: 10.1039/d2tb00397j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum disulfide (MoS2) has been reported to possess photocatalytic bactericidal ability, but its efficiency is not high. In this paper, a water-soluble cationic conjugated polymer, poly(3-(4-methyl-3'-thiophenoxy))propyltrimethylammonium chloride (PThM), was designed to modify MoS2 and boost its antibacterial abilities. Another hydrophobic conjugated polymer, polythiophene (PTh), was synthesized and composited with MoS2, and this was compared with PThM/MoS2 from the perspective of composite effectiveness. Studies involving the photo-disinfection of Escherichia coli (E. coli) under visible-light irradiation (30 W) showed that the antibacterial efficiencies were in the following order: PThM/MoS2 > PTh/MoS2 > MoS2. The enhanced bactericidal activities of PThM/MoS2 and PTh/MoS2 were attributed to the conjugated polymers restraining the recombination of photogenerated carriers in MoS2, thereby increasing the generation of reactive oxygen species (ROS). PThM/MoS2 presented the best antibacterial efficiency because its cationic side-chains improved the solubility of the material and promoted contact between bacteria and the material. This work may provide some insights into the design of practical nano-antibacterial materials.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Yuansong Sun
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Manman Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Rui Zhao
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
6
|
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021; 14:1750-1766. [PMID: 34756812 DOI: 10.1016/j.jiph.2021.10.020] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotics have been used to cure bacterial infections for more than 70 years, and these low-molecular-weight bioactive agents have also been used for a variety of other medicinal applications. In the battle against microbes, antibiotics have certainly been a blessing to human civilization by saving millions of lives. Globally, infections caused by multidrug-resistant (MDR) bacteria are on the rise. Antibiotics are being used to combat diversified bacterial infections. Synthetic biology techniques, in combination with molecular, functional genomic, and metagenomic studies of bacteria, plants, and even marine invertebrates are aimed at unlocking the world's natural products faster than previous methods of antibiotic discovery. There are currently only few viable remedies, potential preventive techniques, and a limited number of antibiotics, thereby necessitating the discovery of innovative medicinal approaches and antimicrobial therapies. MDR is also facilitated by biofilms, which makes infection control more complex. In this review, we have spotlighted comprehensively various aspects of antibiotics viz. overview of antibiotics era, mode of actions of antibiotics, development and mechanisms of antibiotic resistance in bacteria, and future strategies to fight the emerging antimicrobial resistant threat.
Collapse
Affiliation(s)
- Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India.
| | - Bm Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Md Kamal Hossain Ripon
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary.
| | | | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal.
| |
Collapse
|
7
|
Bandyopadhyay D, Mukherjee M. Reactive oxygen species and uspA overexpession: an alternative bacterial response toward selection and maintenance of multidrug resistance in clinical isolates of uropathogenic E. coli. Eur J Clin Microbiol Infect Dis 2020; 39:1753-1760. [PMID: 32399681 DOI: 10.1007/s10096-020-03903-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Emergence of multidrug resistance (MDR) in uropathogenic E. coli (UPEC) demands alternative therapeutic interventions. Bactericidal antibiotics at their sub-inhibitory concentration stimulate production of reactive oxygen species (ROS) that results in oxidative stress, generates mutations, and alters transcription of different genes. Sub-inhibitory concentration of antibiotics facilitates selection of highly resistant population. Universal stress protein A (uspA) overexpression in MDR-UPEC at sub-inhibitory bactericidal antibiotics concentration was investigated to explore alternative survival strategy against them. Fifty clinical UPEC isolates were screened. Minimum inhibitory concentration (MIC) against three different bactericidal antibiotics (ciprofloxacin, CIP; ceftazidime, CAZ; gentamycin, GEN) was determined by broth dilution method; ROS production by DCFDA and overexpression of uspA by real-time PCR were determined at the sub-inhibitory concentration of antibiotics. DNA ladder formation and SEM studies were performed with drug untreated and treated samples. Statistical analysis was done by Student's t test and Pearson's correlation analysis; 25 out of 50 UPEC exhibited high MIC against CIP (> 200 μg/ml), CAZ (> 500 μg/ml), GEN (> 500 μg/ml), with varied ROS production (p ≤ 0.001) in treated than untreated controls. DNA ladder formation confirmed ROS production in drug-treated samples. SEM analysis revealed unaltered cell morphology in both untreated and drug-treated bacteria. uspA was universally overexpressed in all 25 UPEC. A significant correlation (p ≤ 0.001) between ROS production and uspA overexpression was observed in 19 out of 25 MDR isolates at sub-inhibitory doses of the bactericidal antibiotics. Therefore, this study highlights an alternative strategy that the MDR isolates may acquire when exposed to sub-inhibitory drug concentration for their survival.
Collapse
Affiliation(s)
- Debojyoty Bandyopadhyay
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, 700073, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
8
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
9
|
Loureiro C, Medema MH, van der Oost J, Sipkema D. Exploration and exploitation of the environment for novel specialized metabolites. Curr Opin Biotechnol 2018; 50:206-213. [PMID: 29454184 DOI: 10.1016/j.copbio.2018.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/26/2022]
Abstract
Microorganisms are Nature's little engineers of a remarkable array of bioactive small molecules that represent most of our new drugs. The wealth of genomic and metagenomic sequence data generated in the last decade has shown that the majority of novel biosynthetic gene clusters (BGCs) is identified from cultivation-independent studies, which has led to a strong expansion of the number of microbial taxa known to harbour BGCs. The large size and repeat sequences of BGCs remain a bioinformatic challenge, but newly developed software tools have been created to overcome these issues and are paramount to identify and select the most promising BGCs for further research and exploitation. Although heterologous expression of BGCs has been the greatest challenge until now, a growing number of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS)-encoding gene clusters have been cloned and expressed in bacteria and fungi based on techniques that mostly rely on homologous recombination. Finally, combining ecological insights with state-of-the-art computation and molecular methodologies will allow for further comprehension and exploitation of microbial specialized metabolites.
Collapse
Affiliation(s)
- Catarina Loureiro
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marnix H Medema
- Wageningen University & Research, Bioinformatics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - John van der Oost
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Detmer Sipkema
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
10
|
Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. Antibiotic use and microbiome function. Biochem Pharmacol 2017; 134:114-126. [PMID: 27641814 DOI: 10.1016/j.bcp.2016.09.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Our microbiome should be understood as one of the most complex components of the human body. The use of β-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays.
Collapse
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | | | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community Public Health (FISABIO), Valencia, Spain; Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain; Instituto Cavanilles de Biodiversidad y Biología Evolutiva (Universidad de Valencia), Valencia, Spain.
| |
Collapse
|
11
|
New approaches to antibiotic discovery. Biotechnol Lett 2017; 39:805-817. [DOI: 10.1007/s10529-017-2311-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
12
|
Sipkema D. Marine biotechnology: diving deeper for drugs. Microb Biotechnol 2016; 10:7-8. [PMID: 27597262 PMCID: PMC5270750 DOI: 10.1111/1751-7915.12410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|