1
|
Setayeshi S, Hasanzadeh A, Yahyapour Y, Alizadeh A, Ghorbani H, Nokhostin F, Bagheri M, Sadeghi F. Evaluation of human papillomavirus type 16 viral load and genome physical status in Iranian women with cervical disease. Mol Biol Rep 2024; 51:411. [PMID: 38466465 DOI: 10.1007/s11033-024-09397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND This study examined the viral load and physical status of the human papillomavirus 16 (HPV-16) genome in non-cancerous, precancerous and cancerous cervical lesions. METHODS Quantitative real-time PCR was performed to determine HPV-16 E2 and E6 viral load in 132 cervical specimens. E2/E6 viral load ratio was used to determine the physical status of HPV-16 genome. RESULTS E2 gene viral load was a significant (P < 0.001) predicting biomarker in differentiating non-cancerous from precancerous and cancerous samples. E6 gene viral load was significantly different between the groups (P < 0.001). The specificity and sensitivity of E2 and E6 in distinguishing SCC samples were 100% and 95% respectively. CONCLUSION HPV-16 viral load measured through E2 and E6 genes is a reliable indicator of lesion type.
Collapse
Affiliation(s)
- Shadi Setayeshi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hasanzadeh
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahad Alizadeh
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Ghorbani
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fahimeh Nokhostin
- Department of Obstetrics and Gynecology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meghdad Bagheri
- Department of Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Bugbee T, Gathoni M, Payne C, Blubaugh M, Matlock K, Wixson T, Lu A, Stancic S, Chung PA, Palinski R, Wallace N. Inhibition of p300 increases cytotoxicity of cisplatin in pancreatic cancer cells. Gene 2023; 888:147762. [PMID: 37666373 PMCID: PMC10563798 DOI: 10.1016/j.gene.2023.147762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Pancreatic cancer is a notoriously deadly disease with a five-year survival rate around 10 percent. Since early detection of these tumors is difficult, pancreatic cancers are often diagnosed at advanced stages. At this point, genotoxic chemotherapeutics can be used to manage tumor growth. However, side effects of these drugs are severe, limiting the amount of treatment that can be given and resulting in sub-optimal dosing. Thus, there is an urgent need to identify chemo-sensitizing agents that can lower the effective dose of genotoxic agents and as a result reduce the side effects. Here, we use transformed and non-transformed pancreatic cell lines to evaluate DNA repair inhibitors as chemo-sensitizing agents. We used a novel next generation sequencing approach to demonstrate that pancreatic cancer cells have a reduced ability to faithfully repair DNA damage. We then determine the extent that two DNA repair inhibitors (CCS1477, a small molecule inhibitor of p300, and ART558, a small molecule inhibitor of polymerase theta) can exploit this repair deficiency to make pancreatic cancer cells more sensitive to cisplatin, a commonly used genotoxic chemotherapeutic. Immunofluorescence microscopy and cell viability assays show that CCS1477 delayed repair and significantly sensitized pancreatic cancer cells to cisplatin. The increased toxicity was not seen in a non-transformed pancreatic cell line. We also found that while ART558 sensitizes pancreatic cancer cells to cisplatin, it also sensitized non-transformed pancreatic cancer cells.
Collapse
Affiliation(s)
- Taylor Bugbee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mary Gathoni
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Carlie Payne
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Morgan Blubaugh
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Kaydn Matlock
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Taylor Wixson
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Andrea Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Steven Stancic
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Peter A Chung
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Rachel Palinski
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Wendel SO, Snow JA, Gu L, Banerjee NS, Malkas L, Wallace NA. The potential of PCNA inhibition as a therapeutic strategy in cervical cancer. J Med Virol 2023; 95:e29244. [PMID: 38010649 PMCID: PMC10683864 DOI: 10.1002/jmv.29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Cervical cancers are the fourth most common and most deadly cancer in women worldwide. Despite being a tremendous public health burden, few novel approaches to improve care for these malignancies have been introduced. We discuss the potential for proliferating cell nuclear antigen (PCNA) inhibition to address this need as well as the advantages and disadvantages for compounds that can therapeutically inhibit PCNA with a specific focus on cervical cancer.
Collapse
Affiliation(s)
| | - Jazmine A Snow
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Long Gu
- Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Nilam Sanjib Banerjee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Linda Malkas
- Beckman Research Institute of City of Hope, Duarte, California, USA
| | | |
Collapse
|
4
|
Wang S, Ding B, Wang S, Yan W, Xia Q, Meng D, Xie S, Shen S, Yu B, Liu H, Hu J, Zhang X. Gene signature of m 6A RNA regulators in diagnosis, prognosis, treatment, and immune microenvironment for cervical cancer. Sci Rep 2022; 12:17667. [PMID: 36271283 PMCID: PMC9587246 DOI: 10.1038/s41598-022-22211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/11/2022] [Indexed: 01/18/2023] Open
Abstract
Continuing studies imply that m6A RNA modification is involved in the development of cervical cancer (CC), but lack strong support on recurrence and diagnosis prediction. In this research, a comprehensive analysis of 33 m6A regulators was performed to fulfill them. Here, we performed diagnostic and prognosis models and identified key regulators, respectively. Then the CC patients were separated into two clusters in accordance with 33 regulators, and participants in the cluster 1 had a worse prognosis. Subsequently, the m6AScore was calculated to quantify the m6A modification pattern based on regulators and we found that patients in cluster 1 had higher m6AScore. Afterwards, immune microenvironment, cell infiltration, escape analyses and tumor burden mutation analyses were executed, and results showed that m6AScore was correlated with them, but to a limited extent. Interestingly, HLAs and immune checkpoint expression, and immunophenoscore in patients with high-m6AScores were significantly lower than those in the low-m6AScore group. These suggested the m6AScores might be used to predict the feasibility of immunotherapy in patients. Results provided a distinctive perspective on m6A modification and theoretical basis for CC diagnosis, prognosis, clinical treatment strategies, and potential mechanism exploration.
Collapse
Affiliation(s)
- Shizhi Wang
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Bo Ding
- grid.263826.b0000 0004 1761 0489Department of Gynecology and Obstetrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shiyuan Wang
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Wenjing Yan
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Qianqian Xia
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Dan Meng
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Shuqian Xie
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Siyuan Shen
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Bingjia Yu
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Haohan Liu
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Jing Hu
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| | - Xing Zhang
- grid.263826.b0000 0004 1761 0489Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009 China
| |
Collapse
|
5
|
Schrank TP, Landess L, Stepp WH, Rehmani H, Weir WH, Lenze N, Lal A, Wu D, Kothari A, Hackman TG, Sheth S, Patel S, Jefferys SR, Issaeva N, Yarbrough WG. Comprehensive Viral Genotyping Reveals Prognostic Viral Phylogenetic Groups in HPV16-Associated Squamous Cell Carcinoma of the Oropharynx. Mol Cancer Res 2022; 20:1489-1501. [PMID: 35731223 PMCID: PMC11249119 DOI: 10.1158/1541-7786.mcr-21-0443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Human papillomavirus-positive (HPV+) squamous cell carcinoma of the oropharynx (OPSCC) is the most prevalent HPV-associated malignancy in the United States and is primarily caused by HPV subtype 16 (HPV16). Favorable treatment outcomes have led to increasing interest in treatment deescalation to reduce treatment-related morbidity. Prognostic biomarkers are needed to identify appropriately low-risk patients for reduced treatment intensity. Targeted DNA sequencing including all HPV16 open reading frames was performed on tumors from 104 patients with HPV16+ OPSCC treated at a single center. Genotypes closely related to the HPV16-A1 reference were associated with increased numbers of somatic copy-number variants in the human genome and poor recurrence-free survival (RFS). Genotypes divergent from HPV16-A1 were associated with favorable RFS. These findings were independent of tobacco smoke exposure. Total RNA sequencing was performed on a second independent cohort of 89 HPV16+ OPSCC cases. HPV16 genotypes divergent from HPV16-A1 were again validated in this independent cohort, to be prognostic of improved RFS in patients with moderate (less than 30 pack-years) or low (no more than 10 pack-years) of tobacco smoke exposure. In summary, we show in two independent cohorts that viral sequence divergence from the HPV16-A1 reference is correlated with improved RFS in patients with moderate or low tobacco smoke exposure. IMPLICATIONS HPV16 genotype is a potential biomarker that could be easily adopted to guide therapeutic decision-making related to deescalation therapy.
Collapse
Affiliation(s)
- Travis P Schrank
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Lee Landess
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Wesley H Stepp
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Hina Rehmani
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - William H Weir
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas Lenze
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Asim Lal
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Di Wu
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Aditi Kothari
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Trevor G Hackman
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Siddharth Sheth
- Department of Medicne, Division of Oncology, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Shetal Patel
- Department of Medicne, Division of Oncology, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Stuart R Jefferys
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Natalia Issaeva
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Lab Medicine, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| | - Wendell G Yarbrough
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Linberger Comprehensive Cancer Center, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Lab Medicine, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Direct Comparison of HPV16 Viral Genomic Integration, Copy Loss, and Structural Variants in Oropharyngeal and Uterine Cervical Cancers Reveal Distinct Relationships to E2 Disruption and Somatic Alteration. Cancers (Basel) 2022; 14:cancers14184488. [PMID: 36139648 PMCID: PMC9496734 DOI: 10.3390/cancers14184488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma of the oropharynx caused by HPV type 16 (HPV16+ OPSCC) is the most common HPV-associated malignancy in the USA and has many molecular differences from uterine cervical squamous cell carcinoma (UCSCC). Our understanding of HPV oncogenesis relied on studies of UCSCC revealing a consensus model reliant on HPV integration with a loss of E2. Here, we compare patterns of HPV integration in UCSCC and OPSCC by analysis of affinity capture sequencing of the HPV16 genome in 104 OPSCC and 44 UCSCC tumors. These cohorts were contemporaneously sequenced using an identical strategy. Integration was identified using discordant read pair clustering and assembly-based approaches. Viral integration sites, structural variants, and copy losses were examined. While large-scale deep losses of HPV16 genes were common in UCSCC and were associated with E2 loss, deep copy losses of the HPV16 genome were infrequent in HPV16+ OPSCC. Similarly, structural variants within HPV16 favored E2 loss in UCSCC but not OPSCC. HPV16 integration sites were non-random, with recurrent integration hot-spots identified. OPSCC tumors had many more integration sites per tumor when compared to UCSCC and had more integration sites in genomic regions with high gene density. These data show that viral integration and E2 disruption are distinct in UCSCC and OPSCC. Our findings also add to growing literature suggesting that HPV tumorigenesis in OPSCC does not follow the model developed based on UCSCC.
Collapse
|
8
|
Wang X, Xu C, Sun H. DNA Damage Repair-Related Genes Signature for Immune Infiltration and Outcome in Cervical Cancer. Front Genet 2022; 13:733164. [PMID: 35309134 PMCID: PMC8927729 DOI: 10.3389/fgene.2022.733164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Background: The mechanism of DNA damage repair plays an important role in many solid tumors represented by cervical cancer. Purpose: The purpose of this study was to explore the effect of DNA damage repair-related genes on immune function of patients with cervical cancer, and to establish and evaluate a prognosis model based on DNA damage repair-related genes. Methods: In the study, we analyzed the genes related to DNA damage and repair, and obtained two subtypes (F1 and F2). We selected two groups of samples for different selection, and studied which pathways were enriched expression. For different subtypes, the immune score was explored to explain immune infiltration. We got the key genes through screening, and established the prognosis model through the key genes. These 11 key genes were correlated with the expression of common Clusters of Differentiation (CD) genes in order to explore the effects of these genes on immunity. Results: Through the Least absolute shrinkage and selection operator (LASSO) method, we screened 11 genes from 232 candidate genes as the key genes for the prognosis score. Through the Kaplan-Meier method, four genes (HAP1, MCM5, RNASEH2A, CETN2) with significant prognostic significance were screened into the final model, forming a Nomogram with C-index of 0.716 (0.649–1.0). Conclusion: In cervical cancer, DNA damage repair related genes and immune cell infection characteristics have certain association, and DNA damage repair related genes and immune cell infection characteristics can effectively predict the prognosis.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongzan Sun,
| |
Collapse
|
9
|
Molkentine DP, Molkentine JM, Bridges KA, Valdecanas DR, Dhawan A, Bahri R, Hefner AJ, Kumar M, Yang L, Abdelhakiem M, Pifer PM, Sandulache V, Sheth A, Beadle BM, Thames HD, Mason KA, Pickering CR, Meyn RE, Skinner HD. p16 Represses DNA Damage Repair via a Novel Ubiquitin-Dependent Signaling Cascade. Cancer Res 2022; 82:916-928. [PMID: 34965932 PMCID: PMC9136619 DOI: 10.1158/0008-5472.can-21-2101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 01/07/2023]
Abstract
Squamous cell carcinoma driven by human papillomavirus (HPV) is more sensitive to DNA-damaging therapies than its HPV-negative counterpart. Here, we show that p16, the clinically used surrogate for HPV positivity, renders cells more sensitive to radiotherapy via a ubiquitin-dependent signaling pathway, linking high levels of this protein to increased activity of the transcription factor SP1, increased HUWE1 transcription, and degradation of ubiquitin-specific protease 7 (USP7) and TRIP12. Activation of this pathway in HPV-positive disease led to decreased homologous recombination and improved response to radiotherapy, a phenomenon that can be recapitulated in HPV-negative disease using USP7 inhibitors in clinical development. This p16-driven axis induced sensitivity to PARP inhibition and potentially leads to "BRCAness" in head and neck squamous cell carcinoma (HNSCC) cells. Thus, these findings support a functional role for p16 in HPV-positive tumors in driving response to DNA damage, which can be exploited to improve outcomes in both patients with HPV-positive and HPV-negative HNSCC. SIGNIFICANCE In HPV-positive tumors, a previously undiscovered pathway directly links p16 to DNA damage repair and sensitivity to radiotherapy via a clinically relevant and pharmacologically targetable ubiquitin-mediated degradation pathway.
Collapse
Affiliation(s)
- David P. Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica M. Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kathleen A. Bridges
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R. Valdecanas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Reshub Bahri
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andrew J. Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Manish Kumar
- Department of Biochemistry, AIMS, Bilaspur, Himachal Pradesh, India
| | - Liangpeng Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Phillip M. Pifer
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Vlad Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston Texas
| | - Aakash Sheth
- Department of Internal Medicine, Baylor College of Medicine, Houston Texas
| | - Beth M. Beadle
- Department of Radiation Oncology, Stanford University, Stanford California
| | - Howard D. Thames
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn A. Mason
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond E. Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Effects of β-HPV on DNA damage response pathways to drive carcinogenesis: a review. Virus Genes 2021; 57:23-30. [PMID: 33392984 DOI: 10.1007/s11262-020-01813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
The DDR is a complex signaling network responsible for the preservation of genomic integrity. Beta human papillomaviruses (β-HPVs) are able to destabilize the host genome by attenuating the DDR machinery at the molecular scale following expression of the oncogenes E6 and E7. In the event of β-HPV infection, the E6- and E7-mediated inhibition of the DDR enhances the oncogenicity of UV-induced mutations to enable carcinogenesis in an otherwise immunocompetent host, marking an important mechanistic divergence from the alpha genus of HPVs. In this review, we summarize recent updates to build upon the 'hit-and-run' hypothesis of β-HPV pathomechanism and highlight strain-dependent variations. Simultaneously, we illuminate points within the β-HPV-DDR interface that may unravel new insights for HPV viral genetics, genus-specific mechanistic models, and developments in targeted molecular therapy of β-HPV-related cancers.
Collapse
|
11
|
High Risk α-HPV E6 Impairs Translesion Synthesis by Blocking POLη Induction. Cancers (Basel) 2020; 13:cancers13010028. [PMID: 33374731 PMCID: PMC7793514 DOI: 10.3390/cancers13010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Cervical cancers (CaCx) are caused by the expression of human papillomavirus oncogenes (HPV E6 and E7). Here, in vitro assays, computational approaches and immunohistochemical analysis of cervical biopsies show that HPV oncogenes impair translesion synthesis (TLS). This limits the pathway’s ability to prevent replication stress from causing fork collapse and DNA damage. As a result, HPV oncogenes make cells more sensitive to replication stressing agents, such as Cisplatin. Mechanistically, HPV E6 prevents replication stress from triggering the accumulation of a TLS-specific polymerase (POLη). Supplying exogenous POLη to CaCx cells rescues TLS and lowers Cisplatin toxicity. Abstract High risk genus α human papillomaviruses (α-HPVs) express two versatile oncogenes (α-HPV E6 and E7) that cause cervical cancer (CaCx) by degrading tumor suppressor proteins (p53 and RB). α-HPV E7 also promotes replication stress and alters DNA damage responses (DDR). The translesion synthesis pathway (TLS) mitigates DNA damage by preventing replication stress from causing replication fork collapse. Computational analysis of gene expression in CaCx transcriptomic datasets identified a frequent increased expression of TLS genes. However, the essential TLS polymerases did not follow this pattern. These data were confirmed with in vitro and ex vivo systems. Further interrogation of TLS, using POLη as a representative TLS polymerase, demonstrated that α-HPV16 E6 blocks TLS polymerase induction by degrading p53. This doomed the pathway, leading to increased replication fork collapse and sensitivity to treatments that cause replication stress (e.g., UV and Cisplatin). This sensitivity could be overcome by the addition of exogenous POLη.
Collapse
|
12
|
Lee EK, Konstantinopoulos PA. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther Adv Med Oncol 2020; 12:1758835920944116. [PMID: 32782491 PMCID: PMC7383615 DOI: 10.1177/1758835920944116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Poly[adenosine diphosphate (ADP) ribose]polymerase (PARP) has multifaceted roles in the maintenance of genomic integrity, deoxyribonucleic acid (DNA) repair and replication, and the maintenance of immune-system homeostasis. PARP inhibitors are an attractive oncologic therapy, causing direct cancer cell cytotoxicity by propagating DNA damage and indirectly, by various mechanisms of immunostimulation, including activation of the cGAS/STING pathway, paracrine stimulation of dendritic cells, increased T-cell infiltration, and upregulation of death-ligand receptors to increase susceptibility to natural-killer-cell killing. However, these immunostimulatory effects are counterbalanced by PARPi-mediated upregulation of programmed cell-death-ligand 1 (PD-L1), which leads to immunosuppression. Combining PARP inhibition with immune-checkpoint blockade seeks to exploit the immune stimulatory effects of PARP inhibition while negating the immunosuppressive effects of PD-L1 upregulation.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA
| | | |
Collapse
|
13
|
Holcomb AJ, Brown L, Tawfik O, Madan R, Shnayder Y, Thomas SM, Wallace NA. DNA repair gene expression is increased in HPV positive head and neck squamous cell carcinomas. Virology 2020; 548:174-181. [PMID: 32838940 DOI: 10.1016/j.virol.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
The incidence of head and neck squamous cell carcinomas (HNSCCs) is rising in developed countries. This is driven by an increase in HNSCCs caused by high-risk human papillomavirus (HPV) infections or HPV + HNSCCs. Compared to HNSCCs not caused by HPV (HPV- HNSCCs), HPV + HNSCCs are more responsive to therapy and associated with better oncologic outcomes. As a result, the HPV status of an HNSCC is an important determinant in medical management. One method to determine the HPV status of an HNSCC is increased expression of p16 caused by the HPV E7 oncogene. We identified novel expression changes in HPV + HNSCCs. A comparison of gene expression among HPV+ and HPV- HNSCCs in The Cancer Genome Atlas demonstrated increased DNA repair gene expression in HPV + HNSCCs. Further, DNA repair gene expression correlated with HNSCC survival. Immunohistochemical analysis of a novel HNSCC microarray confirmed that DNA repair protein abundance is elevated in HPV + HNSCCs.
Collapse
Affiliation(s)
- Andrew J Holcomb
- The University of Kansas Medical Center, Department of Otolaryngology, Head and Neck Surgery, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Laura Brown
- The University of Kansas Medical Center, Department of Pathology and Lab Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ossama Tawfik
- The University of Kansas Medical Center, Department of Pathology and Lab Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Rashna Madan
- The University of Kansas Medical Center, Department of Pathology and Lab Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yelizaveta Shnayder
- The University of Kansas Medical Center, Department of Otolaryngology, Head and Neck Surgery, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Sufi Mary Thomas
- The University of Kansas Medical Center, Department of Otolaryngology, Head and Neck Surgery, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Nicholas A Wallace
- Kansas State University, Department of Biology, 116 Ackert Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
14
|
Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins. Pathogens 2020; 9:pathogens9040292. [PMID: 32316236 PMCID: PMC7238203 DOI: 10.3390/pathogens9040292] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.
Collapse
|
15
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|