1
|
de Block T, De Baetselier I, Van den Bossche D, Abdellati S, Gestels Z, Laumen JGE, Van Dijck C, Vanbaelen T, Claes N, Vandelannoote K, Kenyon C, Harrison O, Santhini Manoharan-Basil S. Genomic oropharyngeal Neisseria surveillance detects MALDI-TOF MS species misidentifications and reveals a novel Neisseria cinerea clade. J Med Microbiol 2024; 73. [PMID: 39212029 DOI: 10.1099/jmm.0.001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Introduction. Commensal Neisseria spp. are highly prevalent in the oropharynx as part of the healthy microbiome. N. meningitidis can colonise the oropharynx too from where it can cause invasive meningococcal disease. To identify N. meningitidis, clinical microbiology laboratories often rely on Matrix Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALDI-TOF MS).Hypothesis/Gap statement. N. meningitidis may be misidentified by MALDI-TOF MS.Aim. To conduct genomic surveillance of oropharyngeal Neisseria spp. in order to: (i) verify MALDI-TOF MS species identification, and (ii) characterize commensal Neisseria spp. genomes.Methodology. We analysed whole genome sequence (WGS) data from 119 Neisseria spp. isolates from a surveillance programme for oropharyngeal Neisseria spp. in Belgium. Different species identification methods were compared: (i) MALDI-TOF MS, (ii) Ribosomal Multilocus Sequence Typing (rMLST) and (iii) rplF gene species identification. WGS data were used to further characterize Neisseria species found with supplementary analyses of Neisseria cinerea genomes.Results. Based on genomic species identification, isolates from the oropharyngeal Neisseria surveilence study were composed of the following species: N. meningitidis (n=23), N. subflava (n=61), N. mucosa (n=15), N. oralis (n=8), N. cinerea (n=5), N. elongata (n=3), N. lactamica (n=2), N. bacilliformis (n=1) and N. polysaccharea (n=1). Of these 119 isolates, four isolates identified as N. meningitidis (n=3) and N. subflava (n=1) by MALDI-TOF MS, were determined to be N. polysaccharea (n=1), N. cinerea (n=2) and N. mucosa (n=1) by rMLST. Phylogenetic analyses revealed that N. cinerea isolates from the general population (n=3, cluster one) were distinct from those obtained from men who have sex with men (MSM, n=2, cluster two). The latter contained genomes misidentified as N. meningitidis using MALDI-TOF MS. These two N. cinerea clusters persisted after the inclusion of published N. cinerea WGS (n=42). Both N. cinerea clusters were further defined through pangenome and Average Nucleotide Identity (ANI) analyses.Conclusion. This study provides insights into the importance of genomic genus-wide Neisseria surveillance studies to improve the characterization and identification of the Neisseria genus.
Collapse
Affiliation(s)
- Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Thibaut Vanbaelen
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Nathalie Claes
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Koen Vandelannoote
- Bacterial Phylogenomics group, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Odile Harrison
- Nuffield Department of Population Health, Infectious Diseases Epidemiology Unit, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Dong X, Jia H, Yu Y, Xiang Y, Zhang Y. Genomic revisitation and reclassification of the genus Providencia. mSphere 2024; 9:e0073123. [PMID: 38412041 PMCID: PMC10964429 DOI: 10.1128/msphere.00731-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
Members of Providencia, although typically opportunistic, can cause severe infections in immunocompromised hosts. Recent advances in genome sequencing provide an opportunity for more precise study of this genus. In this study, we first identified and characterized a novel species named Providencia zhijiangensis sp. nov. It has ≤88.23% average nucleotide identity (ANI) and ≤31.8% in silico DNA-DNA hybridization (dDDH) values with all known Providencia species, which fall significantly below the species-defining thresholds. Interestingly, we found that Providencia stuartii and Providencia thailandensis actually fall under the same species, evidenced by an ANI of 98.59% and a dDDH value of 90.4%. By fusing ANI with phylogeny, we have reclassified 545 genomes within this genus into 20 species, including seven unnamed taxa (provisionally titled Taxon 1-7), which can be further subdivided into 23 lineages. Pangenomic analysis identified 1,550 genus-core genes in Providencia, with coenzymes being the predominant category at 10.56%, suggesting significant intermediate metabolism activity. Resistance analysis revealed that most lineages of the genus (82.61%, 19/23) carry a high number of antibiotic-resistance genes (ARGs) and display diverse resistance profiles. Notably, the majority of ARGs are located on plasmids, underscoring the significant role of plasmids in the resistance evolution within this genus. Three species or lineages (P. stuartii, Taxon 3, and Providencia hangzhouensis L12) that possess the highest number of carbapenem-resistance genes suggest their potential influence on clinical treatment. These findings underscore the need for continued surveillance and study of this genus, particularly due to their role in harboring antibiotic-resistance genes. IMPORTANCE The Providencia genus, known to harbor opportunistic pathogens, has been a subject of interest due to its potential to cause severe infections, particularly in vulnerable individuals. Our research offers groundbreaking insights into this genus, unveiling a novel species, Providencia zhijiangensis sp. nov., and highlighting the need for a re-evaluation of existing classifications. Our comprehensive genomic assessment offers a detailed classification of 545 genomes into distinct species and lineages, revealing the rich biodiversity and intricate species diversity within the genus. The substantial presence of antibiotic-resistance genes in the Providencia genus underscores potential challenges for public health and clinical treatments. Our study highlights the pressing need for increased surveillance and research, enriching our understanding of antibiotic resistance in this realm.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Guangzhou, China
| | - Huiqiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuyun Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Guangzhou, China
| |
Collapse
|
3
|
Morobane DM, Tshishonga K, Serepa-Dlamini MH. Draft Genome Sequence of Pantoea sp. Strain MHSD4, a Bacterial Endophyte With Bioremediation Potential. Evol Bioinform Online 2024; 20:11769343231217908. [PMID: 38487815 PMCID: PMC10938601 DOI: 10.1177/11769343231217908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Pantoea sp. strain MHSD4 is a bacterial endophyte isolated from the leaves of the medicinal plant Pellaea calomelanos. Here, we report on strain MHSD4 draft whole genome sequence and annotation. The draft genome size of Pantoea sp. strain MHSD4 is 4 647 677 bp with a G+C content of 54.2% and 41 contigs. The National Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline tool predicted a total of 4395 genes inclusive of 4235 protein-coding genes, 87 total RNA genes, 14 non-coding (nc) RNAs and 70 tRNAs, and 73 pseudogenes. Biosynthesis pathways for naphthalene and anthracene degradation were identified. Putative genes involved in bioremediation such as copA, copD, cueO, cueR, glnGm, and trxC were identified. Putative genes involved in copper homeostasis and tolerance were identified which may suggest that Pantoea sp. strain MHSD4 has biotechnological potential for bioremediation of heavy metals.
Collapse
Affiliation(s)
- Dimpho Michelle Morobane
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Khuthadzo Tshishonga
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
4
|
Kim J, Cha IT, Lee KE, Son YK, Yu J, Seol D. Genomic insights and comparative analysis of Flavobacterium bizetiae HJ-32-4 isolated from soil. Antonie Van Leeuwenhoek 2023; 116:975-986. [PMID: 37542623 DOI: 10.1007/s10482-023-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
In the late 1970s, Flavobacterium bizetiae was first isolated from diseased fish in Canada. After four decades of preservation, it was reported as a novel species in 2020. Here, we report the first complete genome sequence of HJ-32-4, a novel strain of F. bizetiae. Interestingly, HJ-32-4 was isolated from soil in Gangwon-do, Republic of Korea, unlike the other two previously reported F. bizetiae strains which were isolated from fish. We generated a single circular chromosome of HJ-32-4, comprising 5,745,280 bp with a GC content of 34.2%. The average nucleotide identity (ANI) value of 96.2% indicated that HJ-32-4 belongs to F. bizetiae CIP 105534T. The virulence factor was not detected in the genome. Comparative genomic analysis of F. bizetiae and major flavobacterial pathogens revealed that F. bizetiae had a larger genome size and the ratio of peptidases (PEP) and glycoside hydrolase (GH) genes of F. bizetiae were lower than those of the rest strains, implying that F. bizetiae exhibits similar characteristics with non-pathogenic strains from a genomic point of view. However, further experimental verification is required to ensure these in silico predictions. This study will provide insight into the overall characteristics of HJ-32-4 compared to other strains.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - In-Tae Cha
- National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Ki-Eun Lee
- National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Youn Kyoung Son
- National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Jaewoong Yu
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea.
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Department of Surgery, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam, 13605, Republic of Korea.
| |
Collapse
|
5
|
Shi R, Huang C, Gao Y, Li X, Zhang C, Li M. Gut microbiota axis: potential target of phytochemicals from plant-based foods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Lee AY, Chen CH, Liou JS, Lin YC, Hamada M, Wang YT, Peng LL, Chang SC, Chen CC, Lin CF, Huang L, Huang CH. Micrococcus porci sp. nov., Isolated from Feces of Black Pig ( Sus scrofa). Life (Basel) 2022; 12:1749. [PMID: 36362904 PMCID: PMC9697426 DOI: 10.3390/life12111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
An aerobic bacterium, designated as strain KD337-16T, was isolated from the fecal samples of a black pig. It exhibited spherical, non-motile and non−spore-forming, Gram-positive cells. KD337-16T was identified as a member of the genus Micrococcus through 16S rRNA gene sequencing, and its closest relatives were found to be Micrococcus endophyticus YIM 56238T (99.5% similarity), Micrococcus luteus NCTC 2665T (99.1%), Micrococcus yunnanensis YIM 65004T (99.1%), Micrococcus aloeverae AE-6T (99.1%), Micrococcus antarcticus T2T (98.9%), and Micrococcus flavus LW4T (98.7%). Phylogenomic trees were constructed, and strain KD337-16T was found to form its own cluster as an independent lineage of M. flavus LW4T. Between KD337-16T and its close relatives, the average nucleotide identity, average amino acid identity, and digital DNA−DNA hybridization were below the respective species delineation thresholds at 82.1−86.6%, 78.1−86.1%, and 24.4−34.9%. The major cellular fatty acids and polar lipids were anteiso-C15:0 and iso-C15:0, and DPG and PG, respectively. The predominant menaquinone was MK-8(H2). Taken together, the results indicate that strain KD337-16T is a novel species of the genus Micrococcus, for which the name Micrococcus porci sp. nov. is proposed. The type strain is KD337-16T (=BCRC 81318T = NBRC 115578T).
Collapse
Affiliation(s)
- Ai-Yun Lee
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Chia-Hsuan Chen
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yu-Ting Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Lin-Liang Peng
- Kaohsiung Animal Propagation Station, COA-LRI, Pingtung 91247, Taiwan
| | - Shen-Chang Chang
- Kaohsiung Animal Propagation Station, COA-LRI, Pingtung 91247, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Lina Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| |
Collapse
|
7
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
8
|
Zhao Y, Xie X, Li J, Shi Y, Chai A, Fan T, Li B, Li L. Comparative Genomics Insights into a Novel Biocontrol Agent Paenibacillus peoriae Strain ZF390 against Bacterial Soft Rot. BIOLOGY 2022; 11:1172. [PMID: 36009799 PMCID: PMC9404902 DOI: 10.3390/biology11081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Bacterial soft rot, caused by Pectobacterium brasiliense, can infect several economically important horticultural crops. However, the management strategies available to control this disease are limited. Plant-growth-promoting rhizobacteria (PGPR) have been considered to be promising biocontrol agents. With the aim of obtaining a strain suitable for agricultural applications, 161 strains were isolated from the rhizosphere soil of healthy cucumber plants and screened through plate bioassays and greenhouse tests. Paenibacillus peoriae ZF390 exhibited an eminent control effect against soft rot disease and a broad antagonistic activity spectrum in vitro. Moreover, ZF390 showed good activities of cellulase, protease, and phosphatase and a tolerance of heavy metal. Whole-genome sequencing was performed and annotated to explore the underlying biocontrol mechanisms. Strain ZF390 consists of one 6,193,667 bp circular chromosome and three plasmids. Comparative genome analysis revealed that ZF390 involves ten gene clusters responsible for secondary metabolite antibiotic synthesis, matching its excellent biocontrol activity. Plenty of genes related to plant growth promotion, biofilm formation, and induced systemic resistance were mined to reveal the biocontrol mechanisms that might consist in strain ZF390. Overall, these findings suggest that strain ZF390 could be a potential biocontrol agent in bacterial-soft-rot management, as well as a source of antimicrobial mechanisms for further exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Jin Y, Xu H, Yao Q, Gu B, Wang Z, Wang T, Yu X, Lu Y, Zheng B, Zhang Y. Confirmation of the Need for Reclassification of Neisseria mucosa and Neisseria sicca Using Average Nucleotide Identity Blast and Phylogenetic Analysis of Whole-Genome Sequencing: Hinted by Clinical Misclassification of a Neisseria mucosa Strain. Front Microbiol 2022; 12:780183. [PMID: 35281306 PMCID: PMC8909641 DOI: 10.3389/fmicb.2021.780183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
The taxonomy of the genus Neisseria remains confusing, particularly regarding Neisseria mucosa and Neisseria sicca. In 2012, ribosomal multi-locus sequence typing reclassified both as N. mucosa, but data concerning 17 N. sicca strains remain available in GenBank. The continuous progress of high-throughput sequencing has facilitated ready accessibility of whole-genome data, promoting vigorous development of average nucleotide identity (ANI) and high-resolution phylogenetic analysis. Here, we report that a Neisseria isolate, which caused native-valve endocarditis and multiple embolic brain infarcts in a patient with congenital heart disease, was misidentified as N. sicca by VITEK MS. This isolate was reclassified as N. mucosa by ANI blast (ANIb) and by phylogenetic analysis using whole-genome data yielded by the PacBio Sequel and Illumina NovaSeq PE150 platforms. The confusion evident in the GenBank and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) databases suggests that N. mucosa (n = 13) and N. sicca (n = 16) in GenBank should be reclassified using ANIb and high-resolution phylogenetic analysis. The whole-genome data of 30 strains (including the clinical isolate) were compared with the data of 27 type Neisseria strains (including one N. sicca and two N. mucosa type strains) as a genomic index. In total, 25 (8 originally identified as N. mucosa and 17 originally identified as N. sicca) and 7 (1 originally identified as N. sicca and 6 originally identified as N. mucosa) strains were reclassified into the N. mucosa and Neisseria subflava groups, respectively; 1 residual N. mucosa strain was reclassified as Neisseria meningitidis. In conclusion, a combination of ANIb and robust phylogenetic analysis reclassified strains originally identified as N. mucosa and N. sicca into (principally) the N. mucosa group and the N. subflava group. The misclassified N. sicca and N. mucosa strains in the GenBank and MALDI-TOF MS databases were supposed to be corrected. Updated genomic classification strategy for originally identified N. mucosa and N. sicca strains was recommended to be adopted in GenBank.
Collapse
Affiliation(s)
- Yanqi Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Yao
- Department of Infectious Diseases, Haining People's Hospital, Haining, China
| | - Beiqing Gu
- Department of Clinical Laboratory, Haining People's Hospital, Haining, China
| | - Zhouhan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianyuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Infectious Diseases, Haining People's Hospital, Haining, China
| |
Collapse
|
10
|
Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin Microbiol Rev 2021; 35:e0000621. [PMID: 34851134 DOI: 10.1128/cmr.00006-21] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella oxytoca is actually a complex of nine species-Klebsiella grimontii, Klebsiella huaxiensis, Klebsiella michiganensis, K. oxytoca, Klebsiella pasteurii, Klebsiella spallanzanii, and three unnamed novel species. Phenotypic tests can assign isolates to the complex, but precise species identification requires genome-based analysis. The K. oxytoca complex is a human commensal but also an opportunistic pathogen causing various infections, such as antibiotic-associated hemorrhagic colitis (AAHC), urinary tract infection, and bacteremia, and has caused outbreaks. Production of the cytotoxins tilivalline and tilimycin lead to AAHC, while many virulence factors seen in Klebsiella pneumoniae, such as capsular polysaccharides and fimbriae, have been found in the complex; however, their association with pathogenicity remains unclear. Among the 5,724 K. oxytoca clinical isolates in the SENTRY surveillance system, the rates of nonsusceptibility to carbapenems, ceftriaxone, ciprofloxacin, colistin, and tigecycline were 1.8%, 12.5%, 7.1%, 0.8%, and 0.1%, respectively. Resistance to carbapenems is increasing alarmingly. In addition to the intrinsic blaOXY, many genes encoding β-lactamases with varying spectra of hydrolysis, including extended-spectrum β-lactamases, such as a few CTX-M variants and several TEM and SHV variants, have been found. blaKPC-2 is the most common carbapenemase gene found in the complex and is mainly seen on IncN or IncF plasmids. Due to the ability to acquire antimicrobial resistance and the carriage of multiple virulence genes, the K. oxytoca complex has the potential to become a major threat to human health.
Collapse
|
11
|
Mei YM, Zhang Q, Zhang WY, Jiang HQ, Shi Y, Xiong JS, Wang L, Chen YQ, Long SY, Pan C, Ge G, Wang ZZ, Wu ZW, Wang Y, Jiang YQ, Wang HS. Isolation of Novel Mycobacterium Species from Skin Infection in an Immunocompromised Person. Emerg Infect Dis 2021; 27:2944-2947. [PMID: 34670653 PMCID: PMC8544998 DOI: 10.3201/eid2711.210426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Mei YM, Zhang Q, Zhang WY, Jiang HQ, Shi Y, Xiong JS, Wang L, Chen YQ, Long SY, Pan C, Ge G, Wang ZZ, Wu ZW, Wang Y, Jiang YQ, Wang HS. Isolation of Novel Mycobacterium Species from Skin Infection in an Immunocompromised Person. Emerg Infect Dis 2021. [PMID: 34670653 DOI: 10.3201//eid2711.210426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated a case of cutaneous infection in an immunocompromised patient in China that was caused by a novel species within the Mycobacterium gordonae complex. Results of whole-genome sequencing indicated that some strains considered to be M. gordonae complex are actually polyphyletic and should be designated as closely related species.
Collapse
|
13
|
Huang CH, Chen CC, Lin YC, Chen CH, Lee AY, Liou JS, Gu CT, Huang L. The mutL Gene as a Genome-Wide Taxonomic Marker for High Resolution Discrimination of Lactiplantibacillus plantarum and Its Closely Related Taxa. Microorganisms 2021; 9:microorganisms9081570. [PMID: 34442649 PMCID: PMC8399863 DOI: 10.3390/microorganisms9081570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
The current taxonomy of the Lactiplantibacillus plantarum group comprises of 17 closely related species that are indistinguishable from each other by using commonly used 16S rRNA gene sequencing. In this study, a whole-genome-based analysis was carried out for exploring the highly distinguished target genes whose interspecific sequence identity is significantly less than those of 16S rRNA or conventional housekeeping genes. In silico analyses of 774 core genes by the cano-wgMLST_BacCompare analytics platform indicated that csbB, morA, murI, mutL, ntpJ, rutB, trmK, ydaF, and yhhX genes were the most promising candidates. Subsequently, the mutL gene was selected, and the discrimination power was further evaluated using Sanger sequencing. Among the type strains, mutL exhibited a clearly superior sequence identity (61.6–85.6%; average: 66.6%) to the 16S rRNA gene (96.7–100%; average: 98.4%) and the conventional phylogenetic marker genes (e.g., dnaJ, dnaK, pheS, recA, and rpoA), respectively, which could be used to separat tested strains into various species clusters. Consequently, species-specific primers were developed for fast and accurate identification of L. pentosus, L. argentoratensis, L. plantarum, and L. paraplantarum. During this study, one strain (BCRC 06B0048, L. pentosus) exhibited not only relatively low mutL sequence identities (97.0%) but also a low digital DNA–DNA hybridization value (78.1%) with the type strain DSM 20314T, signifying that it exhibits potential for reclassification as a novel subspecies. Our data demonstrate that mutL can be a genome-wide target for identifying and classifying the L. plantarum group species and for differentiating novel taxa from known species.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (A.-Y.L.); (J.-S.L.); (L.H.)
- Correspondence:
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Chia-Hsuan Chen
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Ai-Yun Lee
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (A.-Y.L.); (J.-S.L.); (L.H.)
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (A.-Y.L.); (J.-S.L.); (L.H.)
| | - Chun-Tao Gu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (A.-Y.L.); (J.-S.L.); (L.H.)
| |
Collapse
|
14
|
Andrade BGN, Goris T, Afli H, Coutinho FH, Dávila AMR, Cuadrat RRC. Putative mobilized colistin resistance genes in the human gut microbiome. BMC Microbiol 2021; 21:220. [PMID: 34294041 PMCID: PMC8296556 DOI: 10.1186/s12866-021-02281-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The high incidence of bacterial genes that confer resistance to last-resort antibiotics, such as colistin, caused by mobilized colistin resistance (mcr) genes, poses an unprecedented threat to human health. Understanding the spread, evolution, and distribution of such genes among human populations will help in the development of strategies to diminish their occurrence. To tackle this problem, we investigated the distribution and prevalence of potential mcr genes in the human gut microbiome using a set of bioinformatics tools to screen the Unified Human Gastrointestinal Genome (UHGG) collection for the presence, synteny and phylogeny of putative mcr genes, and co-located antibiotic resistance genes. RESULTS A total of 2079 antibiotic resistance genes (ARGs) were classified as mcr genes in 2046 metagenome assembled genomes (MAGs), distributed across 1596 individuals from 41 countries, of which 215 were identified in plasmidial contigs. The genera that presented the largest number of mcr-like genes were Suterella and Parasuterella. Other potential pathogens carrying mcr genes belonged to the genus Vibrio, Escherichia and Campylobacter. Finally, we identified a total of 22,746 ARGs belonging to 21 different classes in the same 2046 MAGs, suggesting multi-resistance potential in the corresponding bacterial strains, increasing the concern of ARGs impact in the clinical settings. CONCLUSION This study uncovers the diversity of mcr-like genes in the human gut microbiome. We demonstrated the cosmopolitan distribution of these genes in individuals worldwide and the co-presence of other antibiotic resistance genes, including Extended-spectrum Beta-Lactamases (ESBL). Also, we described mcr-like genes fused to a PAP2-like domain in S. wadsworthensis. These novel sequences increase our knowledge about the diversity and evolution of mcr-like genes. Future research should focus on activity, genetic mobility and a potential colistin resistance in the corresponding strains to experimentally validate those findings.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - Tobias Goris
- Department of Molecular Toxicology, Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke - DIfE, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Haithem Afli
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - Felipe H Coutinho
- Departamento de producción vegetal y microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory and Graduate Program on Biodiversity and Health, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Rafael R C Cuadrat
- Bioinformatics and Omics Data Science, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), Berlin, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
15
|
Precise Species Identification for Acinetobacter: a Genome-Based Study with Description of Two Novel Acinetobacter Species. mSystems 2021; 6:e0023721. [PMID: 34061620 PMCID: PMC8269215 DOI: 10.1128/msystems.00237-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genus Acinetobacter comprises species with ecological significance and opportunistic pathogens and has a complicated taxonomy. Precise species identification is a foundation for understanding bacteria. In this study, we found and characterized two novel Acinetobacter species, namely, Acinetobacter tianfuensis sp. nov. and Acinetobacter rongchengensis sp. nov., based on phenotype examinations and genome analyses of the two strains WCHAc060012T and WCHAc060115T. The two strains had ≤89.69% (mean, 79.28% or 79.72%) average nucleotide identity (ANI) and ≤36.4% (mean, 20.89% or 22.19%) in silico DNA-DNA hybridization (isDDH) values compared with each other and all known Acinetobacter species. Both species can be differentiated from all hitherto known Acinetobacter species by a combination of phenotypic characteristics. We found that Acinetobacter pullorum B301T and Acinetobacter portensis AC 877T are actually the same species with 98.59% ANI and 90.4% isDDH values. We then applied the updated taxonomy to curate 3,956 Acinetobacter genomes in GenBank and found that 6% of Acinetobacter genomes (n = 234) are required to be corrected or updated. We identified 56 novel tentative Acinetobacter species, extending the number of Acinetobacter species to 144, including 68 with species names and 76 unnamed taxa. We also found that ANI and the average amino acid identity (AAI) values among type or reference strains of all Acinetobacter species and taxa are ≥76.97% and ≥66.5%, respectively, which are higher than the proposed cutoffs to define the genus boundary. This study highlights the complex taxonomy of Acinetobacter as a single genus and the paramount importance of precise species identification. The newly identified unnamed taxa warrant further studies. IMPORTANCEAcinetobacter species are widely distributed in nature and are of important ecological significance and clinical relevance. In this study, first, we significantly update the taxonomy of Acinetobacter by reporting two novel Acinetobacter species, namely, Acinetobacter tianfuensis and Acinetobacter rongchengensis, and by identifying Acinetobacter portensis as a synonym of Acinetobacter pullorum. Second, we curated Acinetobacter genome sequences deposited in GenBank (n = 3,956) using the updated taxonomy by correcting species assignations for 6% (n = 234) genomes and by assigning 94 (2.4%) to 56 previously unknown tentative species (taxa). Therefore, after curation, we further update the genus Acinetobacter to comprise 144 species, including 68 with species names and 76 unnamed taxa. Third, we addressed the question of whether such a large number of species should be divided in different genera and found that Acinetobacter is indeed a single genus. Our study significantly advanced the taxonomy of Acinetobacter, an important genus with science and health implications.
Collapse
|