1
|
Liu N, Guan M, Ma B, Chu H, Tian G, Zhang Y, Li C, Zheng W, Wang X. Unraveling genetic mysteries: A comprehensive review of GWAS and DNA insights in animal and plant pathosystems. Int J Biol Macromol 2024; 285:138216. [PMID: 39631605 DOI: 10.1016/j.ijbiomac.2024.138216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
DNA serves as the carrier of genetic information, with sequence variations playing a pivotal role in defining hereditary traits. Genome-Wide Association Studies (GWAS) facilitate the investigation of the links between genetic variations and phenotypes, significantly influencing biological research, particularly in animal and plant pathology. By identifying genetic markers associated with specific traits or diseases, GWAS enhances our understanding of host-pathogen interactions and improves disease-resistant breeding strategies. It has been vital in revealing the genetic basis of disease resistance, pinpointing key genes and DNA loci, which enrich genetic resources for breeding programs and deepen our knowledge of disease resistance mechanisms at the DNA level. Additionally, GWAS contributes to pathogen population genetics, facilitating a thorough exploration of pathogen virulence. Integrating GWAS with marker-assisted selection enhances breeding efficiency and precision in selecting for disease-resistant traits. While previous research has largely focused on host genetics, the genetic variation of pathogens is equally significant. Notably, reports integrating animal and plant pathosystems are still lacking. Given the importance of these systems, this review summarizes key advancements in this field, addresses current challenges, and proposes future directions, thereby offering a vital reference for ongoing research.
Collapse
Affiliation(s)
- Na Liu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Mengxin Guan
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Baozhan Ma
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Hao Chu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Guangxiang Tian
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Yanyan Zhang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science/Center of Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| | - Xu Wang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| |
Collapse
|
2
|
Hong T, Wang S, Luo Z, Ren Q, Wu D, Wang L, Bao Y, Yao W, Zhang M, Hu Q. Fusarium sacchari CFEM Proteins Suppress Host Immunity and Differentially Contribute to Virulence. Int J Mol Sci 2024; 25:12805. [PMID: 39684515 DOI: 10.3390/ijms252312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The pathogen Fusarium sacchari is responsible for the devastating pokkah boeng disease, which causes significant economic losses in sugarcane production. However, the mechanisms by which it affects plant immunity remain largely unknown. Common in Fungal Extracellular Membrane (CFEM) domain proteins have been implicated in fungal growth, infection processes, and pathogenicity. In this study, we identified three FsCFEM proteins (Fs08184, Fs10706, and Fs13617) that mediate the broad-spectrum suppression of the immune responses induced by typical effectors. A further analysis demonstrated that Fs08184, Fs10706, and Fs13617 suppressed host immunity through two potential iron-binding sites conserved in CFEM family members, characterized by Asp and Phe residues in Fs08184, Fs10706, and Fs13617. Additionally, the Asp and Phe residues within the iron-chelating site were necessary for the iron acquisition of F. sacchari and contributed to creating low-free-iron conditions at the interface of plant and pathogen interactions. It appeared that F. sacchari might employ Asp-Phe-type CFEM members to influence host iron homeostasis to suppress host immunity and to facilitate its successful colonization.
Collapse
Affiliation(s)
- Tianshu Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Shichao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Zhiyuan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qianqian Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Deng Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Hou X, Zhang L, Zhao Y, Li J, Jiang Z, Wang S, Li X, Wang X, Liu X. Changes in microbial communities across the whole A 2/O wastewater treatment process and their drivers-Reduced community diversity but increased proportion of certain pathogens. WATER RESEARCH 2024; 268:122790. [PMID: 39561659 DOI: 10.1016/j.watres.2024.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Microorganisms play a crucial role in pollutant removal and water quality stabilizing. However, limited research exists on the microbial variability and the factors driving it at different stages of wastewater treatment. In this study, the physicochemical properties of water and the composition of bacterial communities were thoroughly investigated across the entire A2/O wastewater treatment process, encompassing 3 stages (12 steps). The results revealed a significant reduction in alpha diversity, whereas the beta diversity remained largely unchanged across stages. Alpha diversity was primarily influenced by dissolved oxygen (DO) and pH, with DO having the most notable influence, while beta diversity was mainly constrained by nutrient conditions such as COD, BOD5, NH4-N, TN, and TP. Additionally, analyses of relative abundance, LEfSe, variance, and functional prediction indicated a significant increase in the relative abundance of certain pathogenic bacteria (e.g., Legionella, Leptospira), exhibiting different removal characteristics compared to Escherichia coli across various treatment steps. Even after UV disinfection, these pathogens persist, highlighting a potential pathogenic risk, which deserves more attention. In addition, this study helps explore the relatively under-researched area of microbial variability at different stages (steps) of wastewater treatment, especially in terms of how microbial communities respond to operational processes and environmental conditions. This will offer valuable guidance for addressing water treatment safety challenges encountered in real-world processes.
Collapse
Affiliation(s)
- Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Lei Zhang
- Xinanhe Wastewater Treatment Plant, Yantai City Drainage Service Center, Yantai 264000, China
| | - Yong Zhao
- 3rd Construction Co, Ltd of China Construction 5th Engineering Bureau, Changsha 410021, China
| | - Jiamin Li
- Xinanhe Wastewater Treatment Plant, Yantai City Drainage Service Center, Yantai 264000, China
| | - Ziming Jiang
- Xinanhe Wastewater Treatment Plant, Yantai City Drainage Service Center, Yantai 264000, China
| | - Sen Wang
- Xinanhe Wastewater Treatment Plant, Yantai City Drainage Service Center, Yantai 264000, China
| | - Xiaoran Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai 264000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
4
|
Lin X, Xu G, Li Y, Yu Y. Chemical fertilizers promote dissemination of ARGs in maize rhizosphere: An overlooked risk revealed after 37-year traditional agriculture practice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173737. [PMID: 38844214 DOI: 10.1016/j.scitotenv.2024.173737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Bacterial communities in soil and rhizosphere maintain a large collection of antibiotic resistance genes (ARGs). However, few of these ARGs and antibiotic resistant bacteria (ARB) are well-characterized under traditional farming practices. Here we compared the ARG profiles of maize rhizosphere and their bulk soils using metagenomic analysis to identify the ARG dissemination and explored the potential impact of chemical fertilization on ARB. Results showed a relatively lower abundance but higher diversity of ARGs under fertilization than straw-return. Moreover, the abundance and diversity of MGEs were significantly promoted by chemical fertilizer inputs in the rhizosphere compared to bulk soil. Machine learning and bipartite networks identified three bacterial genera (Pseudomonas, Bacillus and Streptomyces) as biomarkers for ARG accumulation. Thus we cultured 509 isolates belonging to these three genera from the rhizosphere and tested their antimicrobial susceptibility, and found that multi-resistance was frequently observed among Pseudomonas isolates. Assembly-based tracking explained that ARGs and four class I integrons (LR134330, LS998783, CP065848, LT883143) were co-occurred among contigs from Pseudomonas sp. Chemical fertilizers may shape the resistomes of maize rhizosphere, highlighting that rhizosphere carried multidrug-resistant Pseudomonas isolates, which may pose a risk to animal and human health. This study adds knowledge of long-term chemical fertilization on ARG dissemination in farmland systems and provides information for decision-making in agricultural production and monitoring.
Collapse
Affiliation(s)
- Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
5
|
Breban R. Emergence failure of early epidemics: A mathematical modeling approach. PLoS One 2024; 19:e0301415. [PMID: 38809831 PMCID: PMC11135784 DOI: 10.1371/journal.pone.0301415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/16/2024] [Indexed: 05/31/2024] Open
Abstract
Epidemic or pathogen emergence is the phenomenon by which a poorly transmissible pathogen finds its evolutionary pathway to become a mutant that can cause an epidemic. Many mathematical models of pathogen emergence rely on branching processes. Here, we discuss pathogen emergence using Markov chains, for a more tractable analysis, generalizing previous work by Kendall and Bartlett about disease invasion. We discuss the probability of emergence failure for early epidemics, when the number of infected individuals is small and the number of the susceptible individuals is virtually unlimited. Our formalism addresses both directly transmitted and vector-borne diseases, in the cases where the original pathogen is 1) one step-mutation away from the epidemic strain, and 2) undergoing a long chain of neutral mutations that do not change the epidemiology. We obtain analytic results for the probabilities of emergence failure and two features transcending the transmission mechanism. First, the reproduction number of the original pathogen is determinant for the probability of pathogen emergence, more important than the mutation rate or the transmissibility of the emerged pathogen. Second, the probability of mutation within infected individuals must be sufficiently high for the pathogen undergoing neutral mutations to start an epidemic, the mutation threshold depending again on the basic reproduction number of the original pathogen. Finally, we discuss the parameterization of models of pathogen emergence, using SARS-CoV1 as an example of zoonotic emergence and HIV as an example for the emergence of drug resistance. We also discuss assumptions of our models and implications for epidemiology.
Collapse
Affiliation(s)
- Romulus Breban
- Institut Pasteur, Unité d’Epidémiologie des Maladies Emergentes, Paris, France
| |
Collapse
|
6
|
Piña-Iturbe A, Hoppe-Elsholz G, Suazo ID, Kalergis AM, Bueno SM. Subinhibitory antibiotic concentrations promote the excision of a genomic island carried by the globally spread carbapenem-resistant Klebsiella pneumoniae sequence type 258. Microb Genom 2023; 9:001138. [PMID: 38079200 PMCID: PMC10763509 DOI: 10.1099/mgen.0.001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The ICEKp258.2 genomic island (GI) has been proposed as an important factor for the emergence and success of the globally spread carbapenem-resistant Klebsiella pneumoniae sequence type (ST) 258. However, a characterization of this horizontally acquired element is lacking. Using bioinformatic and experimental approaches, we found that ICEKp258.2 is not confined to ST258 and ST512, but also carried by ST3795 strains and emergent invasive multidrug-resistant pathogens from ST1519. We also identified several ICEKp258.2-like GIs spread among different K. pneumoniae STs, other Klebsiella species and even other pathogen genera, uncovering horizontal gene transfer events between different STs and bacterial genera. Also, the comparative and phylogenetic analyses of the ICEKp258.2-like GIs revealed that the most closely related ICEKp258.2-like GIs were harboured by ST11 strains. Importantly, we found that subinhibitory concentrations of antibiotics used in treating K. pneumoniae infections can induce the excision of this GI and modulate its gene expression. Our findings provide the basis for the study of ICEKp258.2 and its role in the success of K. pneumoniae ST258. They also highlight the potential role of antibiotics in the spread of ICEKp258.2-like GIs among bacterial pathogens.
Collapse
Affiliation(s)
- Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Present address: Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Guillermo Hoppe-Elsholz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
7
|
Ogbunugafor CB. Mutations that enhance evolvability may open doors to faster adaptation. Nat Commun 2023; 14:6310. [PMID: 37813831 PMCID: PMC10562388 DOI: 10.1038/s41467-023-41914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Affiliation(s)
- C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
8
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
9
|
Martins C, Piontkivska D, Mil-Homens D, Guedes P, Jorge JMP, Brinco J, Bárria C, Santos ACF, Barras R, Arraiano C, Fialho A, Goldman GH, Silva Pereira C. Increased Production of Pathogenic, Airborne Fungal Spores upon Exposure of a Soil Mycobiota to Chlorinated Aromatic Hydrocarbon Pollutants. Microbiol Spectr 2023; 11:e0066723. [PMID: 37284774 PMCID: PMC10434042 DOI: 10.1128/spectrum.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Organic pollutants are omnipresent and can penetrate all environmental niches. We evaluated the hypothesis that short-term (acute) exposure to aromatic hydrocarbon pollutants could increase the potential for fungal virulence. Specifically, we analyzed whether pentachlorophenol and triclosan pollution results in the production of airborne fungal spores with greater virulence than those derived from an unpolluted (Control) condition. Each pollutant altered the composition of the community of airborne spores compared to the control, favoring an increase in strains with in vivo infection capacity (the wax moth Galleria mellonella was used as an infection model). Fungi subsisting inside larvae at 72 h postinjection with airborne spore inocula collected in polluted and unpolluted conditions exhibited comparable diversity (mainly within Aspergillus fumigatus). Several virulent Aspergillus strains were isolated from larvae infected with the airborne spores produced in a polluted environment. Meanwhile, strains isolated from larvae injected with spores from the control, including one A. fumigatus strain, showed no virulence. Potential pathogenicity increased when two Aspergillus virulent strains were assembled, suggesting the existence of synergisms that impact pathogenicity. None of the observed taxonomic or functional traits could separate the virulent from the avirulent strains. Our study emphasizes pollution stress as a possible driver of phenotypic adaptations that increase Aspergillus pathogenicity, as well as the need to better understand the interplay between pollution and fungal virulence. IMPORTANCE Fungi colonizing soil and organic pollutants often meet. The consequences of this encounter constitute an outstanding question. We scrutinized the potential for virulence of airborne fungal spores produced under unpolluted and polluted scenarios. The airborne spores showed increased diversity of strains with higher infection capacity in Galleria mellonella whenever pollution is present. Inside the larvae injected with either airborne spore community, the surviving fungi demonstrated a similar diversity, mainly within Aspergillus fumigatus. However, the isolated Aspergillus strains greatly differ since virulence was only observed for those associated with a polluted environment. The interplay between pollution and fungal virulence still hides many unresolved questions, but the encounter is costly: pollution stress promotes phenotypic adaptations that may increase Aspergillus pathogenicity.
Collapse
Affiliation(s)
- Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dalila Mil-Homens
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Paula Guedes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - João M. P. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Brinco
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ariana C. F. Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Barras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Arsénio Fialho
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Gustavo H. Goldman
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
10
|
Grant TA, López-Pérez M, Haro-Moreno JM, Almagro-Moreno S. Allelic diversity uncovers protein domains contributing to the emergence of antimicrobial resistance. PLoS Genet 2023; 19:e1010490. [PMID: 36972246 PMCID: PMC10079234 DOI: 10.1371/journal.pgen.1010490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Antimicrobial resistance (AMR) remains a major threat to global health. To date, tractable approaches that decipher how AMR emerges within a bacterial population remain limited. Here, we developed a framework that exploits genetic diversity from environmental bacterial populations to decode emergent phenotypes such as AMR. OmpU is a porin that can make up to 60% of the outer membrane of Vibrio cholerae, the cholera pathogen. This porin is directly associated with the emergence of toxigenic clades and confers resistance to numerous host antimicrobials. In this study, we examined naturally occurring allelic variants of OmpU in environmental V. cholerae and established associations that connected genotypic variation with phenotypic outcome. We covered the landscape of gene variability and found that the porin forms two major phylogenetic clusters with striking genetic diversity. We generated 14 isogenic mutant strains, each encoding a unique ompU allele, and found that divergent genotypes lead to convergent antimicrobial resistance profiles. We identified and characterized functional domains in OmpU unique to variants conferring AMR-associated phenotypes. Specifically, we identified four conserved domains that are linked with resistance to bile and host-derived antimicrobial peptides. Mutant strains for these domains exhibit differential susceptibility patterns to these and other antimicrobials. Interestingly, a mutant strain in which we exchanged the four domains of the clinical allele for those of a sensitive strain exhibits a resistance profile closer to a porin deletion mutant. Finally, using phenotypic microarrays, we uncovered novel functions of OmpU and their connection with allelic variability. Our findings highlight the suitability of our approach towards dissecting the specific protein domains associated with the emergence of AMR and can be naturally extended to other bacterial pathogens and biological processes.
Collapse
Affiliation(s)
- Trudy-Ann Grant
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | - Jose Manuel Haro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Balasubramanian D, López-Pérez M, Almagro-Moreno S. Cholera Dynamics and the Emergence of Pandemic Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:127-147. [PMID: 36792874 DOI: 10.1007/978-3-031-22997-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cholera is a severe diarrheal disease caused by the aquatic bacterium Vibrio cholerae. Interestingly, to date, only one major clade has emerged to cause pandemic disease in humans: the clade that encompasses the strains from the O1 and O139 serogroups. In this chapter, we provide a comprehensive perspective on the virulence factors and mobile genetic elements (MGEs) associated with the emergence of pandemic V. cholerae strains and highlight novel findings such as specific genomic background or interactions between MGEs that explain their confined distribution. Finally, we discuss pandemic cholera dynamics contextualizing them within the evolution of the bacterium.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
12
|
The Impact of Non-Pathogenic Bacteria on the Spread of Virulence and Resistance Genes. Int J Mol Sci 2023; 24:ijms24031967. [PMID: 36768286 PMCID: PMC9916357 DOI: 10.3390/ijms24031967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review discusses the fate of antimicrobial resistance and virulence genes frequently present among microbiomes. A central concept in epidemiology is the mean number of hosts colonized by one infected host in a population of susceptible hosts: R0. It characterizes the disease's epidemic potential because the pathogen continues its propagation through susceptible hosts if it is above one. R0 is proportional to the average duration of infections, but non-pathogenic microorganisms do not cause host death, and hosts do not need to be rid of them. Therefore, commensal bacteria may colonize hosts for prolonged periods, including those harboring drug resistance or even a few virulence genes. Thus, their R0 is likely to be (much) greater than one, with peculiar consequences for the spread of virulence and resistance genes. For example, computer models that simulate the spread of these genes have shown that their diversities should correlate positively throughout microbiomes. Bioinformatics analysis with real data corroborates this expectation. Those simulations also anticipate that, contrary to the common wisdom, human's microbiomes with a higher diversity of both gene types are the ones that took antibiotics longer ago rather than recently. Here, we discuss the mechanisms and robustness behind these predictions and other public health consequences.
Collapse
|
13
|
Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms 2023; 11:microorganisms11010179. [PMID: 36677471 PMCID: PMC9861108 DOI: 10.3390/microorganisms11010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
A balanced gut microbiota and their metabolites are necessary for the maintenance of the host's health. The antibiotic-induced dysbiosis can cause the disturbance of the microbial community, influence the immune homeostasis and induce susceptibility to metabolic- or immune-mediated disorders and diseases. The Lactobacillus and their metabolites or components affect the function of the host's immune system and result in microbiota-mediated restoration. Recent data have indicated that, by altering the composition and functions of gut microbiota, antibiotic exposure can also lead to a number of specific pathologies, hence, understanding the potential mechanisms of the interactions between gut microbiota dysbiosis and immunological homeostasis is very important. The Lactobacillus strategies for detecting the associations between the restoration of the relatively imbalanced microbiome and gut diseases are provided in this discussion. In this review, we discuss the recently discovered connections between microbial communities and metabolites in the Lactobacillus treatment of β-lactam antibiotic-induced dysbiosis, and establish the relationship between commensal bacteria and host immunity under this imbalanced homeostasis of the gut microbiota.
Collapse
|
14
|
Kubatzky KF. Pasteurella multocida toxin - lessons learned from a mitogenic toxin. Front Immunol 2022; 13:1058905. [PMID: 36591313 PMCID: PMC9800868 DOI: 10.3389/fimmu.2022.1058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
The gram-negative, zoonotic bacterium Pasteurella multocida was discovered in 1880 and found to be the causative pathogen of fowl cholera. Pasteurella-related diseases can be found in domestic and wild life animals such as buffalo, sheep, goat, deer and antelope, cats, dogs and tigers and cause hemorrhagic septicemia in cattle, rhinitis or pneumonia in rabbits or fowl cholera in poultry and birds. Pasteurella multocida does not play a major role in the immune-competent human host, but can be found after animal bites or in people with close contact to animals. Toxigenic strains are most commonly found in pigs and express a phage-encoded 146 kDa protein, the Pasteurella multocida toxin (PMT). Toxin-expressing strains cause atrophic rhinitis where nasal turbinate bones are destroyed through the inhibition of bone building osteoblasts and the activation of bone resorbing osteoclasts. After its uptake through receptor-mediated endocytosis, PMT specifically targets the alpha subunit of several heterotrimeric G proteins and constitutively activates them through deamidation of a glutamine residue to glutamate in the alpha subunit. This results in cytoskeletal rearrangement, proliferation, differentiation and survival of cells. Because of the toxin's mitogenic effects, it was suggested that it might have carcinogenic properties, however, no link between Pasteurella infections and cell transformation could be established, neither in tissue culture models nor through epidemiological data. In the recent years it was shown that the toxin not only affects bone, but also the heart as well as basically all cells of innate and adaptive immunity. During the last decade the focus of research shifted from signal transduction processes to understanding how the bacteria might benefit from a bone-destroying toxin. The primary function of PMT seems to be the modulation of immune cell activation which at the same time creates an environment permissive for osteoclast formation. While the disease is restricted to pigs, the implications of the findings from PMT research can be used to explore human diseases and have a high translational potential. In this review our current knowledge will be summarized and it will be discussed what can be learned from using PMT as a tool to understand human pathologies.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Liao H, Li H, Duan CS, Zhou XY, An XL, Zhu YG, Su JQ. Metagenomic and viromic analysis reveal the anthropogenic impacts on the plasmid and phage borne transferable resistome in soil. ENVIRONMENT INTERNATIONAL 2022; 170:107595. [PMID: 36283158 DOI: 10.1016/j.envint.2022.107595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic land use changes have been recognized with significant effects on the abundance and diversity of antibiotic resistance genes (ARGs) in soil, but their impacts on ARGs with potential health risk remained poorly understood. In this study, paired metagenomes and viromes were obtained from soils (Anthrosols and Nitisols) with different land uses including urban parks, road verge, forests, vegetable and paddy in a subtropical city, Xiamen, and soils (Anthrosols) with various long-term fertilization treatments in Dezhou located in temperate region, respectively, to explore the influence of anthropogenic activity on soil resistome. The diversity and abundance of antibiotic resistance genes (ARGs) were profiled, and the risk associated factors of ARGs, i.e., genetic location, host, and co-existence with virulence factors (VFs), were systematically investigated at reads and contigs level. We observed that agricultural areas significantly enriched human-related ARGs and viruses, and positively related with clinical ARGs. Most of the ARG-carrying contigs were chromosomes (∼85 %), while, human-related ARGs presented a higher odds ratio to locate on plasmids. Soil VFs exhibited land use pattern and distinct distribution between chromosome and plasmids, but less mobile than ARGs. Analysis of 131,014 soil viral genomes indicated that they barely encoded ARGs, nevertheless, transduction of VLPs was implicated in the spread of ARGs. The results can be mutually verified in Xiamen and Dezhou datasets. Overall, the agricultural soils with dry-farming are hotspots for the clinical ARGs, and the transmission of clinical ARGs between human dominated environments and soil is primarily mediated by plasmids, rather than bacterial chromosomes, and the transduction of human-gut related viruses could participate the process. These results highlight the importance of tracking the fate of clinical ARGs for better evaluating the impacts of human activities on soil resistome.
Collapse
Affiliation(s)
- Hu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Song Duan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Rolin MH, Akter A, Mondal SI. Proteome Exploration of Legionella pneumophila To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiol Spectr 2022; 10:e0037322. [PMID: 35863001 PMCID: PMC9430848 DOI: 10.1128/spectrum.00373-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is the causative agent of a severe type of pneumonia (lung infection) called Legionnaires' disease. It is emerging as an antibiotic-resistant strain day by day. Hence, identifying novel drug targets and vaccine candidates is essential to fight against this pathogen. Here, attempts were taken through a subtractive genomics approach on the complete proteome of L. pneumophila to address the challenges of multidrug resistance. A total of 2,930 proteins from L. pneumophila proteome were investigated through diverse subtractive proteomics approaches, e.g., identification of human nonhomologous and pathogen-specific essential proteins, druggability and "anti-target" analysis, subcellular localization prediction, human microbiome nonhomology screening, and protein-protein interaction studies to find out effective drug and vaccine targets. Only three fulfilled these criteria and were proposed as novel drug targets against L. pneumophila. Furthermore, outer membrane protein TolB was identified as a potential vaccine target with a better antigenicity score. Antigenicity and transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis, and a molecular docking approach were adopted to generate the most potent epitopes. The final vaccine was constructed by the combination of highly immunogenic epitopes, along with suitable adjuvant and linkers. The designed vaccine construct showed higher binding interaction with different major histocompatibility complex (MHC) molecules and human immune TLR-2 receptors with minimum deformability at the molecular level. The present study aids the development of novel therapeutics and vaccine candidates for efficient treatment and prevention of L. pneumophila infections. However, further wet-lab-based phenotypic and genomic investigations and in vivo trials are highly recommended to validate our prediction experimentally. IMPORTANCE Legionella pneumophila is a human pathogen distributed worldwide, causing Legionnaires' disease (LD), a severe form of pneumonia and respiratory tract infection. L. pneumophila is emerging as an antibiotic-resistant strain, and controlling LD is now difficult. Hence, developing novel drugs and vaccines against L. pneumophila is a major research priority. Here, the complete proteome of L. pneumophila was considered for subtractive genomics approaches to address the challenge of antimicrobial resistance. Our subtractive proteomics approach identified three potential drug targets that are promising for future application. Furthermore, a possible vaccine candidate, "outer membrane protein TolB," was proposed using reverse vaccinology analysis. The constructed vaccine candidate showed higher binding interaction with MHC molecules and human immune TLR-2 receptors at the molecular level. Overall, the present study aids in developing novel therapeutics and vaccine candidates for efficient treatment of the infections caused by L. pneumophila.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohimenul Haque Rolin
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
17
|
Almagro-Moreno S. Thanks, but no thanks: Cholera pathogen keeps incoming DNA at bay. Cell Host Microbe 2022; 30:877-879. [PMID: 35679825 DOI: 10.1016/j.chom.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens must maintain a delicate balance between acquiring novel genetic material and preserving their well-engrained cell physiology. In the recent study by Jaskólska et al., an astonishing example of this sophisticated phenomenon was found in Vibrio cholerae,with the pandemic strain encoding systems within two horizontally acquired pathogenicity islands that degrade incoming DNA.
Collapse
Affiliation(s)
- Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|