1
|
Ye M, Jiang Y, Han Q, Li X, Meng C, Ji C, Ji F, Zhou B. Probiotic Potential of Enterococcus lactis GL3 Strain Isolated from Honeybee ( Apis mellifera L.) Larvae: Insights into Its Antimicrobial Activity Against Paenibacillus larvae. Vet Sci 2025; 12:165. [PMID: 40005925 PMCID: PMC11861324 DOI: 10.3390/vetsci12020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to address the need for effective probiotics and antibacterial agents to combat American foulbrood disease in honeybees, caused by Paenibacillus larvae. In the context of declining honeybee populations due to pathogens, we isolated eight lactic acid bacteria (LAB) strains from honeybee larvae (Apis mellifera L.) and evaluated their probiotic potential and inhibitory effects against P. larvae. Methods included probiotic property assessments, such as acid and bile salt resistance, hydrophobicity, auto-aggregation, co-aggregation with P. larvae, antioxidant capacities, osmotolerance to 50% sucrose, and antibiotic susceptibility. Results indicated that the GL3 strain exhibited superior probiotic attributes and potent inhibitory effects on P. larvae. Whole-genome sequencing revealed GL3 to be an Enterococcus lactis strain with genetic features tailored to the honeybee larval gut environment. Pangenome analysis highlighted genetic diversity among E. lactis strains, while molecular docking analysis identified aborycin, a lasso peptide produced by GL3, as a promising inhibitor of bacterial cell wall synthesis. These findings suggested that GL3 was a promising probiotic candidate and antibacterial agent for honeybee health management, warranting further investigation into its in vivo efficacy and potential applications in beekeeping practices.
Collapse
Affiliation(s)
- Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Q.H.); (X.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China;
| | - Yinhong Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Q.H.); (X.L.)
| | - Qiannan Han
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Q.H.); (X.L.)
| | - Xiaoyuan Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Q.H.); (X.L.)
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China;
| | - Chao Ji
- Fubiao Biotech Co, Ltd., Huaian 211799, China;
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China;
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Mallory E, Freeze G, Daisley BA, Allen-Vercoe E. Revisiting the role of pathogen diversity and microbial interactions in honeybee susceptibility and treatment of Melissococcus plutonius infection. Front Vet Sci 2024; 11:1495010. [PMID: 39748868 PMCID: PMC11694448 DOI: 10.3389/fvets.2024.1495010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
European Foulbrood (EFB) is a severe bacterial disease affecting honeybees, primarily caused by the Gram-positive bacterium Melissococcus plutonius. Although the presence of M. plutonius is associated with EFB, it does not consistently predict the manifestation of symptoms, and the role of 'secondary invaders' in the disease's development remains a subject of ongoing debate. This review provides an updated synthesis of the microbial ecological factors that influence the expression of EFB symptoms, which have often been overlooked in previous research. In addition, this review examines the potential negative health consequences of prolonged antibiotic use in bee colonies for treating EFB, and proposes innovative and sustainable alternatives. These include the development of probiotics and targeted microbiota management techniques, aiming to enhance the overall resilience of bee populations to this debilitating disease.
Collapse
Affiliation(s)
| | | | | | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Rodrigues H, Leite M, Oliveira B, Freitas A. Antibiotics in honey: a comprehensive review on occurrence and analytical methodologies. OPEN RESEARCH EUROPE 2024; 4:125. [PMID: 39534880 PMCID: PMC11555330 DOI: 10.12688/openreseurope.17664.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Honey is a food of great nutritional importance and has always been used for human consumption. The production of honey and other beekeeping products depends on the proper functioning of this extremely important sector, as it has a direct impact on other sectors such as agriculture. The decline in bee colony numbers has been linked, among other factors, to bacterial diseases affecting bees, including American and European foulbrood, and Nosema spp. disease. In this matter, prophylactic or therapeutic use of veterinary drugs in apiculture is common but can lead to their accumulation in bees and in honey. Consumption of contaminated honey can have adverse effects such as allergic or hypersensitivity reactions, carcinogenicity, reproductive effects, and teratogenicity. Commission Regulation (EU) N ⍛ 37/2010 sets MRLs for antibiotics in various foods, but these limits are not set for api-products. The lack of harmonized rules has led some countries to set recommended concentrations and minimum performance limits. Nonetheless, to achieve this goal, development of accurate and precise analytical methodologies is crucial. In recent years, the analysis of antibiotics in honey has led to the development of methods in an extensive range of families, including aminoglycosides, amphenicols, lincosamides, macrolides, nitroimidazoles, quinolones, sulfonamides, tetracyclines and nitrofurans. This review work entails an in-depth exploration of occurrence studies, extraction methodologies, and analytical techniques for the determination of antibiotics in apiculture products. It was found that the most used extraction methods include solid-phase extraction, dispersed solid or liquid phase extraction and QuEChERS. Due to the complexity of the honey matrix, samples are often diluted or acidified using McIlvaine buffer, H 2O, MeOH, acidified ACN and TCA solution. This is usually followed by a purification step using SPE cartridges or PSA. Golden analytical methodologies include high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (MS/MS) with Orbitrap or Q-ToF detectors.
Collapse
Affiliation(s)
- Helena Rodrigues
- University of Porto, Faculty of Pharmacy, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
| | - Marta Leite
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| | - Beatriz Oliveira
- University of Porto, Faculty of Pharmacy, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| |
Collapse
|
4
|
El-Meihy RM, Hassan EO, Alamoudi SA, Negm S, Al-Hoshani N, Al-Ghamdi MS, Nowar EE. Probing the interaction of Paenibacillus larvae bacteriophage as a biological agent to control the american foulbrood disease in honeybee. Saudi J Biol Sci 2024; 31:104002. [PMID: 38706719 PMCID: PMC11070271 DOI: 10.1016/j.sjbs.2024.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
American foulbrood (AFB) is a harmful honeybee disease primarily caused by Paenibacillus larvae. The study aims to isolate and identify the AFB causative agent P. larvae and their specific phages to use as a new biological method for AFB disease control. Eight apiaries were inspected for AFB infections. Symptoms of diseased brood comb, were odd brood cells with soft brown decayed brood amongst healthy brood, were identified in the field and demonstrated the prevalence of AFB in every apiary. Three P. larvae isolates were identified using traditional techniques using a 452-bp PCR amplicon specific to the bacterial 16SrRNA gene and was compared between Paenibacillus isolates. Additionally, specific phages of P. larvae strains were applied to examine their efficiency in reducing the infection rate under the apiary condition. The infection rate was reduced to approximately 94.6 to 100 % through the application of a phage mixture, as opposed to 20 to 85.7 % when each phage was administered individually or 78.6 to 88.9 % when antibiotic treatment was implemented. Histological studies on phage-treated bee larvae revealed some cells regaining normal shape, with prominent nuclei and microvilli. The gastrointestinal tract showed normal longitudinal and circular muscles, unlike bee larvae treated with bacterial strains with abnormal and destroyed tissues, as shown by the basement membrane surrounding the mid-gut epithelium. Phage techniques exhibited promise in resolving the issue of AFB in honeybees due to their ease of application, comparatively lower cost, and practicality for beekeepers in terms of laboratory preparation.
Collapse
Affiliation(s)
- Rasha M. El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia 13736, Egypt
| | - Eman O. Hassan
- Department of Plant Pathology, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia 13736, Egypt
| | - Soha A. Alamoudi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mariam S. Al-Ghamdi
- Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Elhosseny E. Nowar
- Department of Plant Protection, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia 13736, Egypt
| |
Collapse
|
5
|
Rebhi S, Basharat Z, Wei CR, Lebbal S, Najjaa H, Sadfi-Zouaoui N, Messaoudi A. Core proteome mediated subtractive approach for the identification of potential therapeutic drug target against the honeybee pathogen Paenibacillus larvae. PeerJ 2024; 12:e17292. [PMID: 38818453 PMCID: PMC11138523 DOI: 10.7717/peerj.17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 06/01/2024] Open
Abstract
Background & Objectives American foulbrood (AFB), caused by the highly virulent, spore-forming bacterium Paenibacillus larvae, poses a significant threat to honey bee brood. The widespread use of antibiotics not only fails to effectively combat the disease but also raises concerns regarding honey safety. The current computational study was attempted to identify a novel therapeutic drug target against P. larvae, a causative agent of American foulbrood disease in honey bee. Methods We investigated effective novel drug targets through a comprehensive in silico pan-proteome and hierarchal subtractive sequence analysis. In total, 14 strains of P. larvae genomes were used to identify core genes. Subsequently, the core proteome was systematically narrowed down to a single protein predicted as the potential drug target. Alphafold software was then employed to predict the 3D structure of the potential drug target. Structural docking was carried out between a library of phytochemicals derived from traditional Chinese flora (n > 36,000) and the potential receptor using Autodock tool 1.5.6. Finally, molecular dynamics (MD) simulation study was conducted using GROMACS to assess the stability of the best-docked ligand. Results Proteome mining led to the identification of Ketoacyl-ACP synthase III as a highly promising therapeutic target, making it a prime candidate for inhibitor screening. The subsequent virtual screening and MD simulation analyses further affirmed the selection of ZINC95910054 as a potent inhibitor, with the lowest binding energy. This finding presents significant promise in the battle against P. larvae. Conclusions Computer aided drug design provides a novel approach for managing American foulbrood in honey bee populations, potentially mitigating its detrimental effects on both bee colonies and the honey industry.
Collapse
Affiliation(s)
- Sawsen Rebhi
- Université de Tunis-El Manar, Laboratoire de Mycologie, Pathologies et Biomarqueurs, Département de Biologie, Tunis, Tunisia
| | | | - Calvin R. Wei
- Department of Research and Development, Shing Huei Group, Taipei, Taiwan
| | - Salim Lebbal
- University of Khenchela, Department of Agricultural Sciences, Faculty of Nature and Life Sciences, Khenchela, Algeria
| | - Hanen Najjaa
- University of Gabes, Laboratory of Pastoral Ecosystem and Valorization of Spontaneous Plants and Associated Microorganisms, Institute of Arid Lands of Medenine, Medenine, Tunisia
| | - Najla Sadfi-Zouaoui
- Université de Tunis-El Manar, Laboratoire de Mycologie, Pathologies et Biomarqueurs, Département de Biologie, Tunis, Tunisia
| | - Abdelmonaem Messaoudi
- Université de Tunis-El Manar, Laboratoire de Mycologie, Pathologies et Biomarqueurs, Département de Biologie, Tunis, Tunisia
- Jendouba University, Higher Institute of Biotechnology of Beja, Beja, Tunisia
| |
Collapse
|
6
|
Macpherson CV, Daisley BA, Mallory E, Allen-Vercoe E. The untapped potential of cell culture in disentangling insect-microbial relationships. MICROBIOME RESEARCH REPORTS 2024; 3:20. [PMID: 38841412 PMCID: PMC11149091 DOI: 10.20517/mrr.2023.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024]
Abstract
Cell culture is a powerful technique for the investigation of molecular mechanisms fundamental to health and disease in a diverse array of organisms. Cell lines offer several advantages, namely their simplistic approach and high degree of reproducibility. One field where cell culture has proven particularly useful is the study of the microbiome, where cell culture has led to the illumination of microbial influences on host immunity, nutrition, and physiology. Thus far, researchers have focused cell culture work predominantly on humans, but the growing field of insect microbiome research stands to benefit greatly from its application. Insects constitute one of Earth's most diverse and ancient life forms and, just as with humans, possess microbiomes with great significance to their health. Insects, which play critical roles in supporting food security and ecological stability, are facing increasing threats from agricultural intensification, climate change, and pesticide use. As the microbiome is closely tied to host health, gaining a more robust understanding is of increasing importance. In this review, we assert that the cultivation and utilization of insect gut cell lines in microbiome research will bridge critical knowledge gaps essential for informing insect management practices in a world under pressure.
Collapse
Affiliation(s)
| | | | | | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, ON, Canada
| |
Collapse
|
7
|
Nilsson A, D'Alvise P, Milbrath MO, Forsgren E. Lactic acid bacteria in Swedish honey bees during outbreaks of American foulbrood. Ecol Evol 2024; 14:e10964. [PMID: 39959658 PMCID: PMC11827578 DOI: 10.1002/ece3.10964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2025] Open
Abstract
The honey bee microbiota is involved in several important functions, and alterations in the composition could have a severe effect on honey bee health. Among the bacteria identified in the honey bee microbiome are a group of non-pathogenic honey bee-specific lactic acid bacteria (hbs-LAB) that have been shown to inhibit the growth of bacterial pathogens such as Paenibacillus larvae, the causative agent of American foulbrood (AFB). While P. larvae only causes disease in larvae and not in adult honey bees, there are reports of the pathogen causing changes in the microbiota composition of the adults. The aim of this study was to investigate how AFB in the colony affect the hbs-LAB composition in adult honey bees. Adult bees were collected from colonies with and without AFB during three outbreaks of AFB in Sweden. The hbs-LAB was analyzed using qPCR to detect and quantify the number of ten hbs-LAB (five Lactobacilli, two Apilactobacilli, one Bombilactobacilli, and two Bifidobacterium). The hbs-LAB composition was compared between AFB outbreaks and depending on the AFB status of the honeybee colony at the time of sampling. The data analyses revealed differences in the abundance of individual hbs-LAB between outbreaks and an overall difference in bacterial community composition depending on AFB status. Also, a higher hbs-LAB diversity was observed in samples that were P. larvae culture positive.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Paul D'Alvise
- Institute for Clinical Microbiology and HygieneUniversity Hospital TübingenTubingenGermany
| | - Meghan O. Milbrath
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Eva Forsgren
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
8
|
Wendisch VF, Brito LF, Passaglia LM. Genome-based analyses to learn from and about Paenibacillus sonchi genomovar Riograndensis SBR5T. Genet Mol Biol 2024; 46:e20230115. [PMID: 38224489 PMCID: PMC10789242 DOI: 10.1590/1678-4685-gmb-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Paenibacillus sonchi genomovar Riograndensis SBR5T is a plant growth-promoting rhizobacterium (PGPR) isolated in the Brazilian state of Rio Grande do Sul from the rhizosphere of Triticum aestivum. It fixes nitrogen, produces siderophores as well as the phytohormone indole-3-acetic acid, solubilizes phosphate and displays antagonist activity against Listeria monocytogenes and Pectobacterium carotovorum. Comprehensive omics analysis and the development of genetic tools are key to characterizing and engineering such non-model microorganisms. Therefore, the complete genome of SBR5T was sequenced, and shown to encode 6,705 proteins, 87 tRNAs, and 27 rRNAs and it enabled a landscape transcriptome analysis that unveiled conserved transcriptional and translational patterns and characterized operon structures and riboswitches. The pangenome of P. sonchi species is open with a stable core pangenome. At the same time, the analysis of genes coding for nitrogenases revealed that the trait of nitrogen fixation is sparse within the Paenibacillaceae family and the presence of Fe-only nitrogenase in the P. sonchi group was exclusive to SBR5T. The development of genetic tools for SBR5T enabled genetic transformation, plasmid construction for constitutive and inducible gene expression, and gene repression using the CRISPRi system. Altogether, the work with P. sonchi can guide the study of non-model bacteria with economic potential.
Collapse
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University, Faculty of Biology, Genetics of Prokaryotes, Bielefeld, Germany
- Bielefeld University, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Luciana F. Brito
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Reid G. A value chain to improve human, animal and insect health in developing countries. MICROBIOME RESEARCH REPORTS 2023; 3:10. [PMID: 38455087 PMCID: PMC10917616 DOI: 10.20517/mrr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 03/09/2024]
Affiliation(s)
- Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London N6A 4V2, Ontario, Canada
- Departments of Microbiology and Immunology, and Surgery, Western University, London N6A 4V2, Ontario, Canada
| |
Collapse
|
10
|
Daisley BA, Pitek AP, Torres C, Lowery R, Adair BA, Al KF, Niño B, Burton JP, Allen-Vercoe E, Thompson GJ, Reid G, Niño E. Delivery mechanism can enhance probiotic activity against honey bee pathogens. THE ISME JOURNAL 2023; 17:1382-1395. [PMID: 37311937 PMCID: PMC10432525 DOI: 10.1038/s41396-023-01422-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/15/2023]
Abstract
Managed honey bee (Apis mellifera) populations play a crucial role in supporting pollination of food crops but are facing unsustainable colony losses, largely due to rampant disease spread within agricultural environments. While mounting evidence suggests that select lactobacilli strains (some being natural symbionts of honey bees) can protect against multiple infections, there has been limited validation at the field-level and few methods exist for applying viable microorganisms to the hive. Here, we compare how two different delivery systems-standard pollen patty infusion and a novel spray-based formulation-affect supplementation of a three-strain lactobacilli consortium (LX3). Hives in a pathogen-dense region of California are supplemented for 4 weeks and then monitored over a 20-week period for health outcomes. Results show both delivery methods facilitate viable uptake of LX3 in adult bees, although the strains do not colonize long-term. Despite this, LX3 treatments induce transcriptional immune responses leading to sustained decreases in many opportunistic bacterial and fungal pathogens, as well as selective enrichment of core symbionts including Bombilactobacillus, Bifidobacterium, Lactobacillus, and Bartonella spp. These changes are ultimately associated with greater brood production and colony growth relative to vehicle controls, and with no apparent trade-offs in ectoparasitic Varroa mite burdens. Furthermore, spray-LX3 exerts potent activities against Ascosphaera apis (a deadly brood pathogen) likely stemming from in-hive dispersal differences, whereas patty-LX3 promotes synergistic brood development via unique nutritional benefits. These findings provide a foundational basis for spray-based probiotic application in apiculture and collectively highlight the importance of considering delivery method in disease management strategies.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Christina Torres
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Robin Lowery
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Bethany A Adair
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bernardo Niño
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Agricultural Research Service, United States Department of Agriculture, Davis, CA, 95616, USA
| | - Jeremy P Burton
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Elina Niño
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA.
- University of California Agriculture and Natural Resources, Oakland, CA, 95618, USA.
| |
Collapse
|
11
|
The promise of probiotics in honeybee health and disease management. Arch Microbiol 2023; 205:73. [PMID: 36705763 DOI: 10.1007/s00203-023-03416-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Over the last decades, losses of bee populations have been observed worldwide. A panoply of biotic and abiotic factors, as well as the interplay among them, has been suggested to be responsible for bee declines, but definitive causes have not yet been identified. Among pollinators, the honeybee Apis mellifera is threatened by various diseases and environmental stresses, which have been shown to impact the insect gut microbiota that is known to be fundamental for host metabolism, development and immunity. Aimed at preserving the gut homeostasis, many researches are currently focusing on improving the honeybee health through the administration of probiotics e.g., by boosting the innate immune response against microbial infections. Here, we review the knowledge available on the characterization of the microbial diversity associated to honeybees and the use of probiotic symbionts as a promising approach to maintain honeybee fitness, sustaining a healthy gut microbiota and enhancing its crucial relationship with the host immune system.
Collapse
|