1
|
Gao C, Li Q, Wen H, Zhou Y. Lipidomics analysis reveals the effects of Schizochytrium sp. supplementation on the lipid composition of Tan sheep meat. Food Chem 2025; 463:141089. [PMID: 39232453 DOI: 10.1016/j.foodchem.2024.141089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Schizochytrium sp. (SZ) can potentially be employed in nutritional strategies for producing high-quality sheep meat. However, the effects of SZ on the lipid composition of sheep meat are insufficiently understood. In this study, the effects of SZ supplementation on the lipid profile of Tan sheep meat were evaluated using non-targeted lipidomic techniques. Lipidomics analysis revealed 383 differential lipids (DLs) between the SZ and control groups, and there were six metabolic pathways associated with lipids, including glycerophospholipid metabolism, glycerolipid metabolism, α-linolenic acid metabolism, linoleic acid metabolism, glycine, serine and threonine metabolism, and arachidonic acid metabolism (P < 0.05). Glycerophospholipid metabolism was the core pathway of DLs; we found that phosphatidylcholine, phosphatidylserine, and lysophosphatidylcholine were the crucial lipid metabolites of this pathway. Dietary supplementation with SZ increased n-3 polyunsaturated fatty acid (PUFA), C22:6n-3, and C20:5n-3 (P < 0.05), while it decreased C18:0, saturated fatty acid (SFA), and SFA/PUFA (P < 0.05). These results indicate that SZ supplementation induces positive alterations in the lipid profile of Tan sheep meat, which is beneficial to meat quality and sheds valuable insights into the future development of functional lipids in sheep meat.
Collapse
Affiliation(s)
- Changpeng Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hongrui Wen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuxiang Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Ma K, Deng L, Wu Y, Gao Y, Fan J, Wu H. Transgenic Schizochytrium as a Promising Oral Vaccine Carrier: Potential Application in the Aquaculture Industry. Mar Drugs 2024; 22:555. [PMID: 39728130 DOI: 10.3390/md22120555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Schizochytrium limacinum SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) of Edwardsiella tarda is a valuable broad-spectrum antigen against various pathogens in aquaculture (e.g., Aeromonas hydrophila, Vibro anguillarum, Vibro harveyi, Vibro alginolyticus). We pioneered the development of stable S. limacinum SR21 transformants expressing the antigen protein FBA, exploring their potential as a novel oral vaccine for the aquaculture industry. The model animal zebrafish (Danio rerio) and ornamental fish koi carp (Cyprinus carpio koi) were harnessed to assess the immunoprotective effect, respectively. According to the quantitative expression analysis, zebrafish fed with recombinant Schizochytrium expressing FBA exhibited specific immune responses in the intestine. The expression levels of MHC-I and MHC-II, involved in cell-mediated adaptive immune responses, were significantly upregulated on the 14th and 28th days post-immunization. Additionally, the expression of highly specialized antibody genes IgZ1 and IgZ2 in mucosal immunity were significantly triggered on the 14th day post-immunization. Feeding koi carp with recombinant S. limacinum SR21-FBA increased the production of myeloperoxidase and FBA-specific antibodies in the sera. Furthermore, the sera of koi fed with recombinant S. limacinum SR21-FBA exhibited significant bactericidal activities against pathogen E. tarda. Thus, S. limacinum SR21 is a natural and highly promising oral vaccine carrier that not only provides essential nutrients as a functional feed ingredient but also offers specific immune protection to aquatic animals. This dual application is vital for promoting the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanjie Wu
- Biopharmaceuticals R&D Department, Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Yuan Gao
- Biopharmaceuticals R&D Department, Ningbo Sansheng Biological Technology Co., Ltd., Ningbo 315000, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Kyriakaki P, Mavrommatis A, Tsiplakou E. The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats. Animals (Basel) 2024; 14:3291. [PMID: 39595343 PMCID: PMC11591094 DOI: 10.3390/ani14223291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Long-chain polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) have been shown to be effective in enhancing the quality of ruminant products, including meat and milk. However, under these dietary conditions, the de novo lipogenesis could be influenced, too. On the other hand, even if the forage-to-concentrate ratio (F:C) is also a key factor affecting lipid metabolism in small ruminants, there is scarce information about its interaction with dietary PUFA. This study investigates the potential of the F:C ratio as a lever to manipulate lipid metabolism in dairy goats under high dietary PUFA supplementation. For this purpose, twenty-two crossbred dairy goats [Alpine × Local (Greek) breeds] (BW = 50.6 ± 6.1 kg) at early lactation (70 ± 10 days in milk) during the age of 3-4 years old, were separated into two homogeneous subgroups (n = 11). In the first phase, each goat was fed 20 g Schizochytrium spp./day followed by either a high-forage (20 HF) or a high-grain (20 HG) diet, while in the second phase, each goat was fed 40 g Schizochytrium spp./day followed once again either a high-forage (40 HF) or a high-grain (40 HG) diet. The F:C ratio of a high-forage and high-grain diet was 60:40 and 40:60, respectively. Tail fat tissue samples were collected by biopsy on the 42nd day of each experimental phase (last day). Significant decreases (p < 0.05) in the gene expression of ACACA, CBR2, COX4I1, ELOVL5, ELOVL7, LEP, and SCD were presented in goats fed 40 g compared to those fed 20 g Schizochytrium spp., while the gene expression of ACACA, AGPAT2, AGPAT3, ELOVL5, ELOVL6, EPHX2, FASN, and SCD was decreased in high grain compared to high-forage diets. This study also indicated that with the aim to enrich goat products with PUFA by increasing their levels in the diet, lipid metabolism is negatively affected. However, a diet with higher forage inclusion can partially attenuate this condition.
Collapse
Affiliation(s)
| | | | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (P.K.); (A.M.)
| |
Collapse
|
4
|
Gao C, Wen H, Dai D, Li Q, Zhou Y. Transcriptome analysis reveals the effects of Schizochytrium sp. on the meat quality attributes of Tan lambs. Meat Sci 2024; 216:109583. [PMID: 38944909 DOI: 10.1016/j.meatsci.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Schizochytrium sp., a feed additive, positively affects the quality of animal meat. In this study, the molecular mechanisms through which dietary Schizochytrium sp. affects the meat quality characteristics of Tan lambs were investigated using transcriptomic techniques. The findings demonstrate that the lambs supplemented with Schizochytrium sp. had a larger loin eye area and a higher average daily gain and intramuscular fat content (P < 0.05). They also had lower drip loss (at 24 and 48 h) and shear force (P < 0.05). Further, 745 genes were differentially expressed between lambs supplemented with Schizochytrium and the control group. Moreover, KEGG pathway analysis showed that the ECM-receptor interaction pathway, which is related to muscle generation and intramuscular fat deposition, was significantly enriched in the lambs administered a diet containing Schizochytrium sp. Herein, we identified some pivotal genes linked to muscular system development and lipid metabolism. Thus, using Schizochytrium sp. may boost the meat quality of Tan lambs by modifying the expression of genes related to hub pathways. The results supply a new basis to determine the molecular mechanisms through which Schizochytrium sp. supplementation regulates the meat quality characteristics of sheep.
Collapse
Affiliation(s)
- Changpeng Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hongrui Wen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Dongwen Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuxiang Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Song Y, Wang F, Chen L, Zhang W. Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives. Mar Drugs 2024; 22:216. [PMID: 38786607 PMCID: PMC11122798 DOI: 10.3390/md22050216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.
Collapse
Affiliation(s)
- Yanhui Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Alhattab M, Moorthy LS, Patel D, Franco CMM, Puri M. Oleaginous Microbial Lipids' Potential in the Prevention and Treatment of Neurological Disorders. Mar Drugs 2024; 22:80. [PMID: 38393051 PMCID: PMC10890163 DOI: 10.3390/md22020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The products of oleaginous microbes, primarily lipids, have gained tremendous attention for their health benefits in food-based applications as supplements. However, this emerging biotechnology also offers a neuroprotective treatment/management potential for various diseases that are seldom discussed. Essential fatty acids, such as DHA, are known to make up the majority of brain phospholipid membranes and are integral to cognitive function, which forms an important defense against Alzheimer's disease. Omega-3 polyunsaturated fatty acids have also been shown to reduce recurrent epilepsy seizures and have been used in brain cancer therapies. The ratio of omega-3 to omega-6 PUFAs is essential in maintaining physiological function. Furthermore, lipids have also been employed as an effective vehicle to deliver drugs for the treatment of diseases. Lipid nanoparticle technology, used in pharmaceuticals and cosmeceuticals, has recently emerged as a biocompatible, biodegradable, low-toxicity, and high-stability means for drug delivery to address the drawbacks associated with traditional medicine delivery methods. This review aims to highlight the dual benefit that lipids offer in maintaining good health for disease prevention and in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mariam Alhattab
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Lakshana S Moorthy
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Durva Patel
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Christopher M M Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
7
|
Yan CX, Zhang Y, Yang WQ, Ma W, Sun XM, Huang H. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms. Biotechnol Adv 2024; 70:108298. [PMID: 38048920 DOI: 10.1016/j.biotechadv.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA), are beneficial for reducing blood cholesterol and enhancing memory. Traditional PUFA production relies on extraction from plants and animals, which is unsustainable. Thus, using microorganisms as lipid-producing factories holds promise as an alternative way for PUFA production. Several oleaginous microorganisms have been successfully industrialized to date. These can be divided into universal and specialized hosts according to the products range of biosynthesis. The Yarrowia lipolytica is universal oleaginous host that has been engineered to produce a variety of fatty acids, such as γ-linolenic acid (GLA), EPA, ARA and so on. By contrast, the specialized host are used to produce only certain fatty acids, such as ARA in Mortierella alpina, EPA in Nannochloropsis, and DHA in Thraustochytrids. The metabolic engineering and fermentation strategies for improving PUFA production in universal and specialized hosts are different, which is the subject of this review. In addition, the widely applicable strategies for microbial lipid production that are not specific to individual hosts were also reviewed.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Liu Y, Han X, Dai Y, Chen Z. bZIP transcription factor FabR: Redox-dependent mechanism controlling docosahexaenoic acid biosynthesis and H 2O 2 stress response in Schizochytrium sp. Free Radic Biol Med 2024; 210:246-257. [PMID: 38042223 DOI: 10.1016/j.freeradbiomed.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Schizochytrium sp. is an important industrial strain for commercial production of docosahexaenoic acid (DHA), which plays essential physiological roles in infant development and human health. The regulatory network for DHA biosynthesis and lipid accumulation in Schizochytrium remains poorly understood. FabR (fatty acid biosynthesis repressor), a basic leucine zipper (bZIP) transcription factor, was transcriptionally downregulated under low-nitrogen condition. Deletion of fabR gene (mutant ΔfabR) increased production of total lipids and DHA by 30.1% and 46.5%, respectively. ΔfabR displayed H2O2 stress resistance higher than that of parental strain or complementation strain CfabR. FabR bound specifically to 7-bp pseudo-palindromic sequence 5'-ATTSAAT-3' in upstream regions and repressed transcription of fatty acid biosynthesis genes (acl, fas, pfa) and antioxidant defense genes (cat, sod1, sod2, gpx). DNA binding activity of FabR was regulated in a redox-dependent manner. Under oxidative condition, FabR forms intermolecular disulfide bonds between two Cys46 residues of dimers; its DNA binding activity is thereby lost, and the transcription of its target genes is enhanced through derepression. Our findings clarify the redox-dependent mechanism that modulates FabR activity governing lipid and DHA biosynthesis and H2O2 stress response in Schizochytrium.
Collapse
Affiliation(s)
- Yana Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujie Dai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Hammadi Al-Ogaidi DA, Karaçam S, Gurbanov R, Vardar-Yel N. Marine Microalgae Schizochytrium sp. S31: Potential Source for New Antimicrobial and Antibiofilm Agent. Curr Pharm Biotechnol 2024; 25:1478-1488. [PMID: 38465428 DOI: 10.2174/0113892010291960240223054911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The rise of antibiotic-resistant bacteria necessitates the discovery of new, safe, and bioactive antimicrobial compounds. The antibacterial and antibiofilm activity of microalgae makes them a potential candidate for developing natural antibiotics to limit microbial infection in various fields. OBJECTIVE This study aimed to analyze the antibacterial effect of the methanolic extract of Schizochytrium sp. S31 microalgae by broth microdilution and spot plate assays. METHODS The antibacterial effects of Schizochytrium sp. S31 extract was studied on gramnegative pathogens, Pseudomonas aeruginosa, Escherichia coli 35218, Klebsiella pneumonia, which cause many different human infections, and the gram-positive pathogen Streptococcus mutans. At the same time, the antibiofilm activity of the Schizochytrium sp. S31 extract on Pseudomonas aeruginosa and Escherichia coli 35218 bacteria were investigated by crystal violet staining method. RESULTS Schizochytrium sp. S31 extract at a 60% concentration for 8 hours displayed the highest antibacterial activity against P. aeruginosa, E. coli 35218, and K. pneumonia, with a decrease of 87%, 92%, and 98% in cell viability, respectively. The experiment with Streptococcus mutans revealed a remarkable antibacterial effect at a 60% extract concentration for 24 hours, leading to a notable 93% reduction in cell viability. Furthermore, the extract exhibited a dose-dependent inhibition of biofilm formation in P. aeruginosa and E. coli 35218. The concentration of 60% extract was identified as the most effective dosage in terms of inhibition. CONCLUSION This research emphasizes the potential of Schizochytrium sp. S31 as a natural antibacterial and antibiofilm agent with promising applications in the pharmaceutical sectors. This is the first study to examine the antibacterial activity of Schizochytrium sp. S31 microalgae using broth microdilution, spot plate assays, and the antibiofilm activity by a crystal staining method. The findings of this study show that Schizochytrium sp. S31 has antibacterial and antibiofilm activities against critical bacterial pathogens.
Collapse
Affiliation(s)
| | - Sevinç Karaçam
- Department of Biotechnology, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
- Central Research Laboratory, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altinbas University, 34147, Istanbul, Turkey
| |
Collapse
|
10
|
Li J, Zheng Y, Yang WQ, Wei ZY, Xu YS, Zhang ZX, Ma W, Sun XM. Enhancing the accumulation of lipid and docosahexaenoic acid in Schizochytrium sp. by co-overexpression of phosphopantetheinyl transferase and ω-3 fatty acid desaturase. Biotechnol J 2023; 18:e2300314. [PMID: 37596914 DOI: 10.1002/biot.202300314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Docosahexaenoic acid (DHA) as one of ω-3 polyunsaturated fatty acids (PUFAs), plays a key role in brain development, and is widely used in food additives and the pharmaceutical industry. Schizochytrium sp. is often considered as a satisfactory strain for DHA industrialization. The aim of this study was to assess the feasibility of phosphopantetheinyl transferase (PPTase) and ω-3 fatty acid desaturase (FAD) for regulating DHA content in Schizochytrium sp. PPTase is essential to activate the polyketide-like synthase (PKS) pathway, which can transfer apo-acyl-carrier protein (apo-ACP) into holo-ACP, and plays a key role in DHA synthesis. Moreover, DHA and docosapentaenoic acid (DPA) are synthesized by the PKS pathway simultaneously, so high DPA synthesis limits the increase of DHA content. In addition, the detailed mechanisms of PKS pathway have not been fully elucidated, so it is difficult to improve DHA content by modifying PKS. However, ω-3 FAD can convert DPA into DHA, and it is the most direct and effective way to increase DHA content and reduce DPA content. Based on this, PPTase was overexpressed to enhance the synthesis of DHA by the PKS pathway, overexpressed ω-3 FAD to convert the co-product of the PKS pathway into DHA, and co-overexpressed PPTase and ω-3 FAD. With these strategies, compared with wild type, the final lipid, and DHA titer were 92.5 and 51.5 g L-1 , which increased by 46.4% and 78.1%, respectively. This study established an efficient DHA production strain, and provided some feasible strategies for industrial DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yi Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhi-Yun Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Gora AH, Rehman S, Dias J, Fernandes JMO, Olsvik PA, Sørensen M, Kiron V. Protective mechanisms of a microbial oil against hypercholesterolemia: evidence from a zebrafish model. Front Nutr 2023; 10:1161119. [PMID: 37435570 PMCID: PMC10332275 DOI: 10.3389/fnut.2023.1161119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023] Open
Abstract
A Western diet elevates the circulating lipoprotein and triglyceride levels which are the major risk factors in cardiovascular disease (CVD) development. Consumption of long-chain omega-3 fatty acids can stall the disease progression. Although these fatty acids can significantly impact the intestine under a hypercholesterolemic condition, the associated changes have not been studied in detail. Therefore, we investigated the alterations in the intestinal transcriptome along with the deviations in the plasma lipids and liver histomorphology of zebrafish offered DHA- and EPA-rich oil. Fish were allocated to 4 dietary treatments: a control group, a high cholesterol group and microbial oil groups with low (3.3%) and high (6.6%) inclusion levels. We quantified the total cholesterol, lipoprotein and triglyceride levels in the plasma. In addition, we assessed the liver histology, intestinal transcriptome and plasma lipidomic profiles of the study groups. The results suggested that higher levels of dietary microbial oil could control the CVD risk factor indices in zebrafish plasma. Furthermore, microbial oil-fed fish had fewer liver vacuoles and higher mRNA levels of genes involved in β-oxidation and HDL maturation. Analyses of the intestine transcriptome revealed that microbial oil supplementation could influence the expression of genes altered by a hypercholesterolemic diet. The plasma lipidomic profiles revealed that the higher level of microbial oil tested could elevate the long-chain poly-unsaturated fatty acid content of triglyceride species and lower the concentration of several lysophosphatidylcholine and diacylglycerol molecules. Our study provides insights into the effectiveness of microbial oil against dyslipidemia in zebrafish.
Collapse
Affiliation(s)
- Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A. Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|