1
|
Feng J, Jia M, Zhuang Y, Xu Z, Chen Y, Fei J, Xia J, Hong L, Zhang J, Wu H, Chen X, Chen M. Prevalence, transmission and genomic epidemiology of mcr-1-positive colistin-resistant Escherichia coli strains isolated from international airplane waste, local resident fecal and wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177556. [PMID: 39547379 DOI: 10.1016/j.scitotenv.2024.177556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The emergence and dissemination of mcr-1-positive Escherichia coli (MCRPEC) represent a critical public health threat. Here, we conducted a prospective analysis of MCRPEC isolates from wastewater treatment plants (WWTPs), local residents' fecal (LRF), and international airplane waste (IAW) to investigate their genetic characteristics and transmission patterns circulating in human-environment domains. The MCRPEC prevalence was 2.43 % in WWTPs, 1.37 % in IAW and 0.69 % in LRF. MCRPEC showed substantial genetic diversity, encompassing 61 sequence types (primarily ST1011, ST101, and ST2705), 7 plasmid types (primarily IncI2), 8 phylogroups (primarily A and B1), 9 mcr-1-flanked lineages (primarily L5), 6 clusters (primarily C2 and C4), diverse serotypes, and 61.95 % transposon-containing strains. The mcr-1 gene co-existed with 46 antibiotic resistance genes (ARGs) and 19 virulence factor genes (VFGs). Notably, 6 IncI2 plasmids carried the blaCTX-M, IS1380, and mcr-1 genes. MCRPEC from WWTPs harbored a greater number of ARGs (56.95 ± 5.99) but fewer VFGs (15.03 ± 6.40) compared to those from human-associated sources (LRF and IAW). ST1011, ST2705, IncHI2, and L7 were prevalent in WWTP-derived MCRPEC, whereas IncX4 and L3 were more common in human-derived MCRPEC. Genetic features such as ST101, ST48, IncI2, L4, L5, C2, and C4 were simultaneously present in strains from LRF, IAW, and WWTPs. Core genetic analyses also showed genetically similar MCRPEC strains across various geographic locations. The findings underscore the extensive dissemination, strong environmental adaptation, and clonal transmission of MCRPEC across diverse reservoirs, reinforcing the urgent need for coordinated multisectoral surveillance of human and environment interfaces to effectively mitigate further transmission.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Min Jia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiahui Xia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Liang Hong
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Zhang
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
2
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Zhao X, Chen H, Bi W, Shan H, Wang J, Yang Z. Coexistence and genomics characterization of mcr-1 and extended-spectrum-β-lactamase-producing Escherichia coli, an emerging extensively drug-resistant bacteria from sheep in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177016. [PMID: 39426540 DOI: 10.1016/j.scitotenv.2024.177016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The emergence of pathogens harboring multiple resistance genes poses a great threat to global public health. However, the coexistence of mobile resistance genes that provide resistance to both third-generation cephalosporins and colistin in sheep-origin Escherichia coli has not been previously investigated in China. This study is the first to characterize five E. coli isolates from sheep in Shaanxi province that harbor both Extended-Spectrum β-Lactamase (ESBL) and mcr-1 resistance genes. The isolates were identified and characterized by Illumina sequencing, nanopore sequencing, bioinformatic analysis, conjugation experiments, and antimicrobial susceptibility testing. Genetic analysis revealed that blaCTX-M-55 gene, mediated by the IS26, was located on the IncFIB-IncFIC plasmid, while the mcr-1 gene was located on the IncI2(Delta) plasmid. Notably, two copies of blaCTX-M-55 gene were also identified on the chromosome of one isolate (SX45), facilitated by the ISEcp1 insertion sequence. Additionally, the plasmid pSX23-2 was identified as a complex plasmid derived through homologous recombination of pMG337 from E. coli (MK878890) and pZY-1 from Citrobacter freundii (CP055248). Data mining of publicly available databases revealed that isolates carrying both blaCTX-M-55 and mcr-1 genes have been found in humans, animals, and the environment, indicating the widespread presence of these critical resistance genes across different niches. Antimicrobial susceptibility testing showed that the five isolates were resistant to a nearly all tested antibiotics, except meropenem. Conjugative transfer experiments demonstrated that the IncFIB-IncFIC and IncI2(Delta) plasmids carrying mcr-1 and blaCTX-M-55 were capable of transferring between different sequence types (STs) of sheep-origin E. coli, including ST10, ST162, and ST457. This finding suggests the potential for wide dissemination of these resistance markers among diverse E. coli strains. Overall, the characterization of these ESBL and mcr-1 co-harboring isolates enhances our understanding of the spread of these resistance genes in sheep-origin E. coli. Global surveillance of these isolates, particularly within the One Health framework, is essential to monitor and mitigate the risks posed by the dissemination of these resistance genes across various settings.
Collapse
Affiliation(s)
- Xueliang Zhao
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China; National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongmei Chen
- College of Food Science and Engineering, Northwest A&F University, Shaanxi Yangling 712100, China
| | - Wenrui Bi
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China
| | - Honghu Shan
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China
| | - Juan Wang
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China.
| | - Zengqi Yang
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China.
| |
Collapse
|
4
|
Kim JS, Jeong HW, Jin YH, Kim J, Kim JA, Park SH, Yoon SM, Jung SE, Jang JI, Kim EJ, Lee JI, Lee JH. Emergence of the mobile colistin resistance gene mcr-1 in a Leclercia adecarboxylata strain isolated from wastewater in Seoul. J Glob Antimicrob Resist 2024; 39:37-40. [PMID: 39173738 DOI: 10.1016/j.jgar.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024] Open
Abstract
Colistin is considered the last resort for treating infections caused by multidrug-resistant bacteria. However, the spread of the plasmid-borne colistin-resistance gene mcr-1 has become a public health threat. In this study, we identified mcr-1-harboring Leclercia adecarboxylata strain (WWCOL-134) isolated from wastewater in Seoul. The strain had a colistin MIC value of 2 µg/ml and was resistant to cefotaxime, gentamicin, tetracycline, trimethoprim and sulfamethoxazole. The mcr-1 gene, along with an array of resistance genes, was located on a 236-kb plasmid (pCOL134-1), which contained the typical IncHI2 backbone of reported mcr-1-carrying plasmids, and was transferred to an Escherichia coli strain by conjugation. To the best of our knowledge, this is the first study to report the emergence of mcr-1-harboring Leclercia sp. isolate. Our findings demonstrate the ongoing spread of colistin resistance among Enterobacterales species, emphasizing the need for surveillance of antimicrobial resistance in wastewater environments.
Collapse
Affiliation(s)
- Jin Seok Kim
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea.
| | - Hyo-Won Jeong
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Young Hee Jin
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - JinWoo Kim
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Jin-Ah Kim
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Sook Hyun Park
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - So-Mi Yoon
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Sang-Eun Jung
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Jung Im Jang
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Eun Ji Kim
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Jae In Lee
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| | - Jib-Ho Lee
- Emerging Infectious Diseases Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chen M, Liu Y, Zhou Y, Pei Y, Qu M, Lv P, Zhang J, Xu X, Hu Y, Wang Y. Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136641. [PMID: 39612873 DOI: 10.1016/j.jhazmat.2024.136641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Although previous studies using phenotypic or metagenomic approaches have revealed the patterns of antibiotic resistance genes (ARGs) in hospital effluents in local regions, limited information is available regarding the antibiotic resistome and plasmidome in human pathogenic bacteria in hospital effluents of megacity in China. To address this knowledge gap, we analyzed effluent samples from 166 hospitals across 13 geographical districts in Shanghai, China, using both cultivation-based approaches and metagenomics. A total of 357 strains were isolated from these samples, with the predominant species being Escherichia coli (n = 61), Aeromonas hydrophila (n = 57), Klebsiella pneumoniae (n = 48), and Aeromonas caviae (n = 42). Those identified indicator bacteria were classified into biosafety level 1 (BSL-1, 60 %) and BSL-2 (40 %). We identified 1237 ARG subtypes across 22 types, predominantly including beta-lactam, tetracycline, multidrug, polymyxin, and aminoglycoside resistance genes, using culture-enriched phenotypic metagenomics. Mobile genetic elements such as plasmids, transposons (tnpA), integrons (intI1), and insertion sequences (IS91) were abundant. We recovered 135 plasmids classified into mobilizable (n = 94) and non-mobilizable (n = 41) types. Additionally, 80 metagenome-assembled genomes (MAGs) were reconstructed from the hospital effluents for the assessment of ARG transmission risks, including genes for last-line antibiotics such as blaNDM, blaKPC, blaimiH, and mcr. This study is the first to comprehensively characterize and assess the risk of antimicrobial resistance levels and plasmidome in the hospital effluents of China's megacity, providing city-wide surveillance data and evidence to inform public health interventions.
Collapse
Affiliation(s)
- Mingliang Chen
- Research and Translational Laboratory of Acute Injury and Secondary Infection, and, Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Yue Liu
- Department of Epidemiology, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China; Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yibin Zhou
- Department of Infectious Disease Control, Center for Disease Control and Prevention of Minhang District, Shanghai, China
| | - Yuhang Pei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Mengqi Qu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Panpan Lv
- Research and Translational Laboratory of Acute Injury and Secondary Infection, and, Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Yi Hu
- Department of Epidemiology, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Yanan Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Longhu Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Zhang Q. Bacteria carrying mobile colistin resistance genes and their control measures, an updated review. Arch Microbiol 2024; 206:462. [PMID: 39516398 DOI: 10.1007/s00203-024-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
7
|
Zhai W, Cai H, Shao D, Yu X, Zhu X, Liu D, Shen Z, Wang S, Kang J, Wu C, Shen J, Wang Y, Liu L. Novel mobile colistin resistance gene mcr-4.9 in Vibrio cholerae from migratory birds. Drug Resist Updat 2024; 77:101157. [PMID: 39393283 DOI: 10.1016/j.drup.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Affiliation(s)
- Weishuai Zhai
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanzhang Cai
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Dongyan Shao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaojie Yu
- Hainan Province Center for Disease Control and Prevention, Haikou, Hainan 570203, China
| | - Xiong Zhu
- Sanya People's Hospital, Sanya, Hainan 572000, China
| | - Dejun Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhangqi Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shaolin Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jijun Kang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lu Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Derollez E, Lesterlin C, Bigot S. Design, potential and limitations of conjugation-based antibacterial strategies. Microb Biotechnol 2024; 17:e70050. [PMID: 39548711 PMCID: PMC11568246 DOI: 10.1111/1751-7915.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Over the past few decades, the global spread of antimicrobial resistance has underscored the urgent need to develop innovative non-antibiotic antibacterial strategies and to reduce antibiotic use worldwide. In response to this challenge, several methods have been developed that rely on gene transfer by conjugation to deliver toxic compounds or CRISPR systems specifically designed to kill or resensitize target bacterial strains to antibiotics. This review explores the design, potential, and limitations of these conjugation-based antibacterial strategies, focusing on the recent advances in the delivery of CRISPR systems as antibacterial effectors.
Collapse
Affiliation(s)
- Elisabeth Derollez
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| |
Collapse
|
9
|
Zhao W, Wan S, Li S, Li W, Kang J, Liu Y, Huang H, Li H, Du XD, Xu C, Yao H. Research note: characteristics of bla NDM and mcr-1 co-producing Escherichia coli from retail chicken meat. Poult Sci 2024; 103:104160. [PMID: 39178818 PMCID: PMC11385413 DOI: 10.1016/j.psj.2024.104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024] Open
Abstract
Carbapenems and colistin are vital antimicrobials used to treat Enterobacteriaceae-caused infections. The present study aimed to characterize the coexistence mechanism of carbapenem and colistin resistance in an Escherichia coli isolated from retail chicken meat. A total of 4 E. coli isolates co-harboring carbapenem resistance gene blaNDM (2 E. coli isolates with blaNDM-5 and 2 with blaNDM-9) and colistin resistance gene mcr-1. Antimicrobial susceptibility testing exhibited that all the 4 E. coli strains had multidrug resistance profile and consistent with the resistance genes they carried. MLST showed that 3 E. coli isolates belonged to a pathogenic E. coli lineage ST354, which is closely associated with human infections and pose a serious threat to public health. Whole genome sequencing (WGS) showed that 4 mcr-1-positive plasmids with sizes of 60.4 kb to 67.4 kb all belonged to the IncI2 type. A total of 5 blaNDM-harboring plasmids ranged from 99.0 kb to 138.3 kb, among which 4 plasmids belonged to unknow type and only pCS5L-NDM belonged to IncFIA/IncFIB group of hybrid plasmids, a novel carrier for blaNDM. Comparative analysis exhibited that the mcr-1 or blaNDM-carrying plasmids of E. coli strains from chicken meat showed high identity with that from Enterobacteriaceae of human origin, which indicated the risk of mcr-1 or blaNDM dissemination from retail meat to human. The simultaneous occurrence of mcr-1 and blaNDM in E. coli emphasizes the significant of antimicrobial resistance surveillance in retail meat.
Collapse
Affiliation(s)
- Wenbo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Shuigen Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Wenjun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Jin Kang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yong Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Hexiang Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Hao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Chunyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
10
|
Song K, Jin L, Cai M, Wang Q, Wu X, Wang S, Sun S, Wang R, Chen F, Wang H. Decoding the origins, spread, and global risks of mcr-9 gene. EBioMedicine 2024; 108:105326. [PMID: 39260038 PMCID: PMC11416231 DOI: 10.1016/j.ebiom.2024.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The global spread of the plasmid-mediated mcr (mobilized colistin resistance) gene family presents a significant threat to the efficacy of colistin, a last-line defense against numerous Gram-negative pathogens. The mcr-9 is the second most prevalent variant after mcr-1. METHODS A dataset of 698 mcr-9-positive isolates from 44 countries is compiled. The historical trajectory of the mcr-9 gene is reconstructed using Bayesian analysis. The effective reproduction number is used innovatively to study the transmission dynamics of this mobile-drug-resistant gene. FINDINGS Our investigation traces the origins of mcr-9 back to the 1960s, revealing a subsequent expansion from Western Europe to the America and East Asia in the late 20th century. Currently, its transmissibility remains high in Western Europe. Intriguingly, mcr-9 likely emerged from human-associated Salmonella and exhibits a unique propensity for transmission within the Enterobacter. Our research provides a new perspective that this host preference may be driven by codon usage biases in plasmids. Specifically, mcr-9-carrying plasmids prefer the nucleotide C over T compared to mcr-1-carrying plasmids among synonymous codons. The same bias is seen in Enterobacter compared to Escherichia (respectively as their most dominant genus). Furthermore, we uncovered fascinating patterns of coexistence between different mcr-9 subtypes and other resistance genes. Characterized by its low colistin resistance, mcr-9 has used this seemingly benign feature to silently circumnavigate the globe, evading conventional detection methods. However, colistin-resistant Enterobacter strains with high mcr-9 expression have emerged clinically, implying a strong risk of mcr-9 evolving into a global "true-resistance-gene". INTERPRETATION This study explores the mcr-9 gene, emphasizing its origin, adaptability, and dissemination potential. Given the high mcr-9 expression colistin-resistant strains was observed in clinically the prevalence of mcr-9 poses a significant challenge to drug resistance prevention and control within the One Health framework. FUNDING This work was partially supported by the National Natural Science Foundation of China (Grant No. 32141001 and 81991533).
Collapse
Affiliation(s)
- Kaiwen Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
11
|
Wang L, Yu L, Cai B. Characteristics of tetracycline antibiotic resistance gene enrichment and migration in soil-plant system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:427. [PMID: 39316269 DOI: 10.1007/s10653-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Tetracycline Resistance Genes (TRGs) have received widespread attention in recent years, as they are a novel environmental pollutant that can rapidly accumulate and migrate in soil plant systems through horizontal gene transfer (HGT), posing a potential threat to food safety and public health. This article systematically reviews the pollution sources, enrichment, and migration characteristics of TRGs in soil. The main sources of TRGs include livestock manure and contaminated wastewater, especially in intensive farming environments where TRGs pollution is more severe. In soil, TRGs diffuse horizontally between bacteria and migrate to plant tissues through mechanisms such as plasmid conjugation, integron mediation, and phage transduction. The migration of TRGs is not limited to the soil interior, and increasing evidence suggests that they can also enter the plant system through plant root absorption and the HGT pathway of endophytic bacteria, ultimately accumulating in plant roots, stems, leaves, fruits, and other parts. This process has a direct impact on human health, especially when TRGs are found in crops such as vegetables, which may be transmitted to the human body through the food chain. In addition, this article also deeply analyzed various factors that affect the migration of TRGs, including the residual level of tetracycline in soil, the type and concentration of microorganisms, heavy metal pollution, and the presence of new pollutants such as microplastics. These factors significantly affect the enrichment rate and migration mode of TRGs in soil. In addition, two technologies that can effectively eliminate TRGs in livestock breeding environments were introduced, providing reference for healthy agricultural production. The article concludes by summarizing the shortcomings of current research on TRGs, particularly the limited understanding of TRG migration pathways and their impact mechanisms. Future research should focus on revealing the migration mechanisms of TRGs in soil plant systems and developing effective control and governance measures to reduce the environmental transmission risks of TRGs and ensure the safety of ecosystems and human health.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Lina Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
12
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Huang Y, Cai Z, Lv L, Yue C, Liu JH. Emergence of mcr-8.1 gene coexisting with blaNDM in Citrobacter werkmanii isolated from a chicken farm in China. J Antimicrob Chemother 2024; 79:2392-2394. [PMID: 39028643 DOI: 10.1093/jac/dkae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Affiliation(s)
- Ying Huang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Zhongpeng Cai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Chao Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| |
Collapse
|
14
|
Mahazu S, Prah I, Ota Y, Hayashi T, Suzuki M, Yoshida M, Hoshino Y, Akeda Y, Suzuki T, Ishino T, Ablordey AS, Saito R. Colistin Resistance Mediated by Mcr-3-Related Phosphoethanolamine Transferase Genes in Aeromonas Species Isolated from Aquatic Environments in Avaga and Pakro Communities in the Eastern Region of Ghana. Infect Drug Resist 2024; 17:3011-3023. [PMID: 39050833 PMCID: PMC11268572 DOI: 10.2147/idr.s468000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Colistin is classified by the World Health Organization (WHO) as a critically important and last-resort antibiotic for the treatment of infections caused by carbapenem-resistant bacteria. However, colistin resistance mediated by chromosomal mutations or plasmid-linked mobilized colistin resistance (mcr) genes has emerged. Methods Thirteen mcr-positive Aeromonas species isolated from water samples collected in Eastern Ghana were analyzed using whole-genome sequencing (WGS). Antimicrobial susceptibility was tested using the broth microdilution method. Resistome analysis was performed in silico using a web-based platform. Results The minimum inhibitory concentration (MIC) of colistin for all except three isolates was >4 µg/mL. Nine new sequence types were identified and whole-genome analysis revealed that the isolates harbored genes (mcr-3-related genes) that code for Lipid A phosphoethanolamine transferases on their chromosomes. BLAST analysis indicated that the amino acid sequences of the mcr-3-related genes detected varied from those previously reported and shared 79.04-99.86% nucleotide sequence identity with publicly available mcr-3 variants and mcr-3-related phosphoethanolamine transferases. Analysis of the genetic context of mcr-3-related genes revealed that the genetic environment surrounding mcr-3-related genes was diverse among the different species of Aeromonas but conserved among isolates of the same species. Mcr-3-related-gene-IS-mcr-3-related-gene segment was identified in three Aeromonas caviae strains. Conclusion The presence of mcr-3-related genes close to insertion elements is important for continuous monitoring to better understand how to control the mobilization and dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Samiratu Mahazu
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Ota
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anthony Samuel Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ryoichi Saito
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Yang S, Wang H, Zhao D, Zhang S, Hu C. Polymyxins: recent advances and challenges. Front Pharmacol 2024; 15:1424765. [PMID: 38974043 PMCID: PMC11224486 DOI: 10.3389/fphar.2024.1424765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Antibiotic resistance is a pressing global health challenge, and polymyxins have emerged as the last line of defense against multidrug-resistant Gram-negative (MDR-GRN) bacterial infections. Despite the longstanding utility of colistin, the complexities surrounding polymyxins in terms of resistance mechanisms and pharmacological properties warrant critical attention. This review consolidates current literature, focusing on polymyxins antibacterial mechanisms, resistance pathways, and innovative strategies to mitigate resistance. We are also investigating the pharmacokinetics of polymyxins to elucidate factors that influence their in vivo behavior. A comprehensive understanding of these aspects is pivotal for developing next-generation antimicrobials and optimizing therapeutic regimens. We underscore the urgent need for advancing research on polymyxins to ensure their continued efficacy against formidable bacterial challenges.
Collapse
Affiliation(s)
- Shan Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hairui Wang
- Institute of Respiratory Health, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dan Zhao
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shurong Zhang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Huang Y, Zhu Y, Yue HY, Liu YY, Deng LM, Lv L, Wang C, Yang J, Liu JH. Flavomycin restores colistin susceptibility in multidrug-resistant Gram-negative bacteria. mSystems 2024; 9:e0010924. [PMID: 38695565 PMCID: PMC11237640 DOI: 10.1128/msystems.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/28/2024] [Indexed: 06/19/2024] Open
Abstract
Polymyxin is used as a last resort antibiotics for infections caused by multi-drug resistant (MDR) Gram-negative bacteria and is often combined with other antibiotics to improve clinical effectiveness. However, the synergism of colistin and other antibiotics remains obscure. Here, we revealed a notable synergy between colistin and flavomycin, which was traditionally used as an animal growth promoter and has limited activity against Gram-negative bacteria, using checkerboard assay and time-kill curve analyses. The importance of membrane penetration induced by colistin was assessed by examining the intracellular accumulation of flavomycin and its antimicrobial impact on Escherichia coli (E. coli) strains with truncated lipopolysaccharides. Besides, a mutation in the flavomycin binding site was created to confirm its role in the observed synergy. This synergy is manifested as an augmented penetration of the E. coli outer membrane by colistin, leading to increased intracellular accumulation of flavomycin and enhanced cell killing thereafter. The observed synergy was dependent on the antimicrobial activity of flavomycin, as mutation of its binding site abolished the synergy. In vivo studies confirmed the efficacy of colistin combined with flavomycin against MDR E. coli infections. This study is the first to demonstrate the synergistic effect between colistin and flavomycin, shedding light on their respective roles in this synergism. Therefore, we propose flavomycin as an adjuvant to enhance the potency of colistin against MDR Gram-negative bacteria. IMPORTANCE Colistin is a critical antibiotic in combating multi-drug resistant Gram-negative bacteria, but the emergence of mobilized colistin resistance (mcr) undermines its effectiveness. Previous studies have found that colistin can synergy with various drugs; however, its exact mechanisms with hydrophobic drugs are still unrevealed. Generally, the membrane destruction of colistin is thought to be the essential trigger for its interactions with its partner drugs. Here, we use clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) for specifically mutating the binding site of one hydrophobic drug (flavomycin) and show that antimicrobial activity of flavomycin is critical for the synergy. Our results first give the evidence that the synergy is set off by colistin's membrane destruction and operated the final antimicrobial function by its partner drugs.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Yan Zhu
- Systems Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hui-Ying Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Li-Min Deng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Chengzhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Abbas A, Barkhouse A, Hackenberger D, Wright GD. Antibiotic resistance: A key microbial survival mechanism that threatens public health. Cell Host Microbe 2024; 32:837-851. [PMID: 38870900 DOI: 10.1016/j.chom.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance (AMR) is a global public health threat, challenging the effectiveness of antibiotics in combating bacterial infections. AMR also represents one of the most crucial survival traits evolved by bacteria. Antibiotics emerged hundreds of millions of years ago as advantageous secondary metabolites produced by microbes. Consequently, AMR is equally ancient and hardwired into the genetic fabric of bacteria. Human use of antibiotics for disease treatment has created selection pressure that spurs the evolution of new resistance mechanisms and the mobilization of existing ones through bacterial populations in the environment, animals, and humans. This integrated web of resistance elements is genetically complex and mechanistically diverse. Addressing this mode of bacterial survival requires innovation and investment to ensure continued use of antibiotics in the future. Strategies ranging from developing new therapies to applying artificial intelligence in monitoring AMR and discovering new drugs are being applied to manage the growing AMR crisis.
Collapse
Affiliation(s)
- Amna Abbas
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra Barkhouse
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dirk Hackenberger
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Sarker S, Neeloy RM, Habib MB, Urmi UL, Al Asad M, Mosaddek ASM, Khan MRK, Nahar S, Godman B, Islam S. Mobile Colistin-Resistant Genes mcr-1, mcr-2, and mcr-3 Identified in Diarrheal Pathogens among Infants, Children, and Adults in Bangladesh: Implications for the Future. Antibiotics (Basel) 2024; 13:534. [PMID: 38927200 PMCID: PMC11200974 DOI: 10.3390/antibiotics13060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Colistin is a last-resort antimicrobial for treating multidrug-resistant Gram-negative bacteria. Phenotypic colistin resistance is highly associated with plasmid-mediated mobile colistin resistance (mcr) genes. mcr-bearing Enterobacteriaceae have been detected in many countries, with the emergence of colistin-resistant pathogens a global concern. This study assessed the distribution of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes with phenotypic colistin resistance in isolates from diarrheal infants and children in Bangladesh. Bacteria were identified using the API-20E biochemical panel and 16s rDNA gene sequencing. Polymerase chain reactions detected mcr gene variants in the isolates. Their susceptibilities to colistin were determined by agar dilution and E-test by minimal inhibitory concentration (MIC) measurements. Over 31.6% (71/225) of isolates showed colistin resistance according to agar dilution assessment (MIC > 2 μg/mL). Overall, 15.5% of isolates carried mcr genes (7, mcr-1; 17, mcr-2; 13, and mcr-3, with co-occurrence occurring in two isolates). Clinical breakout MIC values (≥4 μg/mL) were associated with 91.3% of mcr-positive isolates. The mcr-positive pathogens included twenty Escherichia spp., five Shigella flexneri, five Citrobacter spp., two Klebsiella pneumoniae, and three Pseudomonas parafulva. The mcr-genes appeared to be significantly associated with phenotypic colistin resistance phenomena (p = 0.000), with 100% colistin-resistant isolates showing MDR phenomena. The age and sex of patients showed no significant association with detected mcr variants. Overall, mcr-associated colistin-resistant bacteria have emerged in Bangladesh, which warrants further research to determine their spread and instigate activities to reduce resistance.
Collapse
Affiliation(s)
- Shafiuzzaman Sarker
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Reeashat Muhit Neeloy
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Marnusa Binte Habib
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Umme Laila Urmi
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mamun Al Asad
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | | | | | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Li J, Han N, Li Y, Zhao F, Xiong W, Zeng Z. The synergistic antibacterial activity and mechanism of colistin-oxethazaine combination against gram-negative pathogens. Front Pharmacol 2024; 15:1363441. [PMID: 38576480 PMCID: PMC10991713 DOI: 10.3389/fphar.2024.1363441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Background The rapid spread of bacteria with plasmid-mediated resistance to antibiotics poses a serious threat to public health. The search for potential compounds that can increase the antibacterial activity of existing antibiotics is a promising strategy for addressing this issue. Methods Synergistic activity of the FDA-approved agent oxethazine combined with colistin was investigated in vitro using checkerboard assays and time-kill curves. The synergistic mechanisms of their combination of oxethazine and colistin was explored by fluorescent dye, scanning electron microscopy (SEM) and LC-MS/MS. The synergistic efficacy was evaluated in vivo by the Galleria mellonella and mouse sepsis models. Results In this study, we found that oxethazine could effectively enhance the antibacterial activity of colistin against both mcr-positive and -negative pathogens, and mechanistic assays revealed that oxethazine could improve the ability of colistin to destruct bacterial outer membrane and cytoplasmic membrane permeability. In addition, their combination triggered the accumulation of reactive oxygen species causing additional damage to the membrane structure resulting in cell death. Furthermore, oxethazine significantly enhanced the therapeutic efficacy of colistin in two animal models. Conclusion These results suggested that oxethazine, as a promising antibiotic adjuvant, can effectively enhance colistin activity, providing a potential strategy for treating multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Mei L, Song Y, Liu X, Li K, Guo X, Liu L, Liu Y, Kozlakidis Z, Cheong IH, Wang D, Wei Q. Characterization and Implications of IncP-2A Plasmid pMAS152 Harboring Multidrug Resistance Genes in Extensively Drug-Resistant Pseudomonas aeruginosa. Microorganisms 2024; 12:562. [PMID: 38543613 PMCID: PMC10973999 DOI: 10.3390/microorganisms12030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
Bacterial antimicrobial resistance (AMR) poses a significant global public health challenge. The escalation of AMR is primarily attributed to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), often facilitated by plasmids. This underscores the critical need for a comprehensive understanding of the resistance mechanisms and transmission dynamics of these plasmids. In this study, we utilized in vitro drug sensitivity testing, conjugation transfer assays, and whole-genome sequencing to investigate the resistance mechanism of an extensively drug-resistant (XDR) Pseudomonas aeruginosa clinical isolate, MAS152. We specifically focused on analyzing the drug-resistant plasmid pMAS152 it harbors and its potential for widespread dissemination. Bioinformatics analysis revealed that MAS152 carries a distinct IncpP-2A plasmid, pMAS152, characterized by a 44.8 kb multidrug resistance (MDR) region. This region houses a 16S rRNA methyltransferase (16S-RMTase) gene, rmtB, conferring high-level resistance to aminoglycoside antibiotics. Notably, this region also contains an extended-spectrum β-Lactamase (ESBL) gene, blaPER-1, and an efflux pump operon, tmexCD-oprJ, which mediate resistance to β-Lactams and quinolone antibiotics, respectively. Such a combination of ARGs, unprecedented in reported plasmids, could significantly undermine the effectiveness of first-line antibiotics in treating P. aeruginosa infections. Investigation into the genetic environment of the MDR region suggests that Tn2 and IS91 elements may be instrumental in the horizontal transfer of rmtB. Additionally, a complex Class I integron with an ISCR1 structure, along with TnAs1, seems to facilitate the horizontal transfer of blaPER-1. The conjugation transfer assay, coupled with the annotation of conjugation-related genes and phylogenetic analysis, indicates that the plasmid pMAS152 functions as a conjugative plasmid, with other genus Pseudomonas species as potential hosts. Our findings provide vital insights into the resistance mechanisms and transmission potential of the XDR P. aeruginosa isolate MAS152, underlining the urgent need for novel strategies to combat the spread of AMR. This study highlights the complex interplay of genetic elements contributing to antibiotic resistance and underscores the importance of continuous surveillance of emerging ARGs in clinical isolates.
Collapse
Affiliation(s)
- Li Mei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| | - Yang Song
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Xiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (K.L.)
| | - Kun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (K.L.)
| | - Xu Guo
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Li Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| | - Yang Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, 69007 Lyon, France;
| | - Io Hong Cheong
- State Key Laboratory of Systems Medicine for Cancer, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Duochun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (K.L.)
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| |
Collapse
|
21
|
Chopjitt P, Boueroy P, Morita M, Iida T, Akeda Y, Hamada S, Kerdsin A. Genetic characterization of multidrug-resistant Escherichia coli harboring colistin-resistant gene isolated from food animals in food supply chain. Front Cell Infect Microbiol 2024; 14:1289134. [PMID: 38384304 PMCID: PMC10880773 DOI: 10.3389/fcimb.2024.1289134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Colistin is widely used for the prophylaxis and treatment of infectious disease in humans and livestock. However, the global food chain may actively promote the dissemination of colistin-resistant bacteria in the world. Mobile colistin-resistant (mcr) genes have spread globally, in both communities and hospitals. This study sought to genomically characterize mcr-mediated colistin resistance in 16 Escherichia coli strains isolated from retail meat samples using whole genome sequencing with short-read and long-read platforms. To assess colistin resistance and the transferability of mcr genes, antimicrobial susceptibility testing and conjugation experiments were conducted. Among the 16 isolates, 11 contained mcr-1, whereas three carried mcr-3 and two contained mcr-1 and mcr-3. All isolates had minimum inhibitory concentration (MIC) for colistin in the range 1-64 μg/mL. Notably, 15 out of the 16 isolates demonstrated successful transfer of mcr genes via conjugation, indicative of their presence on plasmids. In contrast, the KK3 strain did not exhibit such transferability. Replicon types of mcr-1-containing plasmids included IncI2 and IncX4, while IncFIB, IncFII, and IncP1 contained mcr-3. Another single strain carried mcr-1.1 on IncX4 and mcr-3.5 on IncP1. Notably, one isolate contained mcr-1.1 located on a chromosome and carrying mcr-3.1 on the IncFIB plasmid. The chromosomal location of the mcr gene may ensure a steady spread of resistance in the absence of selective pressure. Retail meat products may act as critical reservoirs of plasmid-mediated colistin resistance that has been transmitted to humans.
Collapse
Affiliation(s)
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sihigeyuki Hamada
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| |
Collapse
|