1
|
Miller TD, Kennard C, Gowland PA, Antoniades CA, Rosenthal CR. Differential effects of bilateral hippocampal CA3 damage on the implicit learning and recognition of complex event sequences. Cogn Neurosci 2024; 15:27-55. [PMID: 38384107 PMCID: PMC11147457 DOI: 10.1080/17588928.2024.2315818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Learning regularities in the environment is a fundament of human cognition, which is supported by a network of brain regions that include the hippocampus. In two experiments, we assessed the effects of selective bilateral damage to human hippocampal subregion CA3, which was associated with autobiographical episodic amnesia extending ~50 years prior to the damage, on the ability to recognize complex, deterministic event sequences presented either in a spatial or a non-spatial configuration. In contrast to findings from related paradigms, modalities, and homologue species, hippocampal damage did not preclude recognition memory for an event sequence studied and tested at four spatial locations, whereas recognition memory for an event sequence presented at a single location was at chance. In two additional experiments, recognition memory for novel single-items was intact, whereas the ability to recognize novel single-items in a different location from that presented at study was at chance. The results are at variance with a general role of the hippocampus in the learning and recognition of complex event sequences based on non-adjacent spatial and temporal dependencies. We discuss the impact of the results on established theoretical accounts of the hippocampal contributions to implicit sequence learning and episodic memory.
Collapse
Affiliation(s)
- Thomas D. Miller
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Christopher Kennard
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Clive R. Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Mock N, Balzer C, Gutbrod K, De Haan B, Jäncke L, Ettlin T, Trost W. Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction. Cortex 2022; 153:178-193. [DOI: 10.1016/j.cortex.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
3
|
Hemmings HC, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019; 40:464-481. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Significant progress has been made in the 21st century towards a comprehensive understanding of the mechanisms of action of general anesthetics, coincident with progress in structural biology and molecular, cellular, and systems neuroscience. This review summarizes important new findings that include target identification through structural determination of anesthetic binding sites, details of receptors and ion channels involved in neurotransmission, and the critical roles of neuronal networks in anesthetic effects on memory and consciousness. These recent developments provide a comprehensive basis for conceptualizing pharmacological control of amnesia, unconsciousness, and immobility.
Collapse
Affiliation(s)
- Hugh C Hemmings
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Paul M Riegelhaupt
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Ken Solt
- Department of Anaesthesia, Harvard Medical School, GRB 444, 55 Fruit St., Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Beverley A Orser
- Departments of Anesthesia and Physiology, Room 3318 Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter A Goldstein
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
4
|
Soto D, Sheikh UA, Rosenthal CR. A Novel Framework for Unconscious Processing. Trends Cogn Sci 2019; 23:372-376. [PMID: 30981588 DOI: 10.1016/j.tics.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/22/2023]
Abstract
Understanding the distinction between conscious and unconscious cognition remains a priority in psychology and neuroscience. A comprehensive neurocognitive account of conscious awareness will not be possible without a sound framework to isolate and understand unconscious information processing. Here, we provide a brain-based framework that allows the identification of unconscious processes, even with null effects on behaviour.
Collapse
Affiliation(s)
- David Soto
- Basque Center on Cognition, Brain and Language, San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Usman Ayub Sheikh
- Basque Center on Cognition, Brain and Language, San Sebastián, Spain
| | - Clive R Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Cariaga-Martinez A, Gutiérrez K, Alelú-Paz R. Rethinking schizophrenia through the lens of evolution: shedding light on the enigma. RESEARCH IDEAS AND OUTCOMES 2018. [DOI: 10.3897/rio.4.e28459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia refers to a complex psychiatric illness characterized by the heterogenic presence of positive, negative and cognitive symptoms occurring in all human societies. The fact that the disorder lacks a unifying neuropathology, presents a decreased fecundity of the affected individuals and has a cross-culturally stable incidence rate, makes it necessary for an evolutionary explanation that fully accounts for the preservation of “schizophrenic genes” in the global human genepool, explaining the potential sex differences and the heterogeneous cognitive symptomatology of the disorder and is consistent with the neuropsychological, developmental and evolutionary findings regarding the human brain. Here we proposed a new evolutionary framework for schizophrenia that is consistent with findings presented in different dimensions, considering the disorder as a form of brain functioning that allows us to adapt to the environment and, ultimately, maintain the survival of the species. We focus on the epigenetic regulation of thalamic interneurons as a major player involved in the development of the clinical picture characteristic of schizophrenia.
Collapse
|
6
|
Persuh M, LaRock E, Berger J. Working Memory and Consciousness: The Current State of Play. Front Hum Neurosci 2018; 12:78. [PMID: 29551967 PMCID: PMC5840147 DOI: 10.3389/fnhum.2018.00078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/12/2018] [Indexed: 12/24/2022] Open
Abstract
Working memory (WM), an important posit in cognitive science, allows one to temporarily store and manipulate information in the service of ongoing tasks. WM has been traditionally classified as an explicit memory system-that is, as operating on and maintaining only consciously perceived information. Recently, however, several studies have questioned this assumption, purporting to provide evidence for unconscious WM. In this article, we focus on visual working memory (VWM) and critically examine these studies as well as studies of unconscious perception that seem to provide indirect evidence for unconscious WM. Our analysis indicates that current evidence does not support an unconscious WM store, though we offer independent reasons to think that WM may operate on unconsciously perceived information.
Collapse
Affiliation(s)
- Marjan Persuh
- Department of Social Sciences, Human Services and Criminal Justice, Borough of Manhattan Community College, City University of New York, New York, NY, United States
| | - Eric LaRock
- Department of Philosophy, 751 Mathematics and Science Center, Oakland University, Rochester, MI, United States
| | - Jacob Berger
- Department of English and Philosophy, Idaho State University, Pocatello, ID, United States
| |
Collapse
|
7
|
Ruch S, Herbert E, Henke K. Subliminally and Supraliminally Acquired Long-Term Memories Jointly Bias Delayed Decisions. Front Psychol 2017; 8:1542. [PMID: 28955268 PMCID: PMC5600932 DOI: 10.3389/fpsyg.2017.01542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 08/24/2017] [Indexed: 11/13/2022] Open
Abstract
Common wisdom and scientific evidence suggest that good decisions require conscious deliberation. But growing evidence demonstrates that not only conscious but also unconscious thoughts influence decision-making. Here, we hypothesize that both consciously and unconsciously acquired memories guide decisions. Our experiment measured the influence of subliminally and supraliminally presented information on delayed (30-40 min) decision-making. Participants were presented with subliminal pairs of faces and written occupations for unconscious encoding. Following a delay of 20 min, participants consciously (re-)encoded the same faces now presented supraliminally along with either the same written occupations, occupations congruous to the subliminally presented occupations (same wage-category), or incongruous occupations (opposite wage-category). To measure decision-making, participants viewed the same faces again (with occupations absent) and decided on the putative income of each person: low, low-average, high-average, or high. Participants were encouraged to decide spontaneously and intuitively. Hence, the decision task was an implicit or indirect test of relational memory. If conscious thought alone guided decisions (= H0), supraliminal information should determine decision outcomes independently of the encoded subliminal information. This was, however, not the case. Instead, both unconsciously and consciously encoded memories influenced decisions: identical unconscious and conscious memories exerted the strongest bias on income decisions, while both incongruous and congruous (i.e., non-identical) subliminally and supraliminally formed memories canceled each other out leaving no bias on decisions. Importantly, the increased decision bias following the formation of identical unconscious and conscious memories and the reduced decision bias following to the formation of non-identical memories were determined relative to a control condition, where conscious memory formation alone could influence decisions. In view of the much weaker representational strength of subliminally vs. supraliminally formed memories, their long-lasting impact on decision-making is noteworthy.
Collapse
Affiliation(s)
- Simon Ruch
- Department of Psychology, University of BernBern, Switzerland.,Center for Cognition, Learning and Memory, University of BernBern, Switzerland
| | - Elizabeth Herbert
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristol, United Kingdom
| | - Katharina Henke
- Department of Psychology, University of BernBern, Switzerland.,Center for Cognition, Learning and Memory, University of BernBern, Switzerland
| |
Collapse
|
8
|
Soto D. How Do We Keep Information ‘Online’? Trends Cogn Sci 2017; 21:63-65. [DOI: 10.1016/j.tics.2016.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
|