1
|
Hardy M, Chen Y, Baram TZ, Justice NJ. Targeting corticotropin-releasing hormone receptor type 1 (Crhr1) neurons: validating the specificity of a novel transgenic Crhr1-FlpO mouse. Brain Struct Funct 2024; 230:12. [PMID: 39692887 PMCID: PMC11655595 DOI: 10.1007/s00429-024-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 12/19/2024]
Abstract
Corticotropin-releasing hormone (CRH) signaling through its cognate receptors, CRHR1 and CRHR2, contributes to diverse stress-related functions in the mammalian brain. Whereas CRHR2 is predominantly expressed in choroid plexus and blood vessels, CRHR1 is abundantly expressed in neurons in discrete brain regions, including the neocortex, hippocampus and nucleus accumbens. Activation of CRHR1 influences motivated behaviors, emotional states, and learning and memory. However, it is unknown whether alterations in CRHR1 signaling contribute to aberrant motivated behaviors observed, for example, in stressful contexts. These questions require tools to manipulate CRHR1 selectively. Here we describe and validate a novel Crhr1-FlpO mouse. Using bacterial artificial chromosome (BAC) transgenesis, we engineered a transgenic mouse that expresses FlpO recombinase in CRHR1-expressing cells. We used two independent methods to assess the specificity of FlpO to CRHR1-expressing cells. First, we injected Crhr1-FlpO mice with Flp-dependent viruses expressing fluorescent reporter molecules. Additionally, we crossed the Crhr1-FlpO mouse with a transgenic Flp-dependent reporter mouse. CRHR1 and reporter molecules were identified using immunocytochemistry and visualized via confocal microscopy in several brain regions in which CRHR1 expression and function is established. Expression of Flp-dependent viral constructs was highly specific to CRHR1-expressing cells in all regions examined (over 90% co-localization). In accord, robust and specific expression of the Flp-dependent transgenic reporter was observed in a reporter mouse, recapitulating endogenous CRHR1 expression. The Crhr1-FlpO mouse enables selective genetic access to CRHR1-expressing cells within the mouse brain. When combined with Cre-lox or site-specific recombinases, the mouse facilitates intersectional manipulations of CRHR1-expressing neurons.
Collapse
Affiliation(s)
- Mason Hardy
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Yuncai Chen
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, USA.
| | - Nicholas J Justice
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, USA
| |
Collapse
|
2
|
Dong X, Liu H, Huang Z, Liu K, Zhang R, Sun S, Feng B, Guo H, Feng S. Night shift work, poor sleep quality and unhealthy sleep behaviors are positively associated with the risk of epilepsy disease. BMC Public Health 2024; 24:3337. [PMID: 39614183 DOI: 10.1186/s12889-024-20885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Night shift work and poor sleep quality are gradually becoming more prevalent in modern society. Nevertheless, there have been limited studies assessing the association between night shift work, sleep behaviors, and risk of epilepsy. The aim of our study was to ascertain whether a positive association exists between night shift work, sleep quality, sleep behaviors, and risk of epilepsy. METHODS Our study included a total of over 270,000 individuals with or without epilepsy from the UK Biobank, followed up over a period of 13.5 years. Information on current night shift work and major sleep behaviors was also obtained. We used Cox proportional hazard models to assess the association between night shift work, sleep quality, sleep behaviors, and the risk of epilepsy after adjusting for multiple variables. RESULTS Night shift work was positively associated with a higher risk of epilepsy (P for trend = 0.059). There was a gradual increase in epilepsy risk from 'never/rarely' to 'usual/permanent' night shifts, with 'usual/permanent' night shifts work presenting the highest risk [hazard ratio (HR) 1.29, 95% confidence interval (CI) 1.01-1.65). Additionally, there was a significant association between sleep quality and risk of epilepsy (P < 0.001). Among the five major sleep behaviors, sleep duration (< 7 or > 8 h/day), frequent insomnia, and daytime sleepiness were significantly associated with a higher risk of epilepsy (HR 1.19, 95% CI 1.11-1.28; HR 1.19, 95% CI 1.09-1.30; HR 1.46, 95% CI 1.24-1.72, respectively). Furthermore, sleep duration exhibited a 'U-shaped' association with epilepsy risk. Nevertheless, no significant association was found between sleep chronotype and snoring and the risk of incident epilepsy (HR 1.04, 95% CI 0.96-1.12; HR 0.96, 95% CI 0.89-1.04). CONCLUSIONS 'Usual/permanent' night shifts and poor sleep quality were positively associated with a greater risk of incident epilepsy. Major sleep behaviors, including unhealthy sleep duration (< 7 or > 8 h/day), frequent insomnia, and daytime sleepiness, also tended to increase the risk of epilepsy.
Collapse
Affiliation(s)
- Xushuai Dong
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Huiling Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Zhiheng Huang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Kaidi Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Shicheng Sun
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Bin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China.
| | - Shaobin Feng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road No. 324, Jinan, 250021, China.
| |
Collapse
|
3
|
Portugalov A, Akirav I. FAAH Inhibition Reverses Depressive-like Behavior and Sex-Specific Neuroinflammatory Alterations Induced by Early Life Stress. Cells 2024; 13:1881. [PMID: 39594629 PMCID: PMC11593135 DOI: 10.3390/cells13221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Early life stress (ELS) increases predisposition to major depressive disorder (MDD), with neuroinflammation playing a crucial role. This study investigated the long-term effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on ELS-induced depressive-like behavior and messenger RNA (mRNA) of pro-inflammatory cytokines in the medial prefrontal cortex (mPFC) and CA1 regions. We also assessed whether these gene expression alterations were present at the onset of URB597 treatment during late adolescence. ELS induced a depressive-like phenotype in adult male and female rats, which was reversed by URB597. In the mPFC, ELS downregulated nuclear factor kappa B1 (nfκb1) in both sexes, while URB597 normalized this expression exclusively in males. In females, ELS downregulated interleukin (il) 6 and tumor necrosis factor alpha (tnfα) but upregulated il1β and corticotropin-releasing factor (crf); URB597 normalized il6, il1β, and crf. In the CA1, ELS downregulated il1β and tnfα in males and upregulated il1β expression in females, which was reversed by URB597. Some of these effects began in late adolescence, including mPFC-nfκb1 expression in both sexes, mPFC-il6 and mPFC-il1β in females, CA1-il1β and CA1-tnfα in males, and CA1-il1β in females. These findings highlight URB597 as a therapeutic approach for reversing ELS-induced depressive-like behavior by associating with changes in the gene expression of neuroinflammatory cytokines, with notable sex differences.
Collapse
Affiliation(s)
- Anna Portugalov
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
4
|
Catalán-Aguilar J, Cano-López I, Tormos-Pons P, Lozano-García A, Hampel KG, Hidalgo V, Salvador A, Villanueva V, González-Bono E. Development and validation of the Epilepsy Perceived Stress Inventory for Adults (EPSI-A): A pilot study. Epilepsy Behav 2024; 161:110142. [PMID: 39536366 DOI: 10.1016/j.yebeh.2024.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Stress is one of the most common trigger factors for epileptic seizures and is strongly related to clinical and emotional variables. Despite its influence in the course of the disease, there is an absence of instruments for measuring perceived stress in people with drug-resistant epilepsy. Therefore, this study develops and validates the Epilepsy Perceived Stress Inventory for Adults (EPSI-A), a self-report inventory in Spanish designed to quantify perceived chronic stress in this population. METHOD The sample consisted of 236 patients with drug-resistant epilepsy who underwent a neuropsychological assessment in which anxiety, depression, and quality of life were explored. In addition, from 125 patients in the sample, 9 measures of salivary cortisol were collected during the evaluation. RESULTS The EPSI-A consisted of 15 items, with higher scores indicating higher perceived stress. The exploratory factor analysis showed a four-factor solution: epilepsy concerns (5 items); impact on daily performance (4 items); social consequences (3 items); and epilepsy severity (3 items). These factors explained 63.3 % of the total variance. Internal consistency reliability measured with McDonald's omega and Cronbach's alpha coefficients was satisfactory, with values ≥ 0.78 (except for epilepsy severity with values of 0.59 and 0.58, respectively). Construct validity was demonstrated by its correlation with several psychological scales and clinical variables. CONCLUSIONS The results showed that the EPSI-A is a reliable and valid tool for assessing perceived chronic stress in people with epilepsy. Its conciseness, rapid administration time, and specificity make it an appropriate instrument for this population.
Collapse
Affiliation(s)
- Judit Catalán-Aguilar
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Irene Cano-López
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain.
| | - Paula Tormos-Pons
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Alejandro Lozano-García
- Faculty of Health Sciences, Valencian International University, Valencia, Spain; Department of Psychology, Universidad Europea de Valencia, Valencia, Spain
| | - Kevin G Hampel
- Refractory Epilepsy Unit, Neurology Service, Member of ERN EPICARE, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Vanesa Hidalgo
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain; Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain
| | - Alicia Salvador
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Neurology Service, Member of ERN EPICARE, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esperanza González-Bono
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| |
Collapse
|
5
|
Kim SH, Lee B, Lee SM, Kim Y. Restoring social deficits in IRSp53-deleted mice: chemogenetic inhibition of ventral dentate gyrus Emx1-expressing cells. Transl Psychiatry 2024; 14:425. [PMID: 39375329 PMCID: PMC11458854 DOI: 10.1038/s41398-024-03104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders, and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion is expected to be of great help in the treatment of psychiatric problems. In this study, we performed chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing clues for new treatment methods for psychiatric disorders accompanied by social deficits.
Collapse
Affiliation(s)
- Su Hyun Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Bomee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Seong Mi Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Yangsik Kim
- Department of Psychiatry, Inha University Hospital, College of Medicine, Inha University, Incheon, South Korea.
| |
Collapse
|
6
|
Wang Y, Wang F, He R, Wang Y, Liu Y, Jin X. Short-term effects of ambient nitrogen dioxide on medical emergency calls for epileptic seizures: A time-series study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2133-2141. [PMID: 39073612 DOI: 10.1007/s00484-024-02736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Short-term exposure to air pollution has previously been studied in relation to certain neurological disorders, but there is still a lack of convincing data linking air pollution to epileptic seizures. The study's goal was to investigate how exposure to ambient nitrogen dioxide (NO2) affected the number of patients seeking assistance at the Wuhan Emergency Medical Center due to epileptic seizures. We gathered data on medical emergency calls (MECs), daily ambient air pollution concentrations (SO2, NO2, PM2.5, PM10, CO, and O3), and meteorological variables in Wuhan, China, spanning from January 1, 2017, to November 30, 2019. To investigate the potential influence of ambient nitrogen dioxide on MECs for epileptic seizures, we carried out a time-series investigation using the general additive model (GAM). Additionally, analyses stratified by season, age, and gender were performed. A total of 8989 records of MECs for epileptic seizures were enrolled in our study during the period. Statistical analysis indicates that a rise of 10 μg/m3 in NO2 concentration is linked to a 0.17% increase in daily MECs for epileptic seizures (95% confidence interval [CI]: 0.02%, 0.32%). Furthermore, people aged 14-59 years were more susceptible(2.25%, P < 0.05). The short-term effects of NO2 exposure on daily MECs for epileptic seizures were stronger in warm seasons than in cool seasons (0.55% vs. -0.10%, P < 0.0001). Our findings suggests that short-term exposure to ambient NO2 was positively correlated with daily MECs for epileptic seizures in Wuhan, China. Additionally, we observed that these associations were stronger in patients aged above 14 but under 60 years and the warmer seasons (from April to September).
Collapse
Affiliation(s)
- Yijie Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Fei Wang
- WuHan Emergency Centre, 288 Machang Road, Wuhan, 430022, Hubei, China
| | - Rong He
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yiming Wang
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
7
|
Speranza L, Filiz KD, Lippiello P, Ferraro MG, Pascarella S, Miniaci MC, Volpicelli F. Enduring Neurobiological Consequences of Early-Life Stress: Insights from Rodent Behavioral Paradigms. Biomedicines 2024; 12:1978. [PMID: 39335492 PMCID: PMC11429222 DOI: 10.3390/biomedicines12091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Stress profoundly affects physical and mental health, particularly when experienced early in life. Early-life stress (ELS) encompasses adverse childhood experiences such as abuse, neglect, violence, or chronic poverty. These stressors can induce long-lasting changes in brain structure and function, impacting areas involved in emotion regulation, cognition, and stress response. Consequently, individuals exposed to high levels of ELS are at an increased risk for mental health disorders like depression, anxiety, and post-traumatic stress disorders, as well as physical health issues, including metabolic disorders, cardiovascular disease, and cancer. This review explores the biological and psychological consequences of early-life adversity paradigms in rodents, such as maternal separation or deprivation and limited bedding or nesting. The study of these experimental models have revealed that the organism's response to ELS is complex, involving genetic and epigenetic mechanisms, and is associated with the dysregulation of physiological systems like the nervous, neuroendocrine, and immune systems, in a sex-dependent fashion. Understanding the impact of ELS is crucial for developing effective interventions and preventive strategies in humans exposed to stressful or traumatic experiences in childhood.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Kardelen Dalim Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Silvia Pascarella
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| |
Collapse
|
8
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
9
|
Bian X, Yang W, Lin J, Jiang B, Shao X. Hypothalamic-Pituitary-Adrenal Axis and Epilepsy. J Clin Neurol 2024; 20:131-139. [PMID: 38330420 PMCID: PMC10921057 DOI: 10.3988/jcn.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024] Open
Abstract
Epilepsy is a recurrent, transient seizure disorder of the nervous system that affects the intellectual development, life and work, and psychological health of patients. People with epilepsy worldwide experience great suffering. Stressful stimuli such as infection, mental stress, and sleep deprivation are important triggers of epilepsy, and chronic stressful stimuli can lead to frequent seizures and comorbidities. The hypothalamic-pituitary-adrenal (HPA) axis is the most important system involved in the body's stress response, and dysfunction thereof is thought to be associated with core epilepsy symptoms and related psychopathology. This article explores the intrinsic relationships of corticotropin-releasing hormone, adrenocorticotropic hormone, and glucocorticoids with epilepsy in order to reveal the role of the HPA axis in the pathogenesis of epilepsy. We hope that this information will yield future possible directions and ideas for fully understanding the pathogenesis of epilepsy and developing antiepileptic drugs.
Collapse
Affiliation(s)
- Xueying Bian
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Wenxian Yang
- Department of Pediatrics, Yiwu Central Hospital, Yiwu, China
| | - Jiannan Lin
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Biao Jiang
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaoli Shao
- Department of Pediatrics, Shaoxing Peoples' Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
10
|
Page CE, Coutellier L. Kv3.1 Voltage-gated Potassium Channels Modulate Anxiety-like Behaviors in Female Mice. Neuroscience 2024; 538:68-79. [PMID: 38157976 PMCID: PMC10872248 DOI: 10.1016/j.neuroscience.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Inhibitory parvalbumin (PV) interneurons regulate the activity of neural circuits within brain regions involved in emotional processing, including the prefrontal cortex (PFC). Recently, rodent studies have implicated a stress-induced increase in prefrontal PV neuron activity in the development of anxiety behaviors, particularly in females. However, the mechanisms through which stress increases activity of prefrontal PV neurons remain unknown. The fast-spiking properties of PV neurons in part come from their expression of voltage-gated potassium (K+) ion channels, particularly Kv3.1 channels. We therefore suggest that stress-induced changes in Kv3.1 channels contribute to the appearance of an anxious phenotype following chronic stress in female mice. Here, we first showed that unpredictable chronic mild stress (UCMS) increased expression of Kv3.1 channels on prefrontal PV neurons in female mice, a potential mechanism underlying the previously observed hyperactivity of these neurons after stress. We then showed that female mice deficient in Kv3.1 channels displayed resilience to UCMS-induced anxiety-like behaviors. Altogether, our findings implicate Kv3.1 channels in the development of anxiety-like behaviors following UCMS, particularly in females, providing a novel mechanism to understand sex-specific vulnerabilities to stress-induced psychopathologies.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Laurence Coutellier
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States; Department of Psychology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
11
|
Jhaveri DJ, McGonigal A, Becker C, Benoliel JJ, Nandam LS, Soncin L, Kotwas I, Bernard C, Bartolomei F. Stress and Epilepsy: Towards Understanding of Neurobiological Mechanisms for Better Management. eNeuro 2023; 10:ENEURO.0200-23.2023. [PMID: 37923391 PMCID: PMC10626502 DOI: 10.1523/eneuro.0200-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Stress has been identified as a major contributor to human disease and is postulated to play a substantial role in epileptogenesis. In a significant proportion of individuals with epilepsy, sensitivity to stressful events contributes to dynamic symptomatic burden, notably seizure occurrence and frequency, and presence and severity of psychiatric comorbidities [anxiety, depression, posttraumatic stress disorder (PTSD)]. Here, we review this complex relationship between stress and epilepsy using clinical data and highlight key neurobiological mechanisms including the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, altered neuroplasticity within limbic system structures, and alterations in neurochemical pathways such as brain-derived neurotrophic factor (BNDF) linking epilepsy and stress. We discuss current clinical management approaches of stress that help optimize seizure control and prevention, as well as psychiatric comorbidities associated with epilepsy. We propose that various shared mechanisms of stress and epilepsy present multiple avenues for the development of new symptomatic and preventative treatments, including disease modifying therapies aimed at reducing epileptogenesis. This would require close collaborations between clinicians and basic scientists to integrate data across multiple scales, from genetics to systems biology, from clinical observations to fundamental mechanistic insights. In future, advances in machine learning approaches and neuromodulation strategies will enable personalized and targeted interventions to manage and ultimately treat stress-related epileptogenesis.
Collapse
Affiliation(s)
- Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Aileen McGonigal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Epilepsy Unit, Department of Neurosciences, Mater Hospital, Brisbane, QLD 4101, Australia
| | - Christel Becker
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
| | - Jean-Jacques Benoliel
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
- Site Pitié-Salpêtrière, Service de Biochimie Endocrinienne et Oncologie, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, 75651, France
| | - L Sanjay Nandam
- Turner Inst for Brain & Mental Health, Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Melbourne, 3800, Australia
| | - Lisa Soncin
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Laboratoire d'Anthropologie et de Psychologie Cliniques, Cognitives et Sociales, Côte d'Azur University, Nice, 06300, France
| | - Iliana Kotwas
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| | - Christophe Bernard
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| |
Collapse
|
12
|
Fazlelahi Z, Kaboutari J, Zendehdel M, Panahi N. Effects of Intracerebroventricular Injection of the Steroidal and Non-Steroidal Anti-Inflammatory Drugs on the Seizures during the Estrous Cycle in Rat. ARCHIVES OF RAZI INSTITUTE 2023; 78:807-813. [PMID: 38028823 PMCID: PMC10657946 DOI: 10.22092/ari.2022.360115.2553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2023]
Abstract
Because of the mutual relationship between neural inflammation and seizure, this study aimed to determine the effects of intracerebroventricular (ICV) injection of the steroidal and non-steroidal anti-inflammatory drugs on pentylenetetrazol (PTZ)-induced seizures during the estrous cycle in rats. A total of 105 adult female Wistar rats were selected and divided into seven groups, including the control (saline), ketorolac tris salt (7.5, 15, and 30 µg), and methylprednisolone acetate (0.15, 0.3, and 0.6 µg), each with four subgroups (proestrus, estrus, metestrus, and diestrus) and three replicates (n=5). After a week of acclimatization, the estrous phase determination and synchronization were performed. Acute epilepsy was inspired by the intraperitoneal injection of 80 mg/kg of PTZ 30 min after the ICV injection of ketorolac and methylprednisolone acetate. The initiation time of myoclonic seizures (ITMS), the initiation time of tonic-clonic seizures (ITTS), seizure duration (SD), and mortality rate (MR) were measured for 30 min. Data were shown as mean±SD and analyzed using One-way ANOVA followed by Tukey-Kramer multiple comparison post hoc test (P<0.05). According to the results, ketorolac (15 and 30 µg) and methylprednisolone acetate (0.3 and 0.6 µg) significantly increased the ITTS and ITMS but decreased SD during the estrous cycle, compared to the control (P<0.05). Moreover, MR and SD were significantly decreased by ketorolac (7.5, 15, and 30 µg) and methylprednisolone (0.3 and 0.6 µg), compared to the control during the estrous cycle (P<0.05). Therefore, it seems that both ketorolac and methylprednisolone possess dose-dependent anticonvulsant effects that may decrease neural inflammation.
Collapse
Affiliation(s)
- Z Fazlelahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - J Kaboutari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - M Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran
| | - N Panahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Dezsi G, Ozturk E, Harris G, Paul C, O'Brien TJ, Jones NC. Metyrapone abolishes spike-wave discharge seizures in genetic absence epilepsy rats from Strasbourg by reducing stress hormones. Epilepsia 2023. [PMID: 36916834 DOI: 10.1111/epi.17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Stress is one of the most commonly reported triggers for seizures in patients with epilepsy, although the mechanisms that mediate this effect are not established. The clinical evidence supporting this is derived from patients' subjective experience of stress, and how this influences their own seizures. Animal models can be used to explore this phenomenon in controlled environments, free from subjective bias. Here, we used genetic absence epilepsy rats from Strasbourg (GAERS), a genetic rat model of absence epilepsy, to explore the influence of stress and stress hormones on spontaneous seizures. METHODS Adult male GAERS (n = 38) and nonepileptic control (NEC) rats (n = 4) were used. First, rats were subjected to 30-min restraint stress to assess hypothalamic-pituitary-adrenal axis function. Next, we assessed the effects of 30-min noise stress, and cage tilt stress, on spike-wave discharge seizures in GAERS. We then performed pharmacological experiments to assess the direct effects of stress hormones on seizures, including corticosterone, metyrapone, and deoxycorticosterone. RESULTS GAERS exhibited elevated baseline corticosterone levels, compared to NEC rats. Noise stress and cage tilt stress significantly enhanced seizure incidence (p < .05), but only during stress periods. Exogenous corticosterone administration also significantly increased seizure occurrence (p < .05). Metyrapone, an inhibitor of corticosterone synthesis, completely abolished seizures in GAERS, and seizures remained suppressed for >2 h. However, deoxycorticosterone, the precursor of corticosterone, increased seizures. SIGNIFICANCE These results suggest that GAERS exhibit elevations in stress hormones, and this may contribute to seizures. Inhibiting corticosterone synthesis with metyrapone prevents seizures in GAERS, and shows potential for repurposing this drug as a future antiseizure medication.
Collapse
Affiliation(s)
- Gabi Dezsi
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ezgi Ozturk
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgia Harris
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Cornelius Paul
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity. Mol Psychiatry 2023; 28:269-283. [PMID: 35705633 DOI: 10.1038/s41380-022-01658-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Lifelong indices of maladaptive behavior or illness often stem from early physiological aberrations during periods of dynamic development. This is especially true when dysfunction is attributable to early life adversity (ELA), when the environment itself is unsuitable to support development of healthy behavior. Exposure to ELA is strongly associated with atypical sensitivity and responsivity to potential threats-a characteristic that could be adaptive in situations where early adversity prepares individuals for lifelong danger, but which often manifests in difficulties with emotion regulation and social relationships. By synthesizing findings from animal research, this review will consider threat sensitivity through the lenses of associated corticolimbic brain circuitry and immune mechanisms, both of which are immature early in life to maximize adaptation for protection against environmental challenges to an individual's well-being. The forces that drive differential development of corticolimbic circuits include caretaking stimuli, physiological and psychological stressors, and sex, which influences developmental trajectories. These same forces direct developmental processes of the immune system, which bidirectionally communicates with sensory systems and emotion regulation circuits within the brain. Inflammatory signals offer a further force influencing the timing and nature of corticolimbic plasticity, while also regulating sensitivity to future threats from the environment (i.e., injury or pathogens). The early development of these systems programs threat sensitivity through juvenility and adolescence, carving paths for probable function throughout adulthood. To strategize prevention or management of maladaptive threat sensitivity in ELA-exposed populations, it is necessary to fully understand these early points of divergence.
Collapse
|
15
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
16
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Rosen JB, Schulkin J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front Syst Neurosci 2022; 16:727054. [PMID: 35993088 PMCID: PMC9387392 DOI: 10.3389/fnsys.2022.727054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexcitability in fear circuits is suggested to be important for development of pathological anxiety and trauma from adaptive mechanisms of fear. Hyperexcitability is proposed to be due to acquired sensitization in fear circuits that progressively becomes more severe over time causing changing symptoms in early and late pathology. We use the metaphor and mechanisms of kindling to examine gains and losses in function of one excitatory and one inhibitory neuropeptide, corticotrophin releasing factor and somatostatin, respectively, to explore this sensitization hypothesis. We suggest amygdala kindling induced hyperexcitability, hyper-inhibition and loss of inhibition provide clues to mechanisms for hyperexcitability and progressive changes in function initiated by stress and trauma.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Jeffrey B. Rosen,
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy. Neuroimage 2022; 262:119551. [DOI: 10.1016/j.neuroimage.2022.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
|
19
|
Wang ZB, Qu J, Yang ZY, Liu DY, Jiang SL, Zhang Y, Yang ZQ, Mao XY, Liu ZQ. Integrated Analysis of Expression Profile and Potential Pathogenic Mechanism of Temporal Lobe Epilepsy With Hippocampal Sclerosis. Front Neurosci 2022; 16:892022. [PMID: 35784838 PMCID: PMC9243442 DOI: 10.3389/fnins.2022.892022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the potential pathogenic mechanism of temporal lobe epilepsy with hippocampal sclerosis (TLE+HS) by analyzing the expression profiles of microRNA/ mRNA/ lncRNA/ DNA methylation in brain tissues. Methods Brain tissues of six patients with TLE+HS and nine of normal temporal or parietal cortices (NTP) of patients undergoing internal decompression for traumatic brain injury (TBI) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60K. The cDNA was labeled and hybridized to the Agilent LncRNA+mRNA Human Gene Expression Microarray V3.0,4 × 180K. For methylation detection, the DNA was labeled and hybridized to the Illumina 450K Infinium Methylation BeadChip. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change >2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. BrainSpan database was used to screen for signatures that were not differentially expressed in normal human hippocampus and cortex (data from BrainSpan), but differentially expressed in TLE+HS’ hippocampus and NTP’ cortex (data from our cohort). The strategy “Guilt by association” was used to predict the prospective roles of each important hub mRNA, miRNA, or lncRNA. Results A significantly negative correlation (r < −0.5) was found between 116 pairs of microRNA/mRNA, differentially expressed in six patients with TLE+HS and nine of NTP. We examined this regulation network’s intersection with target gene prediction results and built a lncRNA-microRNA-Gene regulatory network with structural, and functional significance. Meanwhile, we found that the disorder of FGFR3, hsa-miR-486-5p, and lnc-KCNH5-1 plays a key vital role in developing TLE+HS.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuan-Yi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ding-Yang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Quan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Zhi-Quan Yang,
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- Xiao-Yuan Mao,
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- *Correspondence: Zhao-Qian Liu,
| |
Collapse
|
20
|
Prenatal glucocorticoid exposure selectively impairs neuroligin 1-dependent neurogenesis by suppressing astrocytic FGF2-neuronal FGFR1 axis. Cell Mol Life Sci 2022; 79:294. [PMID: 35562616 PMCID: PMC9106608 DOI: 10.1007/s00018-022-04313-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
Exposure to maternal stress irreversibly impairs neurogenesis of offspring by inducing life-long effects on interaction between neurons and glia under raging differentiation process, culminating in cognitive and neuropsychiatric abnormalities in adulthood. We identified that prenatal exposure to stress-responsive hormone glucocorticoid impaired neurogenesis and induced abnormal behaviors in ICR mice. Then, we used human induced pluripotent stem cell (iPSC)-derived neural stem cell (NSC) to investigate how neurogenesis deficits occur. Following glucocorticoid treatment, NSC-derived astrocytes were found to be A1-like neurotoxic astrocytes. Moreover, cortisol-treated astrocytic conditioned media (ACM) then specifically downregulated AMPA receptor-mediated glutamatergic synaptic formation and transmission in differentiating neurons, by inhibiting localization of ionotropic glutamate receptor (GluR)1/2 into synapses. We then revealed that downregulated astrocytic fibroblast growth factor 2 (FGF2) and nuclear fibroblast growth factor receptor 1 (FGFR1) of neurons are key pathogenic factors for reducing glutamatergic synaptogenesis. We further confirmed that cortisol-treated ACM specifically decreased the binding of neuronal FGFR1 to the synaptogenic NLGN1 promoter, but this was reversed by FGFR1 restoration. Upregulation of neuroligin 1, which is important in scaffolding GluR1/2 into the postsynaptic compartment, eventually normalized glutamatergic synaptogenesis and subsequent neurogenesis. Moreover, pretreatment of FGF2 elevated neuroligin 1 expression and trafficking of GluR1/2 into the postsynaptic compartment of mice exposed to prenatal corticosterone, improving spatial memory and depression/anxiety-like behaviors. In conclusion, we identified neuroligin 1 restoration by astrocytic FGF2 and its downstream neuronal nuclear FGFR1 as a critical target for preventing prenatal stress-induced dysfunction in glutamatergic synaptogenesis, which recovered both neurogenesis and hippocampal-related behaviors.
Collapse
|
21
|
Lisgaras CP, Scharfman HE. Robust chronic convulsive seizures, high frequency oscillations, and human seizure onset patterns in an intrahippocampal kainic acid model in mice. Neurobiol Dis 2022; 166:105637. [PMID: 35091040 PMCID: PMC9034729 DOI: 10.1016/j.nbd.2022.105637] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 01/21/2023] Open
Abstract
Intrahippocampal kainic acid (IHKA) has been widely implemented to simulate temporal lobe epilepsy (TLE), but evidence of robust seizures is usually limited. To resolve this problem, we slightly modified previous methods and show robust seizures are common and frequent in both male and female mice. We employed continuous wideband video-EEG monitoring from 4 recording sites to best demonstrate the seizures. We found many more convulsive seizures than most studies have reported. Mortality was low. Analysis of convulsive seizures at 2-4 and 10-12 wks post-IHKA showed a robust frequency (2-4 per day on average) and duration (typically 20-30 s) at each time. Comparison of the two timepoints showed that seizure burden became more severe in approximately 50% of the animals. We show that almost all convulsive seizures could be characterized as either low-voltage fast or hypersynchronous onset seizures, which has not been reported in a mouse model of epilepsy and is important because these seizure types are found in humans. In addition, we report that high frequency oscillations (>250 Hz) occur, resembling findings from IHKA in rats and TLE patients. Pathology in the hippocampus at the site of IHKA injection was similar to mesial temporal lobe sclerosis and reduced contralaterally. In summary, our methods produce a model of TLE in mice with robust convulsive seizures, and there is variable progression. HFOs are robust also, and seizures have onset patterns and pathology like human TLE. SIGNIFICANCE: Although the IHKA model has been widely used in mice for epilepsy research, there is variation in outcomes, with many studies showing few robust seizures long-term, especially convulsive seizures. We present an implementation of the IHKA model with frequent convulsive seizures that are robust, meaning they are >10 s and associated with complex high frequency rhythmic activity recorded from 2 hippocampal and 2 cortical sites. Seizure onset patterns usually matched the low-voltage fast and hypersynchronous seizures in TLE. Importantly, there is low mortality, and both sexes can be used. We believe our results will advance the ability to use the IHKA model of TLE in mice. The results also have important implications for our understanding of HFOs, progression, and other topics of broad interest to the epilepsy research community. Finally, the results have implications for preclinical drug screening because seizure frequency increased in approximately half of the mice after a 6 wk interval, suggesting that the typical 2 wk period for monitoring seizure frequency is insufficient.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| |
Collapse
|
22
|
Azadi A, Zendehdel M, Kaboutari J, Panahi N, Asghari A. Central Phoenixin Protective Role on Pentylenetetrazol-Induced Seizures during Various Stages of the Estrous Cycle among Rats. ARCHIVES OF RAZI INSTITUTE 2022; 77:689-695. [PMID: 36284939 PMCID: PMC9548271 DOI: 10.22092/ari.2022.357297.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 06/15/2023]
Abstract
It is known that phoenixin-14 (PNX-14) has a mediatory role in reproduction; however, there is no report on the role of the PNX-14 on epilepsy. Therefore, this study aimed to investigate the antiepileptic effects of the PNX-14 on the pentylenetetrazol (PTZ)-induced epilepsy in the stages of the estrous cycle among rats. A total of 168 adult female Wistar rats were randomly divided into seven groups, including control (intracerebroventricular injection was performed with saline), PNX-14 (5 µg), PNX-14 (10 µg), bicuculline (competitive antagonist of GABAA receptors; 5 nmol)+PNX-14 (5 µg), bicuculline (BIC) (5 nmol)+PNX-14 (10 µg), saclofen (competitive antagonist of GABAB receptors; 2.5 µg)+PNX-14 (5 µg), and saclofen (2.5 µg)+PNX-14 (10 µg) in proestrus, estrus, metestrus, and diestrus. Afterward, the control and treatment groups were followed by intraperitoneal administration of 80 mg/kg PTZ. Initiation time of myoclonic seizures (ITMS), initiation time of tonic-clonic seizures (ITTS), seizure duration (SD), and mortality rate (MR) were monitored and recorded for 30 min. According to the results, PNX-14 alone significantly reduced the SD and seizure mortality in all phases of estrus (P<0.05). The injection of PNX-14 with BIC significantly reduced SD and seizure mortality in all estrus phases (P<0.05). PNX-14 alone increased both ITMS and ITTS in all phases of estrus (P<0.05). Furthermore, the injection of PNX-14 with BIC significantly reduced the effects of the PNX-14 on ITMS and ITTS in all estrus stages (P<0.05). These results showed that the antiepileptic activity of PNX-14 was probably mediated by GABAA receptors, and this effect was more prominent during the luteal phase than the follicular phase.
Collapse
Affiliation(s)
- A Azadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iranl
| | - J Kaboutari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - N Panahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Asghari
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iranl
| |
Collapse
|
23
|
Early life adversity accelerates epileptogenesis and enhances depression-like behaviors in rats. Exp Neurol 2022; 354:114088. [DOI: 10.1016/j.expneurol.2022.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
|
24
|
Zhang X, Yang X, Chen B, Shen K, Liu G, Wang Z, Huang K, Zhu G, Wang T, Lv S, Zhang C, Yang H, Hou Z, Liu S. Glucocorticoid receptors participate in epilepsy in FCDII patients and MP model rats: A potential therapeutic target for epilepsy in patients with focal cortical dysplasia II (FCDII). Expert Opin Ther Targets 2022; 26:171-186. [PMID: 35132930 DOI: 10.1080/14728222.2022.2032650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) are involved in neuronal excitability, neurogenesis, and neuroinflammation. However, the roles of GRs and MRs in epilepsy in focal cortical dysplasia II (FCDII) have not been reported. RESEARCH DESIGN AND METHODS We evaluated GRs and MRs expression and distribution in FCDII patients and methylazoxymethanol-pilocarpine-induced epilepsy model rats (MP rats), and the effects of a GR agonist on neurons in human FCDII and investigated the electrophysiological properties of cultured neurons and neurons of MP rats after lentivirus-mediated GR knockdown or overexpression and GR agonist or antagonist administration. RESULTS GR expression (not MR) was decreased in specimens from FCDII patients and model rats. GR agonist dexamethasone reduced neuronal excitatory transmission and increased neuronal inhibitory transmission in FCDII. GR knockdown increased the excitability of cultured neurons, and GR overexpression rescued the hyperexcitability of MP-treated neurons. Moreover, dexamethasone decreased neuronal excitability and excitatory transmission in MP rats, while GR antagonist exerted the opposite effects. Dexamethasone reduced the seizure number and duration by approximately 85% and 60% in MP rats within one to two hours. CONCLUSIONS These results suggested that GRs play an important role in epilepsy in FCDII and GR activation may have protective and antiepileptic effects in FCDII.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaolin Yang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Bing Chen
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Kaifeng Shen
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guolong Liu
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongke Wang
- Department of Neurosurgery, Armed police Hospital, Chongqing, China
| | - Kaixuan Huang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Gang Zhu
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Tingting Wang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shengqing Lv
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chunqing Zhang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhi Hou
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shiyong Liu
- National Comprehensive Epilepsy Center, Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Janković SM, Đešević M. Advancements in neuroactive peptides in seizures. Expert Rev Neurother 2022; 22:129-143. [DOI: 10.1080/14737175.2022.2031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Slobodan M. Janković
- - University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
- University Clinical Center, Kragujevac, Serbia
| | - Miralem Đešević
- - Private Policlinic Center Eurofarm Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
26
|
Abstract
Neuropathological examination of the temporal lobe provides a better understanding and management of a wide spectrum of diseases. We focused on inflammatory diseases, epilepsy, and neurodegenerative diseases, and highlighted how the temporal lobe is particularly involved in those conditions. Although all these diseases are not specific or restricted to the temporal lobe, the temporal lobe is a key structure to understand their pathophysiology. The main histological lesions, immunohistochemical markers, and molecular alterations relevant for the neuropathological diagnostic reasoning are presented in relation to epidemiology, clinical presentation, and radiological findings. The inflammatory diseases section addressed infectious encephalitides and auto-immune encephalitides. The epilepsy section addressed (i) susceptibility of the temporal lobe to epileptogenesis, (ii) epilepsy-associated hippocampal sclerosis, (iii) malformations of cortical development, (iv) changes secondary to epilepsy, (v) long-term epilepsy-associated tumors, (vi) vascular malformations, and (vii) the absence of histological lesion in some epilepsy surgery samples. The neurodegenerative diseases section addressed (i) Alzheimer's disease, (ii) the spectrum of frontotemporal lobar degeneration, (iii) limbic-predominant age-related TDP-43 encephalopathy, and (iv) α-synucleinopathies. Finally, inflammatory diseases, epilepsy, and neurodegenerative diseases are considered as interdependent as some pathophysiological processes cross the boundaries of this classification.
Collapse
Affiliation(s)
- Susana Boluda
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France.
| |
Collapse
|
27
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
28
|
Tomar A, Polygalov D, McHugh TJ. Differential Impact of Acute and Chronic Stress on CA1 Spatial Coding and Gamma Oscillations. Front Behav Neurosci 2021; 15:710725. [PMID: 34354574 PMCID: PMC8329706 DOI: 10.3389/fnbeh.2021.710725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic and acute stress differentially affect behavior as well as the structural integrity of the hippocampus, a key brain region involved in cognition and memory. However, it remains unclear if and how the facilitatory effects of acute stress on hippocampal information coding are disrupted as the stress becomes chronic. To examine this, we compared the impact of acute and chronic stress on neural activity in the CA1 subregion of male mice subjected to a chronic immobilization stress (CIS) paradigm. We observed that following first exposure to stress (acute stress), the spatial information encoded in the hippocampus sharpened, and the neurons became increasingly tuned to the underlying theta oscillations in the local field potential (LFP). However, following repeated exposure to the same stress (chronic stress), spatial tuning was poorer and the power of both the slow-gamma (30–50 Hz) and fast-gamma (55–90 Hz) oscillations, which correlate with excitatory inputs into the region, decreased. These results support the idea that acute and chronic stress differentially affect neural computations carried out by hippocampal circuits and suggest that acute stress may improve cognitive processing.
Collapse
Affiliation(s)
- Anupratap Tomar
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
29
|
Gulyaeva NV. Stress-Associated Molecular and Cellular Hippocampal Mechanisms Common for Epilepsy and Comorbid Depressive Disorders. BIOCHEMISTRY (MOSCOW) 2021; 86:641-656. [PMID: 34225588 DOI: 10.1134/s0006297921060031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The review discusses molecular and cellular mechanisms common to the temporal lobe epileptogenesis/epilepsy and depressive disorders. Comorbid temporal lobe epilepsy and depression are associated with dysfunction of the hypothalamic-pituitary-adrenocortical axis. Excessive glucocorticoids disrupt the function and impair the structure of the hippocampus, a brain region key to learning, memory, and emotions. Selective vulnerability of the hippocampus to stress, mediated by the reception of glucocorticoid hormones secreted during stress, is the price of the high functional plasticity and pleiotropy of this limbic structure. Common molecular and cellular mechanisms include the dysfunction of glucocorticoid receptors, neurotransmitters, and neurotrophic factors, development of neuroinflammation, leading to neurodegeneration and loss of hippocampal neurons, as well as disturbances in neurogenesis in the subgranular neurogenic niche and formation of aberrant neural networks. These glucocorticoid-dependent processes underlie altered stress response and the development of chronic stress-induced comorbid pathologies, in particular, temporal lobe epilepsy and depressive disorders.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia. .,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
30
|
Vandael D, Wierda K, Vints K, Baatsen P, De Groef L, Moons L, Rybakin V, Gounko NV. Corticotropin-releasing factor induces functional and structural synaptic remodelling in acute stress. Transl Psychiatry 2021; 11:378. [PMID: 34234103 PMCID: PMC8263770 DOI: 10.1038/s41398-021-01497-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Biological responses to stress are complex and highly conserved. Corticotropin-releasing factor (CRF) plays a central role in regulating these lifesaving physiological responses to stress. We show that, in mice, CRF rapidly changes Schaffer Collateral (SC) input into hippocampal CA1 pyramidal cells (PC) by modulating both functional and structural aspects of these synapses. Host exposure to acute stress, in vivo CRF injection, and ex vivo CRF application all result in fast de novo formation and remodeling of existing dendritic spines. Functionally, CRF leads to a rapid increase in synaptic strength of SC input into CA1 neurons, e.g., increase in spontaneous neurotransmitter release, paired-pulse facilitation, and repetitive excitability and improves synaptic plasticity: long-term potentiation (LTP) and long-term depression (LTD). In line with the changes in synaptic function, CRF increases the number of presynaptic vesicles, induces redistribution of vesicles towards the active zone, increases active zone size, and improves the alignment of the pre- and postsynaptic compartments. Therefore, CRF rapidly enhances synaptic communication in the hippocampus, potentially playing a crucial role in the enhanced memory consolidation in acute stress.
Collapse
Affiliation(s)
- Dorien Vandael
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
| | - Keimpe Wierda
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Electrophysiology Expertise Unit, O&N5 Herestraat 49, 3000, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
| | - Lies De Groef
- KU Leuven Faculty of Science, Department of Biology, Laboratory of Neural Circuit Development and Regeneration, Naamsestraat 61, 3000, Leuven, Belgium
| | - Lieve Moons
- KU Leuven Faculty of Science, Department of Biology, Laboratory of Neural Circuit Development and Regeneration, Naamsestraat 61, 3000, Leuven, Belgium
| | - Vasily Rybakin
- National University of Singapore, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, 5 Science Drive 2, Blk MD4, 117545, Singapore, Singapore
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium.
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium.
| |
Collapse
|
31
|
Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC. The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 2021; 341:113703. [PMID: 33745919 PMCID: PMC8169587 DOI: 10.1016/j.expneurol.2021.113703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kimberly L Kraus
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kevin D Gaitonde
- University of Cincinnati, Medical Scientist Training Program, USA
| | - Venkat Suru
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Salwa R Arafa
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Benjamin A Packard
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - James P Herman
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - Steve C Danzer
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA.
| |
Collapse
|
32
|
Floriou-Servou A, von Ziegler L, Waag R, Schläppi C, Germain PL, Bohacek J. The Acute Stress Response in the Multiomic Era. Biol Psychiatry 2021; 89:1116-1126. [PMID: 33722387 DOI: 10.1016/j.biopsych.2020.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/13/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Studying the stress response is a major pillar of neuroscience research not only because stress is a daily reality but also because the exquisitely fine-tuned bodily changes triggered by stress are a neuroendocrinological marvel. While the genome-wide changes induced by chronic stress have been extensively studied, we know surprisingly little about the complex molecular cascades triggered by acute stressors, the building blocks of chronic stress. The acute stress (or fight-or-flight) response mobilizes organismal energy resources to meet situational demands. However, successful stress coping also requires the efficient termination of the stress response. Maladaptive coping-particularly in response to severe or repeated stressors-can lead to allostatic (over)load, causing wear and tear on tissues, exhaustion, and disease. We propose that deep molecular profiling of the changes triggered by acute stressors could provide molecular correlates for allostatic load and predict healthy or maladaptive stress responses. We present a theoretical framework to interpret multiomic data in light of energy homeostasis and activity-dependent gene regulation, and we review the signaling cascades and molecular changes rapidly induced by acute stress in different cell types in the brain. In addition, we review and reanalyze recent data from multiomic screens conducted mainly in the rodent hippocampus and amygdala after acute psychophysical stressors. We identify challenges surrounding experimental design and data analysis, and we highlight promising new research directions to better understand the stress response on a multiomic level.
Collapse
Affiliation(s)
- Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Christa Schläppi
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland; Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland.
| |
Collapse
|
33
|
Komulainen E, Badman J, Rey S, Rulten S, Ju L, Fennell K, Kalasova I, Ilievova K, McKinnon PJ, Hanzlikova H, Staras K, Caldecott KW. Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. EMBO Rep 2021; 22:e51851. [PMID: 33932076 PMCID: PMC8097344 DOI: 10.15252/embr.202051851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.
Collapse
Affiliation(s)
- Emilia Komulainen
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Jack Badman
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stephanie Rey
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stuart Rulten
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Limei Ju
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Kate Fennell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Ilona Kalasova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kristyna Ilievova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Peter J McKinnon
- Department of GeneticsSt Jude Children’s Research HospitalMemphisTNUSA
| | - Hana Hanzlikova
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Keith W Caldecott
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
34
|
Tomar A, Polygalov D, Chattarji S, McHugh TJ. Stress enhances hippocampal neuronal synchrony and alters ripple-spike interaction. Neurobiol Stress 2021; 14:100327. [PMID: 33937446 PMCID: PMC8079661 DOI: 10.1016/j.ynstr.2021.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Adverse effects of chronic stress include anxiety, depression, and memory deficits. Some of these stress-induced behavioural deficits are mediated by impaired hippocampal function. Much of our current understanding about how stress affects the hippocampus has been derived from post-mortem analyses of brain slices at fixed time points. Consequently, neural signatures of an ongoing stressful experiences in the intact brain of awake animals and their links to later hippocampal dysfunction remain poorly understood. Further, no information is available on the impact of stress on sharp-wave ripples (SPW-Rs), high frequency oscillation transients crucial for memory consolidation. Here, we used in vivo tetrode recordings to analyze the dynamic impact of 10 days of immobilization stress on neural activity in area CA1 of mice. While there was a net decrease in pyramidal cell activity in stressed animals, a greater fraction of CA1 spikes occurred specifically during sharp-wave ripples, resulting in an increase in neuronal synchrony. After repeated stress some of these alterations were visible during rest even in the absence of stress. These findings offer new insights into stress-induced changes in ripple-spike interactions and mechanisms through which chronic stress may interfere with subsequent information processing.
Collapse
Affiliation(s)
- Anupratap Tomar
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0021, Japan
| | - Denis Polygalov
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0021, Japan
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH89XD, UK
| | - Thomas J McHugh
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0021, Japan
| |
Collapse
|
35
|
Amoateng P, Tagoe TA, Karikari TK, Kukuia KKE, Osei-Safo D, Woode E, Frenguelli BG, Kombian SB. Synedrella nodiflora Extract Depresses Excitatory Synaptic Transmission and Chemically-Induced In Vitro Seizures in the Rat Hippocampus. Front Pharmacol 2021; 12:610025. [PMID: 33762938 PMCID: PMC7982396 DOI: 10.3389/fphar.2021.610025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
Extracts of the tropical Cinderella plant Synedrella nodiflora are used traditionally to manage convulsive conditions in the West African sub-region. This study sought to determine the neuronal basis of the effectiveness of these plant extracts to suppress seizure activity. Using the hippocampal slice preparation from rats, the ability of the extract to depress excitatory synaptic transmission and in vitro seizure activity were investigated. Bath perfusion of the hydro-ethanolic extract of Synedrella nodiflora (SNE) caused a concentration-dependent depression of evoked field excitatory postsynaptic potentials (fEPSPs) recorded extracellularly in the CA1 region of the hippocampus with maximal depression of about 80% and an estimated IC50 of 0.06 mg/ml. The SNE-induced fEPSP depression was accompanied by an increase in paired pulse facilitation. The fEPSP depression only recovered partially after 20 min washing out. The effect of SNE was not stimulus dependent as it was present even in the absence of synaptic stimulation. Furthermore, it did not show desensitization as repeat application after 10 min washout produced the same level of fEPSP depression as the first application. The SNE effect on fEPSPs was not via adenosine release as it was neither blocked nor reversed by 8-CPT, an adenosine A1 receptor antagonist. In addition, SNE depressed in vitro seizures induced by zero Mg2+ and high K+ -containing artificial cerebrospinal fluid (aCSF) in a concentration-dependent manner. The results show that SNE depresses fEPSPs and spontaneous bursting activity in hippocampal neurons that may underlie its ability to abort convulsive activity in persons with epilepsy.
Collapse
Affiliation(s)
- Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Thomas A Tagoe
- Department of Physiology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kennedy K E Kukuia
- Department of Medical Pharmacology, UG Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Bruno G Frenguelli
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Samuel B Kombian
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Health Science Center, Kuwait University, Safat, Kuwait.,Department of Pharmacology and Toxicology, School of Medicine and Medical Sciences, University for Development Studies, Tamale, Ghana
| |
Collapse
|
36
|
Reddy DS, Thompson W, Calderara G. Does Stress Trigger Seizures? Evidence from Experimental Models. Curr Top Behav Neurosci 2021; 55:41-64. [PMID: 33547597 DOI: 10.1007/7854_2020_191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This chapter describes the experimental evidence of stress modulation of epileptic seizures and the potential role of corticosteroids and neurosteroids in regulating stress-linked seizure vulnerability. Epilepsy is a chronic neurological disorder that is characterized by repeated seizures. There are many potential causes for epilepsy, including genetic predispositions, infections, brain injury, and neurotoxicity. Stress is a known precipitating factor for seizures in individuals suffering from epilepsy. Severe acute stress and persistent exposure to stress may increase susceptibility to seizures, thereby resulting in a higher frequency of seizures. This occurs through the stress-mediated release of cortisol, which has both excitatory and proconvulsant properties. Stress also causes the release of endogenous neurosteroids from central and adrenal sources. Neurosteroids such as allopregnanolone and THDOC, which are allosteric modulators of GABA-A receptors, are powerful anticonvulsants and neuroprotectants. Acute stress increases the release of neurosteroids, while chronic stress is associated with severe neurosteroid depletion and reduced inhibition in the brain. This diminished inhibition occurs largely as a result of neurosteroid deficiencies. Thus, exogenous administration of neurosteroids (neurosteroid replacement therapy) may offer neuroprotection in epilepsy. Synthetic neurosteroid could offer a rational approach to control neurosteroid-sensitive, stress-related epileptic seizures.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - Wesley Thompson
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gianmarco Calderara
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
37
|
Risk of peri-operative complications in children receiving preoperative steroids. Pediatr Surg Int 2020; 36:1345-1352. [PMID: 32918623 DOI: 10.1007/s00383-020-04742-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Steroid use predisposes adult patients to increased perioperative complications including wound dehiscence and delayed wound healing. A similar large study investigating the perioperative impact of steroid use in pediatric patients has not been performed. METHODS The National Surgical Quality Improvement Project Pediatric Database was queried from 2012-2017 to identify patients who received steroid preoperatively. Patient demographics, comorbidities, surgical variables, and outcomes were compared between cohorts. Patients were propensity score matched and thirty-day adverse events were compared. RESULTS Of 425,251 pediatric surgery patients, 9716 (2.3%) received preoperative steroids. Pediatric patients treated with steroids were older and had more comorbidities. After propensity score matching, the steroid population had a significantly higher rate of adverse events, including prolonged hospital stay (15.3% vs. 9.1%, p < 0.001), seizure (0.9% vs. 0.4%, p < 0.001), readmission (14.4% vs. 9.2%, p < 0.001), and death (2.2% vs. 1.1%, p < 0.001). CONCLUSION Preoperative steroid use is independently associated with increased 30-day postoperative adverse events among pediatric patients. Given the significant impact of steroid use on surgical outcomes, the risks and benefits of steroid treatment in children receiving surgery should be carefully evaluated.
Collapse
|
38
|
Kulju T, Verner R, Dibué-Adjei M, Eronen A, Rainesalo S, Lehtimäki K, Haapasalo J, Peltola J. Circadian distribution of autostimulations in rVNS therapy in patients with refractory focal epilepsy. Epilepsy Behav 2020; 110:107144. [PMID: 32473521 DOI: 10.1016/j.yebeh.2020.107144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Responsive vagus nerve stimulation (rVNS) utilizes an electrocardiograph (ECG)-based algorithm to detect rapid sympathetic activations associated with the onset of a seizure. Abrupt sympathetic activation may also be associated with nocturnal arousals between sleep cycles or transitioning from sleep to wakefulness, a period in which many patients with epilepsy experience seizures. Because of circadian changes in autonomic function, we hypothesized that the autostimulation feature might also behave in a circadian fashion. OBJECTIVE The aim of this study was to assess the circadian rhythmicity of autostimulations in rVNS treatment in patients with drug-resistant epilepsy (DRE). MATERIALS AND METHODS We performed a retrospective follow-up study of 30 patients with DRE treated with rVNS including 17 new implantations and 13 battery replacements at a single center in Finland. After initiation of autostimulation mode, the exact rVNS stimulation parameters and the timestamps of all individual autostimulations delivered were registered. A clustered autostimulation was defined as any autostimulation that occurred within the duration of the therapeutic cycle during the therapy "OFF" time compared with both the previous autostimulation and the following autostimulation. RESULTS Autostimulations and especially autostimulation clusters show a higher probability of occurring in the morning and less at night. This trend appeared to follow the circadian rhythm of cortisol concentration. CONCLUSIONS Early morning peaks of autostimulations at low thresholds may reflect awakening-induced activation of the cardiovascular system, which is associated with a shift towards the dominance of the sympathetic branch of the autonomic nervous system. Cortisol release occurs in parallel driven by wakening-induced activation of the hypothalamic-pituitary-adrenal axis, which is fine-tuned by direct sympathetic input to the adrenal gland. This is of interest considering the known sympathetic hyperactivity in patients with epilepsy.
Collapse
Affiliation(s)
- Toni Kulju
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere FI-33521, Finland; Tampere University, Faculty of Medicine and Health Technology, FI-33014 Tampere, Finland.
| | - Ryan Verner
- LivaNova USA, Neuromodulation Unit, 100 Cyberonics Blvd, Houston, TX 77058, USA
| | - Maxine Dibué-Adjei
- Neuromodulation Medical Affairs, LivaNova PLC,London, United Kingdom; Department of Neurosurgery, Heinrich Heine University Düsseldorf, Germany
| | - Atte Eronen
- Tampere University, Faculty of Medicine and Health Technology, FI-33014 Tampere, Finland
| | - Sirpa Rainesalo
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere FI-33521, Finland
| | - Kai Lehtimäki
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere FI-33521, Finland
| | - Joonas Haapasalo
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere FI-33521, Finland; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jukka Peltola
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, Tampere FI-33521, Finland; Tampere University, Faculty of Medicine and Health Technology, FI-33014 Tampere, Finland
| |
Collapse
|
39
|
Puteikis K, Streckytė D, Pociuvienė G, Wolf P, Mameniškienė R. How are results of EEG activation procedures associated with patient perception of seizure provocative factors? A single-center cross-sectional pilot study. Epilepsy Res 2020; 167:106438. [PMID: 32810766 DOI: 10.1016/j.eplepsyres.2020.106438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this study was to examine the relationship between subjectively perceived seizure provocative factors or inhibitors and objectively recorded changes in epileptiform activity (EA) during EEG activation procedures. MATERIAL AND METHODS Consenting epilepsy patients (≥18 years old) were asked to complete a questionnaire by indicating whether items on a list provoke, inhibit or have no effect on their seizures. A scalp EEG was recorded afterwards to evaluate baseline epileptiform activity and its change (increase/decrease in frequency) during a set of activation procedures. These included hyperventilation, intermittent photic stimulation (IPS), eye-closing/eye-opening, tasks of reading aloud in a native and a foreign language, solving a Rubik's cube and crossing-out letters. We used correlation and multiple regression analysis to search for associations between the sum of self-reported provocative/inhibiting items and changes in EA. RESULTS Of the 90 patients recruited 75 (83.3%) indicated at least one seizure provocative factor. Sleep deprivation, emotional stress, negative emotions and alcohol use were most frequently selected as provoking seizures. Positive feelings, focused thinking, mental calculation and exercising were the most predominant seizure inhibitors. EEG data revealed a weak, but statistically significant correlation with the sum of items in distinct questionnaire groups (0.20 ≤ Spearman's ρ ≤ 0.39). Sensory stimuli (olfactory, gustatory, auditory and visual), cognitive phenomena (thoughts and feelings) and substance use were found to be significantly correlated with EEG results by being self-reported as both provoking and inhibiting seizures. A statistically significant relationship was also found between the increase in EA while reading aloud in a native language and the number of physiological states (sleep deprivation, stress etc.) indicated as provoking seizures (Spearman's ρ = 0.320, P = 0.005). A suitable stepwise multiple regression model was feasible for this finding (F(3, 71) = 7.396, P < 0.001, adjusted R squared = 0.206) with the additional inclusion of EA change during IPS and epilepsy type as explanatory variables. CONCLUSION Our pilot study indicates that there is a previously non-explored association between patients' self-perception of seizure provocative/inhibiting factors and objectively recorded changes in epileptiform activity during activation EEGs. Distinct EEG tests might be useful in activating ictogenic networks that are sensitive to indirect influence by hormonal, emotional or diurnally variable factors.
Collapse
Affiliation(s)
- Kristijonas Puteikis
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania; M. K. Čiurlionio str. 21, LT-03101, Vilnius, Lithuania.
| | - Dovilė Streckytė
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania; M. K. Čiurlionio str. 21, LT-03101, Vilnius, Lithuania
| | - Gabrielė Pociuvienė
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania; M. K. Čiurlionio str. 21, LT-03101, Vilnius, Lithuania
| | - Peter Wolf
- Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Programa de Pós-Graduação em Ciências Médicas, Universidad Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
40
|
Abstract
The episodic nature of both epilepsy and psychiatric illnesses suggests that the brain switches between healthy and pathological states. The most obvious example of transitions between network states related to epilepsy is the manifestation of ictal events. In addition to seizures, there are more subtle changes in network communication within and between brain regions, which we propose may contribute to psychiatric illnesses associated with the epilepsies. This review will highlight evidence supporting aberrant network activity associated with epilepsy and the contribution to cognitive impairments and comorbid psychiatric illnesses. Further, we discuss potential mechanisms mediating the network dysfunction associated with comorbidities in epilepsy, including interneuron loss and hypothalamic–pituitary–adrenal axis dysfunction. Conceptually, it is necessary to think beyond ictal activity to appreciate the breadth of network dysfunction contributing to the spectrum of symptoms associated with epilepsy, including psychiatric comorbidities.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Biran I, Admon R, Gazit T, Fahoum F. Interaction of Temporal Lobe Epilepsy and Posttraumatic Stress Disorder: Network Analysis of a Single Case. Front Psychol 2020; 11:1010. [PMID: 32670129 PMCID: PMC7326076 DOI: 10.3389/fpsyg.2020.01010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
In this case study, we present a 21 years old female with long-standing Temporal Lobe Epilepsy (TLE) who, following a sexual assault, also developed Posttraumatic Stress Disorder (PTSD), leading to a change in her seizure semiology. The new seizures seemed to be a re-enactment of the sexual assault and accordingly were at first thought to be Psychogenic Non-Epileptic Seizures (PNES). Nevertheless, electroencephalography (EEG) recording at the Epilepsy Monitoring Unit (EMU) revealed ictal epileptic brain activity during these new attacks. In order to further explore the nature of the relation between epileptic seizures and PTSD symptomatology, a functional MRI (fMRI) scan was conducted focusing on neural response to threat (fearful faces). The results indicated that the response to threat elicited bilateral amygdala activation, as well as enhanced amygdala connectivity with the insula and anterior cingulate cortex (ACC), all central nodes of the fear circuitry. Accordingly, we suggest that this unique presentation of "pseudo" PNES might stem from the anatomical proximity of the epileptic network in this patient (temporal-insular-frontal) to the fear circuitry, allowing abnormal epileptic activity to "exploit" or activate the fear circuit or vice versa. We further propose that the traumatic experience may have changed the patient's ictal semiology by modifying the course of the spread of the ictal activity toward the PTSD network.
Collapse
Affiliation(s)
- Iftah Biran
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The Israel Neuropsychoanalysis Society, Kadima, Israel
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Tomer Gazit
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Song JH, Bae SM, Bae WR, Huh JS, Chen Y, Jeong IS, Jung DI. Synthesis and Antiepileptic Activity Evaluation of Valproic Acid Derivatives by Niche Chemistry. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ju Hyun Song
- Department of ChemistryDong‐A University Busan 604‐714 South Korea
| | - Song Mi Bae
- Department of ChemistryDong‐A University Busan 604‐714 South Korea
| | - Whae Ran Bae
- College of Medicine, Dong‐A University Busan 604‐714 South Korea
| | - Jin Sun Huh
- Southwest Medi‐Chem Institute Busan South Korea
| | - Yu Chen
- Department of Chemistry and BiochemistryQueens College and the Graduate Center of the City University of New York Queens NY 11367‐1597 USA
| | - Il Soo Jeong
- Sejoong CNG Co., LTD, 77, Najeon 2sandan‐gil, Saengnim‐myeon, Gimhae‐si Gyeongsangnam‐do South Korea
| | - Dai Il Jung
- Department of ChemistryDong‐A University Busan 604‐714 South Korea
| |
Collapse
|
43
|
Effects of Single Cage Housing on Stress, Cognitive, and Seizure Parameters in the Rat and Mouse Pilocarpine Models of Epilepsy. eNeuro 2019; 6:ENEURO.0179-18.2019. [PMID: 31331937 PMCID: PMC6709207 DOI: 10.1523/eneuro.0179-18.2019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Many experimental approaches require housing rodents in individual cages, including in epilepsy research. However, rats and mice are social animals; and individual housing constitutes a stressful situation. The goal of the present study was to determine the effects of individual housing as compared to conditions maintaining social contact on stress markers and epilepsy. Control male mice socially housed during pretest and then transferred to individual cages for six weeks displayed anhedonia, increased anxiety and biological markers of stress as compared to pretest values or mice kept socially housed during six weeks. Pilocarpine (pilo)-treated mice housed together showed increased levels of anhedonia, anxiety and stress markers as well as decreased cognitive performance as compared to the control group. The differences were more significant in pilo-treated mice housed individually. Anxiety correlated linearly with cognitive performance and stress markers independently of the experimental conditions. In the male rat pilo model, seizures were sixteen times more frequent in singly housed animals as compared to animals kept in pairs. Daily interactions with an experimenter in otherwise singly housed animals was sufficient to produce results identical to those found in animals kept in pairs. We propose that social isolation produces a severe phenotype in terms of stress and seizure frequency as compared to animals maintaining social contact (at least in these two models), a factor that needs to be taken into account for data interpretation, in particular for preclinical studies.
Collapse
|
44
|
Cortisol levels and seizures in adults with epilepsy: A systematic review. Neurosci Biobehav Rev 2019; 103:216-229. [PMID: 31129236 DOI: 10.1016/j.neubiorev.2019.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Stress has been suggested as a trigger factor for seizures in epilepsy patients, but little is known about cortisol levels, as indicators of stress, in adults with epilepsy. This systematic review summarizes the evidence on this topic. Following PRISMA guidelines, 38 articles were selected: 14 analyzing basal cortisol levels, eight examining antiepileptic drugs (AEDs) effects, 13 focused on seizure effects, and three examining stress. Higher basal cortisol levels were found in patients than in healthy people in studies with the most homogeneous samples (45% of 38 total studies). Despite heterogeneous results associated with AEDs, seizures were related to increases in cortisol levels in 77% of 38 total studies. The only study with acute stress administration found higher cortisol reactivity in epilepsy than in healthy controls. In studies using self-reported stress, high seizure frequency was related to increased cortisol levels and lower functional brain connectivity. Findings suggest that epilepsy could be considered a chronic stress model. The potential sensitizing role of accumulative seizures and issues for future research are discussed.
Collapse
|
45
|
Amengual-Gual M, Ulate-Campos A, Loddenkemper T. Status epilepticus prevention, ambulatory monitoring, early seizure detection and prediction in at-risk patients. Seizure 2019; 68:31-37. [DOI: 10.1016/j.seizure.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023] Open
|
46
|
Umeoka EHL, Robinson EJ, Turimella SL, van Campen JS, Motta-Teixeira LC, Sarabdjitsingh RA, Garcia-Cairasco N, Braun K, de Graan PN, Joëls M. Hyperthermia-induced seizures followed by repetitive stress are associated with age-dependent changes in specific aspects of the mouse stress system. J Neuroendocrinol 2019; 31:e12697. [PMID: 30773738 DOI: 10.1111/jne.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/28/2022]
Abstract
Stress is among the most frequently self-reported factors provoking epileptic seizures in children and adults. It is still unclear, however, why some people display stress-sensitive seizures and others do not. Recently, we showed that young epilepsy patients with stress-sensitive seizures exhibit a dysregulated hypothalamic-pituitary-adrenal (HPA)-axis. Most likely, this dysregulation gradually develops, and is triggered by stressors occurring early in life (early-life stress [ELS]). ELS may be particularly impactful when overlapping with the period of epileptogenesis. To examine this in a controlled and prospective manner, the present study investigated the effect of repetitive variable stressors or control treatment between postnatal day (PND) 12 and 24 in male mice exposed on PND10 to hyperthermia (HT)-induced prolonged seizures (control: normothermia). A number of peripheral and central indices of HPA-axis activity were evaluated at pre-adolescent and young adult age (ie, at PND25 and 90, respectively). At PND25 but not at PND90, body weight gain and absolute as well as relative (to body weight) thymus weight were reduced by ELS (vs control), whereas relative adrenal weight was enhanced, confirming the effectiveness of the stress treatment. Basal and stress-induced corticosterone levels were unaffected, though, by ELS at both ages. HT by itself did not affect any of these peripheral markers of HPA-axis activity, nor did it interact with ELS. However, centrally we did observe age-specific interaction effects of HT and ELS with regard to hippocampal glucocorticoid receptor mRNA expression, neurogenesis with the immature neurone marker doublecortin and the number of hilar (ectopic) granule cells using Prox1 staining. This lends some support to the notion that exposure to repetitive stress after HT-induced seizures may dysregulate central components of the stress system in an age-dependent manner. Such dysregulation could be one of the mechanisms conferring higher vulnerability of individuals with epilepsy to develop seizures in the face of stress.
Collapse
Affiliation(s)
- Eduardo H L Umeoka
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Edward J Robinson
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sada Lakshmi Turimella
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jolien S van Campen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lívia C Motta-Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kees Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre N de Graan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Bolton JL, Short AK, Simeone KA, Daglian J, Baram TZ. Programming of Stress-Sensitive Neurons and Circuits by Early-Life Experiences. Front Behav Neurosci 2019; 13:30. [PMID: 30833892 PMCID: PMC6387907 DOI: 10.3389/fnbeh.2019.00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Early-life experiences influence brain structure and function long-term, contributing to resilience or vulnerability to stress and stress-related disorders. Therefore, understanding the mechanisms by which early-life experiences program specific brain cells and circuits to shape life-long cognitive and emotional functions is crucial. We identify the population of corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN) as a key, early target of early-life experiences. Adverse experiences increase excitatory neurotransmission onto PVN CRH cells, whereas optimal experiences, such as augmented and predictable maternal care, reduce the number and function of glutamatergic inputs onto this cell population. Altered synaptic neurotransmission is sufficient to initiate large-scale, enduring epigenetic re-programming within CRH-expressing neurons, associated with stress resilience and additional cognitive and emotional outcomes. Thus, the mechanisms by which early-life experiences influence the brain provide tractable targets for intervention.
Collapse
Affiliation(s)
- Jessica L Bolton
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Annabel Katherine Short
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Kristina A Simeone
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Jennifer Daglian
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z Baram
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
48
|
Amengual-Gual M, Sánchez Fernández I, Loddenkemper T. Patterns of epileptic seizure occurrence. Brain Res 2019; 1703:3-12. [DOI: 10.1016/j.brainres.2018.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023]
|
49
|
Hyper-diversity of CRH interneurons in mouse hippocampus. Brain Struct Funct 2018; 224:583-598. [PMID: 30456559 DOI: 10.1007/s00429-018-1793-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Hippocampal inhibitory interneurons comprise an anatomically, neurochemically and electrophysiologically diverse population of cells that are essential for the generation of the oscillatory activity underlying hippocampal spatial and episodic memory processes. Here, we aimed to characterize a population of interneurons that express the stress-related neuropeptide corticotropin-releasing hormone (CRH) within existing interneuronal categories through the use of combined electrophysiological and immunocytochemical approaches. Focusing on CA1 strata pyramidale and radiatum of mouse hippocampus, CRH interneurons were found to exhibit a heterogeneous neurochemical phenotype with parvalbumin, cholecystokinin and calretinin co-expression observed to varying degrees. In contrast, CRH and somatostatin were never co-expressed. Electrophysiological categorization identified heterogeneous firing pattern of CRH neurons, with two distinct subtypes within stratum pyramidale and stratum radiatum. Together, these findings indicate that CRH-expressing interneurons do not segregate into any single distinct subtype of interneuron using conventional criteria. Rather our findings suggest that CRH is likely co-expressed in subpopulations of previously described hippocampal interneurons. In addition, the observed heterogeneity suggests that distinct CRH interneuron subtypes may have specific functional roles in the both physiological and pathophysiological hippocampal processes.
Collapse
|
50
|
Floriou-Servou A, von Ziegler L, Stalder L, Sturman O, Privitera M, Rassi A, Cremonesi A, Thöny B, Bohacek J. Distinct Proteomic, Transcriptomic, and Epigenetic Stress Responses in Dorsal and Ventral Hippocampus. Biol Psychiatry 2018; 84:531-541. [PMID: 29605177 DOI: 10.1016/j.biopsych.2018.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acutely stressful experiences can trigger neuropsychiatric disorders and impair cognitive processes by altering hippocampal function. Although the intrinsic organization of the hippocampus is highly conserved throughout its long dorsal-ventral axis, the dorsal (anterior) hippocampus mediates spatial navigation and memory formation, whereas the ventral (posterior) hippocampus is involved in emotion regulation. To understand the molecular consequences of stress, detailed genome-wide screens are necessary and need to distinguish between dorsal and ventral hippocampal regions. While transcriptomic screens have become a mainstay in basic and clinical research, proteomic methods are rapidly evolving and hold even greater promise to reveal biologically and clinically relevant biomarkers. METHODS Here, we provide the first combined transcriptomic (RNA sequencing) and proteomic (sequential window acquisition of all theoretical mass spectra [SWATH-MS]) profiling of dorsal and ventral hippocampus in mice. We used three different acute stressors (novelty, swim, and restraint) to assess the impact of stress on both regions. RESULTS We demonstrated that both hippocampal regions display radically distinct molecular responses and that the ventral hippocampus is particularly sensitive to the effects of stress. Separately analyzing these structures greatly increased the sensitivity to detect stress-induced changes. For example, protein interaction cluster analyses revealed a stress-responsive epigenetic network around histone demethylase Kdm6b restricted to the ventral hippocampus, and acute stress reduced methylation of its enzymatic target H3K27me3. Selective Kdm6b knockdown in the ventral hippocampus led to behavioral hyperactivity/hyperresponsiveness. CONCLUSIONS These findings underscore the importance of considering dorsal and ventral hippocampus separately when conducting high-throughput molecular analyses, which has important implications for fundamental research as well as clinical studies.
Collapse
Affiliation(s)
- Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland; Laboratory of Neuroepigenetics, Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Zurich, Switzerland
| | - Luzia Stalder
- Laboratory of Neuroepigenetics, Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alessio Cremonesi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Department of Health Science and Technology of ETH Zurich, Institute for Neuroscience, Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|