1
|
Shaw R, Basu M, Karmakar S, Ghosh MK. MGMT in TMZ-based glioma therapy: Multifaceted insights and clinical trial perspectives. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119673. [PMID: 38242327 DOI: 10.1016/j.bbamcr.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Temozolomide (TMZ) is the most preferred and approved chemotherapeutic drug for either first- or second-line chemotherapy for glioma patients across the globe. In glioma patients, resistance to treatment with alkylating drugs like TMZ is known to be conferred by exalted levels of MGMT gene expression. On the contrary, epigenetic silencing through MGMT gene promoter methylation leading to subsequent reduction in MGMT transcription and protein expression, is predicted to have a response favoring TMZ treatment. Thus, MGMT protein level in cancer cells is a crucial determining factor in indicating and predicting the choice of alkylating agents in chemotherapy or choosing glioma patients directly for a second line of treatment. Thus, in-depth research is necessary to achieve insights into MGMT gene regulation that has recently enticed a fascinating interest in epigenetic, transcriptional, post-transcriptional, and post-translational levels. Furthermore, MGMT promoter methylation, stability of MGMT protein, and related subsequent adaptive responses are also important contributors to strategic developments in glioma therapy. With applications to its identification as a prognostic biomarker, thus predicting response to advanced glioma therapy, this review aims to concentrate on the mechanistic role and regulation of MGMT gene expression at epigenetic, transcriptional, post-transcriptional, and post-translational levels functioning under the control of multiple signaling dynamics.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas 743372, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
2
|
Shunxi W, Xiaoxue Y, Guanbin S, Li Y, Junyu J, Wanqian L. Serine Metabolic Reprogramming in Tumorigenesis, Tumor Immunity, and Clinical Treatment. Adv Nutr 2023; 14:1050-1066. [PMID: 37187454 PMCID: PMC10509429 DOI: 10.1016/j.advnut.2023.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serine has been recently identified as an essential metabolite for oncogenesis, progression, and adaptive immunity. Influenced by many physiologic or tumor environmental factors, the metabolic pathways of serine synthesis, uptake, and usage are heterogeneously reprogrammed and frequently amplified in tumor or tumor-associated cells. The hyperactivation of serine metabolism promotes abnormal cellular nucleotide/protein/lipid synthesis, mitochondrial function, and epigenetic modifications, which drive malignant transformation, unlimited proliferation, metastasis, immunosuppression, and drug resistance of tumor cells. Dietary restriction of serine or phosphoglycerate dehydrogenase depletion mitigates tumor growth and extends the survival of tumor patients. Correspondingly, these findings triggered a boom in the development of novel therapeutic agents targeting serine metabolism. In this study, recent discoveries in the underlying mechanism and cellular function of serine metabolic reprogramming are summarized. The vital role of serine metabolism in oncogenesis, tumor stemness, tumor immunity, and therapeutic resistance is outlined. Finally, some potential tumor therapeutic concepts, strategies, and limitations of targeting the serine metabolic pathway are described in detail. Taken together, this review underscores the importance of serine metabolic reprogramming in tumorigenesis and progression and highlights new opportunities for dietary restriction or selective pharmacologic intervention.
Collapse
Affiliation(s)
- Wang Shunxi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yuan Xiaoxue
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jin Junyu
- Department of Oncology, Chenjiaqiao Hospital, Shapingba, Chongqing, China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Xie B, Xie Y, Fang C, Zhong B, Ye R, Zhang J, Liu Q, Li H. Elevated FAM134B expression induces radiation-sensitive in hepatocellular carcinoma. BMC Cancer 2023; 23:671. [PMID: 37460952 PMCID: PMC10353116 DOI: 10.1186/s12885-023-11030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Previous studies have shown that Family with sequence similarity 134 member B (FAM134B) was involved in the occurrence and development of malignancy, however, the function and molecular mechanism of FAM134B in Hepatocellular Carcinoma (HCC) radiotherapy resistance remain unclear. Therefore, it may clinical effective to clarify the molecular mechanism and identify novel biomarker to overcome radiotherapy resistance in HCC. METHODS The protein and mRNA expression of FAM134B were determined using Real-time PCR and Western blot, respectively. IHC assay was performed to investigate the association between FAM134B expression and the clinicopathological characteristics of 132 HCC patients. Functional assays, such as in situ model, colon formation, FACS, and Tunel assay were used to determine the oncogenic role of FAM134B in human HCC progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of FAM134B promotes radiation-sensitive in HCC cells. RESULTS We noted that FAM134B was downregulated in HCC, which was correlated with the radiation resistance in patients with HCC. Overexpression of FAM134B contribute to radiation sensitive in HCC; however, inhibition of FAM134B confers HCC cell lines to radiation resistance both in vitro and in vivo. Moreover, we found that FAM134B interacts with FMS related receptor tyrosine kinase 3 (FLT3) and downregulation of FAM134B activated JAK/Stat3 signaling pathway. Importantly, pharmacological inhibition of JAK/Stat3 signaling pathway significantly counteracted downregulation of FAM134B-induced radiation resistance and enhanced radiation therapeutic efficacy in HCC. CONCLUSIONS Our findings suggest that FAM134B may be a potential therapeutic biomarker for the treatment of HCC patients with radiotherapy tolerance.
Collapse
Affiliation(s)
- Binhui Xie
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, P R China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, P R China
| | - Cuifu Fang
- Department of general surgery III, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, P R China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, P R China
| | - Rong Ye
- Department of general surgery III, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, P R China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, P R China
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, P R China
| | - Heping Li
- Department of Medical Oncology, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, P R China.
| |
Collapse
|
4
|
Gheidari F, Arefian E, Saadatpour F, Kabiri M, Seyedjafari E, Teimoori-Toolabi L, Soleimani M. The miR-429 suppresses proliferation and migration in glioblastoma cells and induces cell-cycle arrest and apoptosis via modulating several target genes of ERBB signaling pathway. Mol Biol Rep 2022; 49:11855-11866. [PMID: 36219319 DOI: 10.1007/s11033-022-07903-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/31/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive and lethal brain cancer, which is incurable with standard cancer treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in GBM and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools. ERBB is the most over-activated genetic pathway in GBM patients, which is responsible for augmented cell proliferation and migration in GBM. METHODS AND RESULTS Here, miR-429 was overexpressed using lentiviral vectors in U-251 and U-87 GBM cells and it was observed that the expression level of several oncogenes of the ERBB pathway, EGFR, PIK3CA, PIK3CB, KRAS, and MYC significantly decreased, as shown by real-time PCR and western blotting. Using the luciferase assay, we showed that miR-429 directly targets MYC, BCL2, and EGFR. In comparison to scrambled control, miR-429 had a significant inhibitory effect on cell proliferation and migration as deduced from MTT and scratch wound assays and induced cell-cycle arrest and apoptosis in flow cytometry. CONCLUSIONS Altogether, miR-429 seems to be an efficient suppressor of the ERBB genetic signaling pathway and a potential therapeutic for GBM.
Collapse
Affiliation(s)
- Fatemeh Gheidari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.,Stem Cell Technology Research Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran. .,Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Marei HE. Multimodal targeting of glioma with functionalized nanoparticles. Cancer Cell Int 2022; 22:265. [PMID: 35999629 PMCID: PMC9396820 DOI: 10.1186/s12935-022-02687-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The most common and aggressive primitive intracranial tumor of the central nervous system is the glioma. The blood–brain barrier (BBB) has proven to be a significant obstacle to the effective treatment of glioma. To effectively treat glioma, different ways have been used to cross the BBB to deliver drugs to the brain. Drug delivery through nanocarriers proves to be an effective and non-invasive technique for the treatment of glioma and has great potential in the treatment of glioma. In this review, we will provide an overview of nanocarrier-mediated drug delivery and related glioma therapy. Nanocarrier-mediated drug delivery techniques to cross the BBB (liposomes, micelles, inorganic systems, polymeric nanoparticles, nanogel system, and biomimetic nanoparticles) are explored. Finally, the use of nanotherapeutic approaches in the treatment of glioblastoma including chemotherapy, radiotherapy, photothermal therapy, gene therapy, glioma genome editing, immunotherapy, chimeric antigen receptor (CAR) T-cells, immune checkpoint modulators, immune photothermal therapy, vaccine-based immunotherapy, and combination therapy is summarized. Furthermore, this article offers various views on the clinical applicability of nanomedicine.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| |
Collapse
|
6
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
7
|
Li R, Wang H, Liang Q, Chen L, Ren J. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci 2022; 10:892-908. [PMID: 34989724 DOI: 10.1039/d1bm01401c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults with poor prognosis. Despite the current state of knowledge on its genetic characteristics, relatively little progress has been made in improving the treatment of patients with this fatal disease. Radiotherapy (RT) has been identified as a crucial treatment for GBM following surgical resection to improve both local control and survival. Unfortunately, radiotherapy resistance is frequently observed in GBM patients, which is the major reason for the high mortality rate of cancer patients. Radioresistance of GBM is often multifactorial and heterogeneous, and associated with the recurrence of GBM after surgery. Nanotechnology has gained increasing attention and has already been investigated for optimization of radiosensitization due to the unique properties of nanobiomaterials, such as photoelectric decay characteristics or potential as carriers for drug delivery to the central nervous system. A large body of preclinical data has accumulated over the past several years, in which nanotechnology-based strategies exhibit promising potential to enhance the radiosensitivity of GBM, both in cellular and animal models. In this review, we summarize the mechanisms of GBM radioresistance, including tumor cell-intrinsic factors as well as tumor microenvironment (TME). We further discuss current nano-biotechnology-based radiosensitizer in the treatment of GBM, summarize the latest findings, highlight challenges, and put forward prospects for the future of nano-radiosensitizers. These data suggest that nanotechnology has the potential to address many of the clinical challenges and nanobiomaterials would become promising next-generation radiotherapy sensitizers for GBM treatment.
Collapse
Affiliation(s)
- Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| |
Collapse
|
8
|
Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000054. [PMID: 33623931 PMCID: PMC7116796 DOI: 10.1002/anbr.202000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant neoplasia having origin in the brain. The current treatments involve surgery, radiotherapy, and chemotherapy, being complete surgical resection the best option for the patient survival chances. However, in those cases where a complete removal is not possible, radiation and chemotherapy are applied. Herein, the main challenges of chemotherapy, and how they can be overcome with the help of nanomedicine, are approached. Natural pathways to cross the blood-brain barrier (BBB) are detailed, and different in vivo studies where these pathways are mimicked functionalizing the nanomaterial surface are shown. Later, lipid-based nanocarriers, such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, are presented. To finish, recent studies that have used lipid-based nanosystems carrying not only therapeutic agents, yet also magnetic nanoparticles, are described. Although the advantages of using these types of nanosystems are explained, including their biocompatibility, the possibility of modifying their surface to enhance the cell targeting, and their intrinsic ability of BBB crossing, it is important to mention that research in this field is still at its early stage, and extensive preclinical and clinical investigations are mandatory in the close future.
Collapse
Affiliation(s)
- Nerea Iturrioz-Rodríguez
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
9
|
Anti-tumour activity of deer growing antlers and its potential applications in the treatment of malignant gliomas. Sci Rep 2021; 11:42. [PMID: 33420194 PMCID: PMC7794318 DOI: 10.1038/s41598-020-79779-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
A recent study showed that antlers have evolved a high rate of growth due to the expression of proto-oncogenes and that they have also evolved to express several tumour suppressor genes to control the risk of cancer. This may explain why deer antler velvet (DAV) extract shows anti-tumour activity. The fast growth of antler innervation through the velvet in close association to blood vessels provides a unique environment to study the fast but non-cancerous proliferation of heterogeneous cell populations. We set out to study the anti-cancer effect of DAV in glioblastoma (GB) cell lines in comparison with temozolomide, a chemotherapeutic drug used to treat high-grade brain tumours. Here we report, for the first time, that DAV extract from the tip, but not from mid-parts of the antler, exhibits an anti-tumour effect in GB cell lines (T98G and A172) while being non-toxic in non-cancerous cell lines (HEK293 and HACAT). In T98G cells, DAV treatment showed reduced proliferation (37.5%) and colony-formation capacity (84%), inhibited migration (39%), induced changes in cell cycle progression, and promoted apoptosis. The anticancer activity of DAV extract as demonstrated by these results may provide a new therapeutic strategy for GB treatment.
Collapse
|
10
|
Yang C, Gao Y, Fan Y, Cao L, Li J, Ge Y, Tu W, Liu Y, Cao X, Shi X. Dual-mode endogenous and exogenous sensitization of tumor radiotherapy through antifouling dendrimer-entrapped gold nanoparticles. Theranostics 2021; 11:1721-1731. [PMID: 33408777 PMCID: PMC7778585 DOI: 10.7150/thno.54930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Development of a powerful sensitization system to alleviate radioresistance for enhanced tumor radiotherapy (RT) remains to be explored. Herein, we present a unique dual-mode endogenous and exogenous nanosensitizer based on dendrimer-entrapped gold nanoparticles (Au DENPs) to realize enhanced tumor RT. Methods: Generation 5 poly(amidoamine) dendrimers partially modified with 1,3-propanesultone were used for templated synthesis of Au NPs, and the created zwitterionic Au DENPs were adopted for serum-enhanced delivery of siRNA to lead to the knockdown of hypoxia-inducible factor-1α (HIF-1α) protein and downstream genes to relieve tumor invasion. The Au DENPs/siRNA polyplexes were also used for dual-mode endogenous and exogenous sensitization of tumor RT in vivo. Results: Due to the dual-mode endogenous sensitization through HIF-1α gene silencing and the exogenous sensitization through the existing Au component, enhanced RT of cancer cells in vitro and a tumor model in vivo can be realized, which was confirmed by enhanced cytotoxic reactive oxygen species (ROS) generation in vitro and double-strand DNA damage verified from the γ-H2AX protein expression in tumor cells in vivo. By integrating the advantages of HIF-1α gene silencing-induced downregulation of downstream genes and the dual-mode sensitization-enhanced RT, simultaneous inhibition of primary tumors and metastasis can be readily realized. Conclusions: The developed zwitterionic Au DENPs may be used as a promising platform for dual-mode endogenously and exogenously sensitized RT of other tumor types.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yulong Ge
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
11
|
Tan J, Sun W, Lu L, Xiao Z, Wei H, Shi W, Wang Y, Han S, Shuai X. I6P7 peptide modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging detection of low-grade brain gliomas. J Mater Chem B 2020; 7:6139-6147. [PMID: 31553351 DOI: 10.1039/c9tb01563a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glioma, the most severe primary brain malignancy, has very low survival rates and a high level of recurrence. Nowadays, conventional treatments for these patients are suffering a similar plight owing to the distinctive features of the malignant gliomas, for example chemotherapy is limited by the blood-brain barrier while surgery and radiation therapy are affected by the unclear boundaries of tumor from normal tissue. In the present study, a novel superparamagnetic iron oxide (SPIO) nanoprobe for enhanced T2-weighted magnetic resonance imaging (MRI) was developed. A frequently used MRI probe, SPIO nanoparticles, was coated with a silica outer layer and for the first time was covalently modified with interleukin-6 receptor targeting peptides (I6P7) to promote transportation through the blood-brain barrier and recognition of low-grade gliomas. The efficiency of transcytosis across the blood-brain barrier was examined in vitro using a transwell invasion model and in vivo in nude mice with orthotopic low-grade gliomas. The targeting nanoprobe showed significant MRI enhancement and has potential for use in the diagnosis of low-grade gliomas.
Collapse
Affiliation(s)
- Junyi Tan
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang J, Zhang Q, Liu Y, Zhang X, Shan W, Ye S, Zhou X, Ge Y, Wang X, Ren L. Nanoparticle-based co-delivery of siRNA and paclitaxel for dual-targeting of glioblastoma. Nanomedicine (Lond) 2020; 15:1391-1409. [PMID: 32495692 DOI: 10.2217/nnm-2020-0066] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To explore the therapeutic effect of nanoparticle-based dual-targeting delivery of antitumor agents for glioblastoma treatment. Materials & methods: A hepatitis B core protein-virus-like particle (VLP)-based dual-targeting delivery system was designed with the primary brain targeting peptide TGN for blood-brain barrier penetration and tumor vascular preferred ligand RGD (arginine-glycine-aspartic acid) for glioblastoma targeting. Chemo- and gene-therapeutic agents of paclitaxel and siRNA were co-packaged inside the vehicle. Results: The results demonstrated efficient delivery of the packaged agents to invasive tumor sites. The combination of chemo- and gene-therapies demonstrated synergistic antitumor effects through enhancing necrosis and apoptosis, as well as being able to inhibit tumor invasion with minimal cytotoxicity. Conclusion: Our hepatitis B core-VLP-based dual-targeting delivery of chemo- and gene-therapeutic agents possesses a synergistic antitumor effect for glioblastoma therapy.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Qiang Zhang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yanxiu Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Xinjie Zhang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Wenjun Shan
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Shefang Ye
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xi Zhou
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yunlong Ge
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Lei Ren
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
13
|
Salvati M, Tariciotti L, Brunetto GM, Gallo G, Santoro F, Frati A, Santoro A. Glioblastoma: Molecular profile and immunophenotypic analysis as prognostic tools for tailored therapy and decision making in a recent surgical series. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Makharza SA, Cirillo G, Vittorio O, Valli E, Voli F, Farfalla A, Curcio M, Iemma F, Nicoletta FP, El-Gendy AA, Goya GF, Hampel S. Magnetic Graphene Oxide Nanocarrier for Targeted Delivery of Cisplatin: A Perspective for Glioblastoma Treatment. Pharmaceuticals (Basel) 2019; 12:E76. [PMID: 31109098 PMCID: PMC6631527 DOI: 10.3390/ph12020076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer's method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site.
Collapse
Affiliation(s)
- Sami A Makharza
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
- College of Pharmacy and Medical Sciences, Hebron University, Hebron 00970, Palestine.
| | - Giuseppe Cirillo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), 87036 Rende, Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, Australia.
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), 87036 Rende, Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), 87036 Rende, Italy.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), 87036 Rende, Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), 87036 Rende, Italy.
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Gerardo F Goya
- Institute of Nanoscience of Aragon (INA) & Department of Condensed Matter Physics, University of Zaragoza, 50018 Zaragoza, Spain.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| |
Collapse
|
16
|
Caffery B, Lee JS, Alexander-Bryant AA. Vectors for Glioblastoma Gene Therapy: Viral & Non-Viral Delivery Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E105. [PMID: 30654536 PMCID: PMC6359729 DOI: 10.3390/nano9010105] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme is the most common and aggressive primary brain tumor. Even with aggressive treatment including surgical resection, radiation, and chemotherapy, patient outcomes remain poor, with five-year survival rates at only 10%. Barriers to treatment include inefficient drug delivery across the blood brain barrier and development of drug resistance. Because gliomas occur due to sequential acquisition of genetic alterations, gene therapy represents a promising alternative to overcome limitations of conventional therapy. Gene or nucleic acid carriers must be used to deliver these therapies successfully into tumor tissue and have been extensively studied. Viral vectors have been evaluated in clinical trials for glioblastoma gene therapy but have not achieved FDA approval due to issues with viral delivery, inefficient tumor penetration, and limited efficacy. Non-viral vectors have been explored for delivery of glioma gene therapy and have shown promise as gene vectors for glioma treatment in preclinical studies and a few non-polymeric vectors have entered clinical trials. In this review, delivery systems including viral, non-polymeric, and polymeric vectors that have been used in glioblastoma multiforme (GBM) gene therapy are discussed. Additionally, advances in glioblastoma gene therapy using viral and non-polymeric vectors in clinical trials and emerging polymeric vectors for glioma gene therapy are discussed.
Collapse
Affiliation(s)
- Breanne Caffery
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
| | - Angela A Alexander-Bryant
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
17
|
Ruan M, Liu J, Ren X, Li C, Zhao AZ, Li L, Yang H, Dai Y, Wang Y. Whole transcriptome sequencing analyses of DHA treated glioblastoma cells. J Neurol Sci 2018; 396:247-253. [PMID: 30529802 DOI: 10.1016/j.jns.2018.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is a typical malignant tumor, and there are no effective drugs capable of improving patient survival. Docosahexaenoic acid (DHA), a nutrient essential to animal health and neurodevelopment, exerts an anticancer effect in several types of cancer. However, the function of DHA in GBM is still unclear. Here, we showed that DHA could repress the migration and invasion of GBM U251 cells and promote their apoptosis in a dose- and time-dependent manner, indicating that DHA has an anticancer effect on GBM cells. Whole-transcriptome analysis indicated that DHA treatment mainly regulates the genes associated with receptor binding, oxidoreductase activity, organic acid transmembrane transporter activity, and carboxylic acid transmembrane transporter activity. Long non-coding RNAs (LncRNAs) involved in the regulation network of DHA were also identified, and their targets were assigned to the Gene Ontology (GO) categories. In silico analysis was conducted to predict the pathways related to the differentially expressed genes by DHA treatment. Our findings suggest that DHA acts as an antitumor agent in GBM, which may provide a suitable means of improving the efficacy of GBM treatment in the future.
Collapse
Affiliation(s)
- Miaomiao Ruan
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Jiangsu Center for Safety Evaluation of Drugs, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xueyang Ren
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Chu Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Allan Z Zhao
- Collaborative Innovation Center for Cancer Medicine, Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province 510643, China
| | - Lin Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
18
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
19
|
Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Front Physiol 2018; 9:170. [PMID: 29615917 PMCID: PMC5868458 DOI: 10.3389/fphys.2018.00170] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
The most lethal form of brain cancer, glioblastoma multiforme, is characterized by rapid growth and invasion facilitated by cell migration and degradation of the extracellular matrix. Despite technological advances in surgery and radio-chemotherapy, glioblastoma remains largely resistant to treatment. New approaches to study glioblastoma and to design optimized therapies are greatly needed. One such approach harnesses computational modeling to support the design and delivery of glioblastoma treatment. In this paper, we critically summarize current glioblastoma therapy, with a focus on emerging nanomedicine and therapies that capitalize on cell-specific signaling in glioblastoma. We follow this summary by discussing computational modeling approaches focused on optimizing these emerging nanotherapeutics for brain cancer. We conclude by illustrating how mathematical analysis can be used to compare the delivery of a high potential anticancer molecule, delphinidin, in both free and nanoparticle loaded forms across the blood-brain barrier for glioblastoma.
Collapse
Affiliation(s)
- Elif Ozdemir-Kaynak
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, Turkey
| | - Amina A Qutub
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, Turkey.,Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
20
|
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849. [PMID: 29556359 PMCID: PMC5858503 DOI: 10.7150/thno.22172] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Jin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| |
Collapse
|
21
|
Bayraç AT, Akça OE, Eyidoğan Fİ, Öktem HA. Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. J Biosci 2018. [DOI: 10.1007/s12038-018-9733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Wang X, Zhang Q, Lv L, Fu J, Jiang Y, Xin H, Yao Q. Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy. Drug Deliv 2017; 24:1401-1409. [PMID: 28933201 PMCID: PMC8241031 DOI: 10.1080/10717544.2017.1378940] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Drug delivery systems based on nanoparticles (nano-DDS) have aroused attentions for the treatment of glioblastoma (GBM), the most malignant brain cancer with a dismal prognosis. However, there are still numerous unmet challenges for traditional nano-DDS, such as the poor nanoparticle penetration, short retention in the GBM parenchyma and low glioma targeting ability. Herein, we used Pep-1 and CREKA peptides to construct a novel multifunctional GBM targeting nano-DDS (PC-NP). Pep-1 was used to overcome the blood-brain tumor barrier (BBTB) and home to glioma cells via interleukin-13 receptor-α2-mediated endocytosis, and CREKA was used to bind to fibrin-fibronectin complexes abundantly expressed in tumor microenvironment for enhanced retention in the GBM. Biological studies showed that the cellular uptake of PC-NP by U87MG cells was significantly enhanced compared with the non-targeting NP. Furthermore, CREKA modification increased the binding capacity of PC-NP to fibrin-fibronectin complexes as confirmed by the competition experiment. In accordance with the increased cellular uptake, PC-NP remarkably increased the cytotoxicity of its payload paclitaxel (PTX) against U87MG cells with an IC50 of 0.176 μg/mL. In vivo fluorescence imaging and antiglioma efficacy evaluation further confirmed that PC-NP accumulated effectively and penetrated deeply into GBM tissue. PC-NP-PTX exhibited a median survival time as long as 61 days in intracranial GBM-bearing mice. In conclusion, our findings indicated PC-NP as a promising nano-DDS for GBM targeting delivery of anticancer drugs.
Collapse
Affiliation(s)
- Xiuzhen Wang
- a Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China.,b School of Pharmacy , Nanjing Medical University , Nanjing , China
| | - Qing Zhang
- b School of Pharmacy , Nanjing Medical University , Nanjing , China
| | - Lingyan Lv
- b School of Pharmacy , Nanjing Medical University , Nanjing , China
| | - Junjie Fu
- b School of Pharmacy , Nanjing Medical University , Nanjing , China
| | - Yan Jiang
- b School of Pharmacy , Nanjing Medical University , Nanjing , China
| | - Hongliang Xin
- b School of Pharmacy , Nanjing Medical University , Nanjing , China
| | - Qizheng Yao
- a Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
23
|
Séhédic D, Chourpa I, Tétaud C, Griveau A, Loussouarn C, Avril S, Legendre C, Lepareur N, Wion D, Hindré F, Davodeau F, Garcion E. Locoregional Confinement and Major Clinical Benefit of 188Re-Loaded CXCR4-Targeted Nanocarriers in an Orthotopic Human to Mouse Model of Glioblastoma. Am J Cancer Res 2017; 7:4517-4536. [PMID: 29158842 PMCID: PMC5695146 DOI: 10.7150/thno.19403] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/11/2017] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Gold standard beam radiation for glioblastoma (GBM) treatment is challenged by resistance phenomena occurring in cellular populations well prepared to survive or to repair damage caused by radiation. Among signals that have been linked with radio-resistance, the SDF1/CXCR4 axis, associated with cancer stem-like cell, may be an opportune target. To avoid the problem of systemic toxicity and blood-brain barrier crossing, the relevance and efficacy of an original system of local brain internal radiation therapy combining a radiopharmaceutical with an immuno-nanoparticle was investigated. EXPERIMENT DESIGN The nanocarrier combined lipophilic thiobenzoate complexes of rhenium-188 loaded in the core of a lipid nanocapsule (LNC188Re) with a function-blocking antibody, 12G5 directed at the CXCR4, on its surface. The efficiency of 12G5-LNC188Re was investigated in an orthotopic and xenogenic GBM model of CXCR4-positive U87MG cells implanted in the striatum of Scid mice. RESULTS We demonstrated that 12G5-LNC188Re single infusion treatment by convection-enhanced delivery resulted in a major clinical improvement in median survival that was accompanied by locoregional effects on tumor development including hypovascularization and stimulation of the recruitment of bone marrow derived CD11b- or CD68-positive cells as confirmed by immunohistochemistry analysis. Interestingly, thorough analysis by spectral imaging in a chimeric U87MG GBM model containing CXCR4-positive/red fluorescent protein (RFP)-positive- and CXCR4-negative/RFP-negative-GBM cells revealed greater confinement of DiD-labeled 12G5-LNCs than control IgG2a-LNCs in RFP compartments. Main conclusion: These findings on locoregional impact and targeting of disseminated cancer cells in tumor margins suggest that intracerebral active targeting of nanocarriers loaded with radiopharmaceuticals may have considerable benefits in clinical applications.
Collapse
|
24
|
Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:105. [PMID: 28784180 PMCID: PMC5547476 DOI: 10.1186/s13046-017-0573-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
Background MYB-related protein B (B-MYB/MYBL2), a member of the myeloblastosis family of transcription factors, has been reported for its role in the genesis and progression of tumors. Forkhead box M1 (FoxM1), another transcriptional factor, is considered to be an independent predictor of poor survival in many solid cancers. The aim of the present study was to investigate the clinical significance of the correlation between MYBL2 and FoxM1 in glioma and the possible mechanism of FoxM1and MYBL2 expression. Methods MYBL2 and FoxM1expression in cancerous tissues and cell lines were determined by reverse transcription-PCR (RT-PCR), Western blotting and immunostaining. The co-expression of MYBL2 and FoxM1 was analyzed in low-grade glioma (LGG) and glioblastoma (HGG) cohorts of TCGA using cBioportal and UCSC Xena. And, the role of MYBL2 and FoxM1 in glioma cell progression and the underlying mechanisms were studied by using small interfering RNA (si-RNA) and pcDNA3.1 + HAvectors. Furthermore, the effects of MYBL2 and FoxM1 in cell proliferation, cell cycle progression, apoptosis, migration, invasion, and adhesion were determined by cell proliferation assays, flow cytometry analysis, transwell migration and cell adhesion assay. Results MYBL2 and FoxM1 expression are significantly associated with clinical stages and overall survival of glioma patients. In cohorts of TCGA, patients with high MYBL2 but without radio-chemotherapy had the highest hazard ratio (adjusted HR = 5.29, 95% CI = 1.475–18.969, P < 0.05). Meanwhile, MYBL2 closely related to the FoxM1 expression in 79 glioma tissues (r = 0.742, p < 0.05) and LGG (r = 0.83) and HGG (r = 0.74) cohorts of TCGA. Down regulation of FoxM1 and MYBL2 by siRNAs induced the cell cycle arrest, apoptosis and EMT of glioma cells. Furthermore, inactivations of Akt/FoxM1 signaling by Akt inhibitor and siRNA-FoxM1 reduce the expression of MYBL2 in glioma cells. Conclusions MYBL2 is a key downstream factor of Akt/FoxM1 signaling to promote progression of human glioma, and could be a new candidate gene for molecular targeting therapy and biomarker for radiotherapy of glioma. Trial registration CTXY-1300041-3-2. ChiCTR-COC-15006186. Registered date: 13 September 2013. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0573-6) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm 2017; 531:372-388. [PMID: 28755993 DOI: 10.1016/j.ijpharm.2017.07.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour, and the most aggressive in nature. The prognosis for patients with GBM remains poor, with a median survival time of only 1-2 years. The treatment failure relies on the development of resistance by tumour cells and the difficulty of ensuring that drugs effectively cross the dual blood brain barrier/blood brain tumour barrier. The advanced molecular and genetic knowledge has allowed to identify the mechanisms responsible for temozolomide resistance, which represents the standard of care in GBM, along with surgical resection and radiotherapy. Such resistance has motivated the researchers to investigate new avenues for GBM treatment intended to improve patient survival. In this review, we provide an overview of major obstacles to effective treatment of GBM, encompassing biological barriers, cancer stem cells, DNA repair mechanisms, deregulated signalling pathways and autophagy. New insights and potential therapy approaches for GBM are also discussed, emphasizing localized chemotherapy delivered directly to the brain, immunotherapy, gene therapy and nanoparticle-mediated brain drug delivery.
Collapse
Affiliation(s)
- Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - María Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Spain
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Portugal; Pharmacometrics Group of the Centre for Neurosciences and Cell Biology (CNC), University of Coimbra, Portugal.
| |
Collapse
|
26
|
Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. J Control Release 2017; 255:132-141. [DOI: 10.1016/j.jconrel.2017.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/29/2022]
|
27
|
Borhani S, Mozdarani H, Babalui S, Bakhshandeh M, Nosrati H. In Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:258-265. [PMID: 28533574 PMCID: PMC5429494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro. METHODS Two 'U87MG' cell lines and skin fibroblast were cultured and assigned to five groups for 24, 48, and 72 hours. The groups were namely, TMZ group (2000 μM/L), IR group (5 Gy), TMZ plus IR group, control group, and control solvent group. MTT assay was applied to evaluate cell viability. Data were analyzed with SPSS 21.0 software using one-way ANOVA and Kruskal-Wallis test. P<0.05 were considered statistically significant. RESULTS The slope of growth curve U87MG cells in semi-logarithmic scale was equal to 27.36±0.89 hours. The viability of cells was determined for different TMZ and IR treatment groups. In terms of cell viability, there were no significant differences between the control and control solvent groups (P=0.35) and between treated group by IR (5 Gy) alone and TMZ (2000 µM/ml) alone (P=0.15). Data obtained for the cell viability of combined TMZ plus IR in both cell lines compared to TMZ or IR treated group alone showed a significant difference (P=0.002). CONCLUSION The evaluation of cells viability showed that TMZ in combination with IR on glioma cells led to a significant radiosensitivity compared to IR alone.
Collapse
Affiliation(s)
- Samira Borhani
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Correspondence: Hossein Mozdarani, Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 14115-111, Tehran, Iran Tel: +98 21 82883830 Fax: +98 21 88006544
| | - Somayyeh Babalui
- Radiotherapy Oncology, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Radiotherapy Oncology, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Nosrati
- Radiotherapy Oncology, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Xiao D, Huang J, Pan Y, Li H, Fu C, Mao C, Cheng Y, Shi Y, Chen L, Jiang Y, Yang R, Liu Y, Zhou J, Cao Y, Liu S, Tao Y. Chromatin Remodeling Factor LSH is Upregulated by the LRP6-GSK3β-E2F1 Axis Linking Reversely with Survival in Gliomas. Am J Cancer Res 2017; 7:132-143. [PMID: 28042322 PMCID: PMC5196891 DOI: 10.7150/thno.17032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
The signaling pathway-based stratification in chromatin modification could predict clinical outcome more reliably than morphology-alone-based classification schemes in gliomas. Here we reported a role of the chromatin-remodeling factor lymphoid-specific helicase (LSH) in gliomas. Among astrocytomas of grade I to III and glioblastoma of grade IV, LSH were almost completely expressed in all cases, and strongly correlated with astrocytomas progression and poor prognosis of patients with astrocytomas and glioblastoma. Ectopic expression of LSH promoted tumor formation. Up-regulation of transcription factor E2F1 in astrocytomas and glioblastoma was associated with the progression of gliomas and correlated with LSH expression. Chromatin immunoprecipitation (ChIP) analysis showed transcription factor E2F1 were recruited to the promoter region of LSH, and depletion of E2F1 decreased LSH expression and cell growth. Moreover, glycogen synthase kinase-3β (GSK-3β), an intact complex of E2F1, were also highly expressed in astrocytomas and linked with astrocytomas progression and poor prognosis of patients with astrocytomas and glioblastoma. Inhibition of GSK3β increased the enrichment of E2F1 to the LSH promoter, in turn, increased LSH expression. Lipoprotein receptor-related protein 6 (LRP6), an upstream regulator of GSK3β signaling pathway, was highly expressed in gliomas. Knockdown of LRP6 decreased LSH expression through decrease of recruitment of E2F1 to the LSH promoter leading to inhibition of cell growth. Taken together, this study reveals evidence demonstrating a mechanism by which upregulated promoted gliomas. A mechanistic link between LSH expression and activation of the LPR6/ GSK3β/E2F1 axis in gliomas illustrates a novel role of LSH in malignant astrocytomas and glioblastoma.
Collapse
|
29
|
Pinto MP, Arce M, Yameen B, Vilos C. Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine (Lond) 2016; 12:59-72. [PMID: 27876436 DOI: 10.2217/nnm-2016-0307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain tumors display the highest mortality rates of all childhood cancers, and over the last decade its prevalence has steadily increased in elderly. To date, effective treatments for brain tumors and particularly for malignant gliomas remain a challenge mainly due to the low permeability and high selectivity of the blood-brain barrier (BBB) to conventional anticancer drugs. In recent years, the elucidation of the cellular mechanisms involved in the transport of substances into the brain has boosted the development of therapeutic-targeted nanoparticles (NPs) with the ability to cross the BBB. Here, we present a comprehensive overview of the available therapeutic strategies developed against malignant gliomas based on 'actively targeted' NPs, the challenges of crossing the BBB and blood-brain tumor barrier as well as its mechanisms and a critical assessment of clinical studies that have used targeted NPs for the treatment of malignant gliomas. Finally, we discuss the potential of actively targeted NP-based strategies in clinical settings, its possible side effects and future directions for therapeutic applications. First draft submitted: 4 October 2016; Accepted for publication: 14 October 2016; Published online: 23 November 2016.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Laboratory of Immunology of Reproduction, Faculty of Chemistry & Biology, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Maximiliano Arce
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Basit Yameen
- Laboratory of Nanomedicine & Biomaterials, Department of Anesthesiology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
30
|
Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett 2016; 385:12-20. [PMID: 27826040 DOI: 10.1016/j.canlet.2016.10.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022]
Abstract
Vascular recovery or re-angiogenesis after radiotherapy plays a significant role in tumor recurrence, whereas molecular mechanisms of this process remain elusive. In this work, we found that dying glioma cells promoted post-irradiation angiogenesis through a caspase 3 dependent mechanism. Evidence in vitro and in vivo indicated that caspase 3 inhibition undermined proangiogenic effects of dying glioma cells. Proteolytic inactivation of caspase 3 in glioma cells reduced tumorigenicity. Importantly, we identified that NF-κB/COX-2/PGE2 axis acted as downstream signaling of caspase 3, mediating proangiogenic response after irradiation. Additionally, VEGF-A, regulated by caspase 3 possibly through phosphorylated eIF4E, was recognized as another downstream factor participating in the proangiogenic response. In conclusion, these data demonstrated that caspase 3 in dying glioma cells supported the proangiogenic response after irradiation by governing NF-κB/COX-2/PGE2 axis and p-eIF4E/VEGF-A signaling. While inducing caspase 3 activation has been a generally-adopted notion in cancer therapeutics, our study counterintuitively illustrated that caspase 3 activation in dying glioma cells unfavorably supported post-irradiation angiogenesis. This double-edged role of caspase 3 suggested that taming caspase 3 from the opposite side, not always activating it, may provide novel therapeutic strategies due to restricted post-irradiation angiogenesis.
Collapse
|
31
|
Chen S, Wang Y, Ni C, Meng G, Sheng X. HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells. Biomed Pharmacother 2016; 83:898-904. [DOI: 10.1016/j.biopha.2016.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 01/04/2023] Open
|
32
|
Kelley K, Knisely J, Symons M, Ruggieri R. Radioresistance of Brain Tumors. Cancers (Basel) 2016; 8:cancers8040042. [PMID: 27043632 PMCID: PMC4846851 DOI: 10.3390/cancers8040042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation.
Collapse
Affiliation(s)
- Kevin Kelley
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Jonathan Knisely
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Marc Symons
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| | - Rosamaria Ruggieri
- Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
- The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA.
| |
Collapse
|
33
|
RNF135, RING finger protein, promotes the proliferation of human glioblastoma cells in vivo and in vitro via the ERK pathway. Sci Rep 2016; 6:20642. [PMID: 26856755 PMCID: PMC4746631 DOI: 10.1038/srep20642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022] Open
Abstract
Ring finger protein 135 (RNF135), located on chromosome 17q11.2, is a RING finger domain-containing E3 ubiquitin ligase that was identified as a bio-marker and therapy target of glioblastoma. In our study, we confirmed that RNF135 was up-regulated in glioblastoma tissues compared with normal brain (NB) tissues, and that RNF135 knockdown inhibited proliferation and migration and led to cell cycle arrest in the G0/G1 phase in vivo. By lowering RNF135 expression, phosphorylated Erk and cell cycle protein CDK4 were down-regulated, while p27Kip1 and p21Waf1/Cip1 were up-regulated in U87 and U251 cells in vitro. In addition, using the immunofluorescence double labelling method, we found that RNF135 and P-Erk were co-localized in the cytoplasm and were highly expressed in glioblastoma samples compared with NB tissues. Moreover, the growth of U87 cell-transplanted tumours in nude mice was inhibited while transduced with Lv-shRNF135. Taken together, our findings demonstrate the biological effects of RNF135 in glioblastoma cell proliferation, migration and cell cycle, and its role in the progression of glioblastoma may be associated with the ERK signal transduction pathway.
Collapse
|
34
|
Kim SS, Harford JB, Pirollo KF, Chang EH. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem Biophys Res Commun 2015; 468:485-9. [PMID: 26116770 DOI: 10.1016/j.bbrc.2015.06.137] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/20/2015] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | - Kathleen F Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Esther H Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|