1
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
3
|
Camargo-Herrera V, Castellanos G, Rangel N, Jiménez-Tobón GA, Martínez-Agüero M, Rondón-Lagos M. Patterns of Chromosomal Instability and Clonal Heterogeneity in Luminal B Breast Cancer: A Pilot Study. Int J Mol Sci 2024; 25:4478. [PMID: 38674062 PMCID: PMC11049937 DOI: 10.3390/ijms25084478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN), defined by variations in the number or structure of chromosomes from cell to cell, is recognized as a distinctive characteristic of cancer associated with the ability of tumors to adapt to challenging environments. CIN has been recognized as a source of genetic variation that leads to clonal heterogeneity (CH). Recent findings suggest a potential association between CIN and CH with the prognosis of BC patients, particularly in tumors expressing the epidermal growth factor receptor 2 (HER2+). In fact, information on the role of CIN in other BC subtypes, including luminal B BC, is limited. Additionally, it remains unknown whether CIN in luminal B BC tumors, above a specific threshold, could have a detrimental effect on the growth of human tumors or whether low or intermediate CIN levels could be linked to a more favorable BC patient prognosis when contrasted with elevated levels. Clarifying these relationships could have a substantial impact on risk stratification and the development of future therapeutic strategies aimed at targeting CIN in BC. This study aimed to assess CIN and CH in tumor tissue samples from ten patients with luminal B BC and compare them with established clinicopathological parameters. The results of this study reveal that luminal B BC patients exhibit intermediate CIN and stable aneuploidy, both of which correlate with lymphovascular invasion. Our results also provide valuable preliminary data that could contribute to the understanding of the implications of CIN and CH in risk stratification and the development of future therapeutic strategies in BC.
Collapse
Affiliation(s)
- Valentina Camargo-Herrera
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Giovanny Castellanos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Guillermo Antonio Jiménez-Tobón
- Laboratorio de Patología, Hospital Universitario Mayor-Méderi, Bogotá 110311, Colombia;
- Grupo BIOmedUR, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110231, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110231, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| |
Collapse
|
4
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
5
|
Zhang J, Zhou H, Hao T, Yang Y, Zhang Q, Li J, Ye M, Wu Y, Gao W, Guo Z. Faraday cage-type ECL biosensor for the detection of circulating tumor cell MCF-7. Anal Chim Acta 2023; 1271:341465. [PMID: 37328246 DOI: 10.1016/j.aca.2023.341465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Herein, a Faraday cage-type electrochemiluminescence biosensor was designed for the detection of human breast cancer cell MCF-7. Two kinds of nanomaterials, Fe3O4-APTs and GO@PTCA-APTs, were synthesized as capture unit and signal unit, respectively. In presence of the target MCF-7, the Faraday cage-type electrochemiluminescence biosensor was constructed by forming a complex "capture unit-MCF-7-signal unit". In this case, lots of electrochemiluminescence signal probes were assembled and could participate in the electrode reaction, achieving a significant increase in sensitivity. In addition, the double aptamer recognition strategy was adopted to improve the capture, enrichment efficiency and detection reliability. Under optimal experimental conditions, the limit of detection was 3 cells/mL. And, the sensor could afford the detection of actual human blood samples, which is the first report on the detection of intact circulating tumor cells by the Faraday cage-type electrochemiluminescence biosensor.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Huiqian Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Tingting Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yiyao Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Qingqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, PR China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Wanlei Gao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
6
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S, Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, Tai YT, Patel J, Pal J, Mashimo H, Samur MK, Munshi NC, Shammas MA. Elevated APE1 Dysregulates Homologous Recombination and Cell Cycle Driving Genomic Evolution, Tumorigenesis, and Chemoresistance in Esophageal Adenocarcinoma. Gastroenterology 2023; 165:357-373. [PMID: 37178737 PMCID: PMC10524563 DOI: 10.1053/j.gastro.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND & AIMS The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jiangning Zhao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Leutz Buon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shidai Mu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Lakshmi B Potluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Chengcheng Liao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jialan Shi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Gabriel B Gonzalez
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jaymin Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jagannath Pal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Hiroshi Mashimo
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts.
| |
Collapse
|
7
|
Deacon S, Walker L, Radhi M, Smith S. The Regulation of m6A Modification in Glioblastoma: Functional Mechanisms and Therapeutic Approaches. Cancers (Basel) 2023; 15:3307. [PMID: 37444417 DOI: 10.3390/cancers15133307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma is the most prevalent primary brain tumour and invariably confers a poor prognosis. The immense intra-tumoral heterogeneity of glioblastoma and its ability to rapidly develop treatment resistance are key barriers to successful therapy. As such, there is an urgent need for the greater understanding of the tumour biology in order to guide the development of novel therapeutics in this field. N6-methyladenosine (m6A) is the most abundant of the RNA modifications in eukaryotes. Studies have demonstrated that the regulation of this RNA modification is altered in glioblastoma and may serve to regulate diverse mechanisms including glioma stem-cell self-renewal, tumorigenesis, invasion and treatment evasion. However, the precise mechanisms by which m6A modifications exert their functional effects are poorly understood. This review summarises the evidence for the disordered regulation of m6A in glioblastoma and discusses the downstream functional effects of m6A modification on RNA fate. The wide-ranging biological consequences of m6A modification raises the hope that novel cancer therapies can be targeted against this mechanism.
Collapse
Affiliation(s)
- Simon Deacon
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Lauryn Walker
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Masar Radhi
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart Smith
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Pipek O, Alpár D, Rusz O, Bödör C, Udvarnoki Z, Medgyes-Horváth A, Csabai I, Szállási Z, Madaras L, Kahán Z, Cserni G, Kővári B, Kulka J, Tőkés AM. Genomic Landscape of Normal and Breast Cancer Tissues in a Hungarian Pilot Cohort. Int J Mol Sci 2023; 24:ijms24108553. [PMID: 37239898 DOI: 10.3390/ijms24108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
A limited number of studies have focused on the mutational landscape of breast cancer in different ethnic populations within Europe and compared the data with other ethnic groups and databases. We performed whole-genome sequencing of 63 samples from 29 Hungarian breast cancer patients. We validated a subset of the identified variants at the DNA level using the Illumina TruSight Oncology (TSO) 500 assay. Canonical breast-cancer-associated genes with pathogenic germline mutations were CHEK2 and ATM. Nearly all the observed germline mutations were as frequent in the Hungarian breast cancer cohort as in independent European populations. The majority of the detected somatic short variants were single-nucleotide polymorphisms (SNPs), and only 8% and 6% of them were deletions or insertions, respectively. The genes most frequently affected by somatic mutations were KMT2C (31%), MUC4 (34%), PIK3CA (18%), and TP53 (34%). Copy number alterations were most common in the NBN, RAD51C, BRIP1, and CDH1 genes. For many samples, the somatic mutational landscape was dominated by mutational processes associated with homologous recombination deficiency (HRD). Our study, as the first breast tumor/normal sequencing study in Hungary, revealed several aspects of the significantly mutated genes and mutational signatures, and some of the copy number variations and somatic fusion events. Multiple signs of HRD were detected, highlighting the value of the comprehensive genomic characterization of breast cancer patient populations.
Collapse
Affiliation(s)
- Orsolya Pipek
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Orsolya Rusz
- Department of Pathology, Forensic and Insurance Medicine, SE NAP, Brain Metastasis Research Group, Semmelweis University, 1091 Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zoltán Udvarnoki
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anna Medgyes-Horváth
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Institute of Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zoltán Szállási
- Department of Pathology, Forensic and Insurance Medicine, SE NAP, Brain Metastasis Research Group, Semmelweis University, 1091 Budapest, Hungary
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Lilla Madaras
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
- Department of Pathology, Bács-Kiskun County Teaching Hospital, 6000 Kecskemét, Hungary
| | - Bence Kővári
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
- Department of Pathology, Henry Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Janina Kulka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Anna Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| |
Collapse
|
9
|
Hernández-Gómez C, Hernández-Lemus E, Espinal-Enríquez J. CNVs in 8q24.3 do not influence gene co-expression in breast cancer subtypes. Front Genet 2023; 14:1141011. [PMID: 37274786 PMCID: PMC10236314 DOI: 10.3389/fgene.2023.1141011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Gene co-expression networks are a useful tool in the study of interactions that have allowed the visualization and quantification of diverse phenomena, including the loss of co-expression over long distances in cancerous samples. This characteristic, which could be considered fundamental to cancer, has been widely reported in various types of tumors. Since copy number variations (CNVs) have previously been identified as causing multiple genetic diseases, and gene expression is linked to them, they have often been mentioned as a probable cause of loss of co-expression in cancerous networks. In order to carry out a comparative study of the validity of this statement, we took 477 protein-coding genes from chromosome 8, and the CNVs of 101 genes, also protein-coding, belonging to the 8q24.3 region, a cytoband that is particularly active in the appearance of breast cancer. We created CNVS-conditioned co-expression networks of each of the 101 genes in the 8q24.3 region using conditional mutual information. The study was carried out using the four molecular subtypes of breast cancer (Luminal A, Luminal B, Her2, and Basal), as well as a case corresponding to healthy samples. We observed that in all cancer cases, the measurement of the Kolmogorov-Smirnov statistic shows that there are no significant differences between one and other values of the CNVs for any case. Furthermore, the co-expression interactions are stronger in all cancer subtypes than in the control networks. However, the control network presents a homogeneously distributed set of co-expression interactions, while for cancer networks, the highest interactions are more confined to specific cytobands, in particular 8q24.3 and 8p21.3. With this approach, we demonstrate that despite copy number alterations in the 8q24 region being a common trait in breast cancer, the loss of long-distance co-expression in breast cancer is not determined by CNVs.
Collapse
Affiliation(s)
- Candelario Hernández-Gómez
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, México City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
10
|
Hancock JL, Kalimutho M, Straube J, Lim M, Gresshoff I, Saunus JM, Lee JS, Lakhani SR, Simpson KJ, Bush AI, Anderson RL, Khanna KK. COMMD3 loss drives invasive breast cancer growth by modulating copper homeostasis. J Exp Clin Cancer Res 2023; 42:90. [PMID: 37072858 PMCID: PMC10111822 DOI: 10.1186/s13046-023-02663-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.
Collapse
Affiliation(s)
- Janelle L Hancock
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Malcolm Lim
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
| | - Irma Gresshoff
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
| | - Jodi M Saunus
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Sunil R Lakhani
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research and Anatomical Pathology, Pathology Queensland, Herston, QLD, 4029, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3010, Australia
- Sir Peter MacCallum Department of Oncology and the Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
| |
Collapse
|
11
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
12
|
Njouendou AJ, Szarvas T, Tiofack AAZ, Kenfack RN, Tonouo PD, Ananga SN, Bell EHMD, Simo G, Hoheisel JD, Siveke JT, Lueong SS. SOX2 dosage sustains tumor-promoting inflammation to drive disease aggressiveness by modulating the FOSL2/IL6 axis. Mol Cancer 2023; 22:52. [PMID: 36932385 PMCID: PMC10022277 DOI: 10.1186/s12943-023-01734-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/26/2022] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Inflammation is undoubtedly a hallmark of cancer development. Its maintenance within tumors and the consequences on disease aggressiveness are insufficiently understood. METHODS Data of 27 tumor entities (about 5000 samples) were downloaded from the TCGA and GEO databases. Multi-omic analyses were performed on these and in-house data to investigate molecular determinants of tumor aggressiveness. Using molecular loss-of-function data, the mechanistic underpinnings of inflammation-induced tumor aggressiveness were addressed. Patient specimens and in vivo disease models were subsequently used to validate findings. RESULTS There was significant association between somatic copy number alterations (sCNAs) and tumor aggressiveness. SOX2 amplification was the most important feature among novel and known aggressiveness-associated alterations. Mechanistically, SOX2 regulates a group of genes, in particular the AP1 transcription factor FOSL2, to sustain pro-inflammatory signaling pathways, such as IL6-JAK-STAT3, TNFA and IL17. FOSL2 was found overexpressed in tumor sections of specifically aggressive cancers. In consequence, prolonged inflammation induces immunosuppression and activates cytidine deamination and thus DNA damage as evidenced by related mutational signatures in aggressive tumors. The DNA damage affects tumor suppressor genes such as TP53, which is the most mutated gene in aggressive tumors compared to less aggressive ones (38% vs 14%), thereby releasing cell cycle control. These results were confirmed by analyzing tissues from various tumor types and in vivo studies. CONCLUSION Our data demonstrate the implication of SOX2 in promoting DNA damage and genome instability by sustaining inflammation via FOSL2/IL6, resulting in tumor aggressiveness.
Collapse
Affiliation(s)
- Abdel Jelil Njouendou
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, South West Region, Cameroon
- Phytopharmacy and Drug Discovery Section, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon
| | - Tibor Szarvas
- Department of Urology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122, Essen, Germany
- Department of Urology, Semmelweis University, 1082, Budapest, Hungary
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region, Cameroon
- Early Detection and Biomarker Section, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon
| | - Rovaldo Nguims Kenfack
- Early Detection and Biomarker Section, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon
- Research Unit of Microbiology and Antimicrobial Substances (RUMAS), Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region, Cameroon
| | - Pamela Derliche Tonouo
- Early Detection and Biomarker Section, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Littoral Region, Cameroon
- Department of Medical Oncology, Douala General Hospital, Douala, Littoral Region, Cameroon
| | - Sidonie Noa Ananga
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Littoral Region, Cameroon
- Department of Medical Oncology, Douala General Hospital, Douala, Littoral Region, Cameroon
- Epidemiology and Clinical Trial Section, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon
| | - Esther H M Dina Bell
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Littoral Region, Cameroon
- Department of Medical Oncology, Douala General Hospital, Douala, Littoral Region, Cameroon
- Epidemiology and Clinical Trial Section, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region, Cameroon
- Directorate of Scientific Affairs, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute for Experimental Cancer Therapy, West German Cancer Center, University Hospital Essen, Hufeland Str. 55, 45147, Essen, Germany
- Division for Solid Tumor Translational Oncology German Cancer Research Center (DKFZ)West German Cancer Center, The German Consortium for Translational Cancer Research (DKTK), Essen/Düsseldorf Partner, Site University Hospital Essen, Essen, Germany
| | - Smiths S Lueong
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, South West Region, Cameroon.
- Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region, Cameroon.
- Early Detection and Biomarker Section, The Cameroon Consortium for Translational Cancer Research (CCOTCARE), Douala, Cameroon.
- Bridge Institute for Experimental Cancer Therapy, West German Cancer Center, University Hospital Essen, Hufeland Str. 55, 45147, Essen, Germany.
- Division for Solid Tumor Translational Oncology German Cancer Research Center (DKFZ)West German Cancer Center, The German Consortium for Translational Cancer Research (DKTK), Essen/Düsseldorf Partner, Site University Hospital Essen, Essen, Germany.
| |
Collapse
|
13
|
Han J, Wan M, Ma Z, Yi H. Regulation of DNA-PK activity promotes the progression of TNBC via enhancing the immunosuppressive function of myeloid-derived suppressor cells. Cancer Med 2023; 12:5939-5952. [PMID: 36373232 PMCID: PMC10028116 DOI: 10.1002/cam4.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND DNA-dependent protein kinase (DNA-PK) is engaged in DNA damage repair and is significantly expressed in triple negative breast cancer (TNBC). Inhibiting DNA-PK to reduce DNA damage repair provides a possibility of tumor treatment. NU7441, a DNA-PK inhibitor, can regulate the function and differentiation of CD4+ T cells and effectively enhance immunogenicity of monocyte-derived dendritic cells. However, the effect of NU7441 on the tumor progression activity of immunosuppressive myeloid-derived suppressor cells (MDSCs) in TNBC remains unclear. RESULTS In this study, we found that NU7441 alone significantly increased tumor growth in 4 T1 (a mouse TNBC cell line) tumor-bearing mice. Bioinformatics analysis showed that DNA-PK and functional markers of MDSCs (iNOS, Arg1, and IDO) tended to coexist in breast cancer patients. The mutations of these genes were significantly correlated with lower survival in breast cancer patients. Moreover, NU7441 significantly decreased the percentage of MDSCs in peripheral blood mononuclear cells (PBMCs), spleen and tumor, but enhanced the immunosuppressive function of splenic MDSCs. Furthermore, NU7441 increased MDSCs' DNA-PK and pDNA-PK protein levels in PBMCs and in the spleen and increased DNA-PK mRNA expression and expression of MDSCs functional markers in splenic MDSCs from tumor-bearing mice. NU7441 combined with gemcitabine reduced tumor volume, which may be because gemcitabine eliminated the remaining MDSCs with enhanced immunosuppressive ability. CONCLUSIONS These findings highlight that the regulation of DNA-PK activity by NU7441 promotes TNBC progression via enhancing the immunosuppressive function of MDSCs. Moreover, NU7441 combined with gemcitabine offers an efficient therapeutic approach for TNBC and merits deeper investigation.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| |
Collapse
|
14
|
The ubiquitin ligase RNF2 stabilizes ERα and modulates breast cancer progression. Hum Cell 2023; 36:353-365. [PMID: 36271315 DOI: 10.1007/s13577-022-00810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Estrogen receptor α (ERα) is the most common clinical marker used for breast cancer prognosis and the classification of breast cancer subtypes. Clinically, patients with estrogen receptor-positive breast cancer can receive endocrine therapy. However, resistance to endocrine therapy has become an urgent clinical problem. A large number of previous studies have proven that posttranslational modification of the estrogen receptor is significantly related to endocrine therapy resistance. RNF2 is a member of the RING finger protein family that functions as an E3 ubiquitin ligase. Several studies have clarified that RNF2 is a critical regulator of ERα transcriptional regulation. In our current study, we identified RNF2 as an important posttranslational modification regulator of the estrogen receptor. RNF2 depletion inhibited breast cancer cell progression and ERα signaling activity. TCGA data analysis indicated that RNF2 was elevated in breast malignancies, while RNF2 depletion could drastically inhibit estrogen response gene expression on a whole-genome scale. TCGA data analysis revealed that RNF2 was positively correlated with ERα target gene expression. Further mechanistic studies showed that RNF2 was mainly localized in the nucleus and associated with ERα. The association increased ERα stability by inhibiting ERα K48-linked polyubiquitination. In conclusion, our study implicates nongenomic regulation by RNF2 on ERα protein stability and suggests that targeting RNF2 could be a promising strategy for breast cancer treatments.
Collapse
|
15
|
Chemotherapeutic Potential of Saikosaponin D: Experimental Evidence. J Xenobiot 2022; 12:378-405. [PMID: 36547471 PMCID: PMC9782205 DOI: 10.3390/jox12040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saikosaponin D (SSD), an active compound derived from the traditional plant Radix bupleuri, showcases potential in disease management owing to its antioxidant, antipyretic, and anti-inflammatory properties. The toxicological effects of SSD mainly include hepatotoxicity, neurotoxicity, hemolysis, and cardiotoxicity. SSD exhibits antitumor effects on multiple targets and has been witnessed in diverse cancer types by articulating various cell signaling pathways. As a result, carcinogenic processes such as proliferation, invasion, metastasis, and angiogenesis are inhibited, whereas apoptosis, autophagy, and differentiation are induced in several cancer cells. Since it reduces side effects and strengthens anti-cancerous benefits, SSD has been shown to have an additive or synergistic impact with chemo-preventive medicines. Regardless of its efficacy and benefits, the considerations of SSD in cancer prevention are absolutely under-researched due to its penurious bioavailability. Diverse studies have overcome the impediments of inadequate bioavailability using nanotechnology-based methods such as nanoparticle encapsulation, liposomes, and several other formulations. In this review, we emphasize the association of SSD in cancer therapeutics and the discussion of the mechanisms of action with the significance of experimental evidence.
Collapse
|
16
|
Structure-based discovery of 1-(3-fluoro-5-(5-(3-(methylsulfonyl)phenyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)phenyl)-3-(pyrimidin-5-yl)urea as a potent and selective nanomolar type-II PLK4 inhibitor. Eur J Med Chem 2022; 243:114714. [DOI: 10.1016/j.ejmech.2022.114714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023]
|
17
|
Meng X, Li W, Meng Z, Li Y. EIF4A3-induced circBRWD3 promotes tumorigenesis of breast cancer through miR-142-3p_miR-142-5p/RAC1/PAK1 signaling. BMC Cancer 2022; 22:1225. [PMID: 36443711 PMCID: PMC9703775 DOI: 10.1186/s12885-022-10200-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
CircBRWD3 is a newly discovered circRNA, and its potential function has not been probed. Here, we aimed to molecularly dissect the role of circBRWD3 in the tumorigenesis and progression of breast cancer (BC). qRT-PCR analysis revealed that circBRWD3 expression was dramatically upregulated in BC tissues, a feature that was positively correlated with the poor prognosis of patients with BC. CircBRWD3 knockdown repressed cell proliferation and metastasis, while promoting cell apoptosis in vitro. Consistently, an in vivo circBRWD3 deficiency model exhibited suppressed tumor metastasis and oncogenesis. On the other hand, circBRWD3 overexpression promoted cancer cell activity and tumorigenesis. Further, mechanistic studies elucidated that circBRWD3 sponged both miR-142-3p and miR-142-5p to modulate RAC1 expression, which subsequently activated the RAC1/PAK1 signaling to facilitate the tumorigenesis and progression of BC. Moreover, we discovered that EIF4A3 facilitated circBRWD3 expression by targeting the upstream of BRWD3 pre-mRNA. In conclusion, our study reveals that circBRWD3 facilitates BC tumorigenesis by regulating the circBRWD3/miR-142-3p_miR-142-5p /RAC1/PAK1 axis. In addition, circBRWD3 expression is positively regulated by an RNA-binding protein, EIFA3. Our results provide valuable scientific data for early diagnosis and therapy for breast cancer patients.
Collapse
Affiliation(s)
- Xianguo Meng
- grid.460018.b0000 0004 1769 9639College of Sports Medicines and Rehabilitation, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, 250118 Shandong China
| | - Wei Li
- grid.460018.b0000 0004 1769 9639College of Sports Medicines and Rehabilitation, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, 250118 Shandong China
| | - Ziqi Meng
- grid.443413.50000 0000 9074 5890Accounting Institute, Shandong University of Finance and Economics, No. 7366 East Second Ring Road, Jinan, 250220 Shandong China
| | - Yan Li
- grid.460018.b0000 0004 1769 9639College of Sports Medicines and Rehabilitation, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, 250118 Shandong China
| |
Collapse
|
18
|
Chen X, Tian F, Wu Z. A Genomic Instability-Associated Prognostic Signature for Glioblastoma Patients. World Neurosurg 2022; 167:e515-e526. [PMID: 35977679 DOI: 10.1016/j.wneu.2022.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genomic instability and aberrant tumor mutation burden are widely accepted hallmarks of cancer. Glioblastoma (GBM) is a common brain tumor in adults, and survival of patients with GBM is poor. This study aimed to investigate the prognostic value of genomic instability-derived genes in GBM. METHODS GBM data were downloaded from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Differential expression analysis of all samples with different tumor mutation burden was performed. Univariate Cox and LASSO Cox regression analyses were integrated to determine the optimal genes for constructing a risk score model. Multivariate Cox regression analysis and survival analysis determined independent prognostic indicators. Immune cell infiltration was analyzed by CIBERSORT algorithm. RESULTS In GMB patients with high and low tumor mutation burden, we identified 154 differentially expressed genes, which were significantly enriched in 47 Gene Ontology terms and 6 Kyoto Encyclopedia of Genes and Genomes pathways. To establish a risk score, 9 genes were further screened, including SDC1, CXCL1, CXCL6, RGS4, PCDHGB2, CA9, ZAR1, CHRM3, and SLN. High-risk patients had worse prognosis in two databases. The performance of a nomogram including prognostic factors (risk score and age) was good. Moreover, mast cells resting was significantly differentially infiltrated between high- and low-risk GBM samples. CONCLUSIONS The risk score constructed by 9 genomic instability-derived genes could reliably predict prognosis of GBM patients. The nomogram based on age and risk score also had a good prognostic predictive value.
Collapse
Affiliation(s)
- Xiaodong Chen
- Neurosurgery Department, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Fen Tian
- Nephrology Department, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Zeyu Wu
- Neurosurgery Department, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
19
|
Zhu J, Kong W, Huang L, Wang S, Bi S, Wang Y, Shan P, Zhu S. MLSP: A Bioinformatics Tool for Predicting Molecular Subtypes and Prognosis in Patients with Breast Cancer. Comput Struct Biotechnol J 2022; 20:6412-6426. [DOI: 10.1016/j.csbj.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
20
|
Jiao Y, Li S, Wang X, Yi M, Wei H, Rong S, Zheng K, Zhang L. A genomic instability-related lncRNA model for predicting prognosis and immune checkpoint inhibitor efficacy in breast cancer. Front Immunol 2022; 13:929846. [PMID: 35990656 PMCID: PMC9389369 DOI: 10.3389/fimmu.2022.929846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has overtaken lung cancer as the most frequently diagnosed cancer type and is the leading cause of death for women worldwide. It has been demonstrated in published studies that long non-coding RNAs (lncRNAs) involved in genomic stability are closely associated with the progression of breast cancer, and remarkably, genomic stability has been shown to predict the response to immune checkpoint inhibitors (ICIs) in cancer therapy, especially colorectal cancer. Therefore, it is of interest to explore somatic mutator-derived lncRNAs in predicting the prognosis and ICI efficacy in breast cancer patients. In this study, the lncRNA expression data and somatic mutation data of breast cancer patients from The Cancer Genome Atlas (TCGA) were downloaded and analyzed thoroughly. Univariate and multivariate Cox proportional hazards analyses were used to generate the genomic instability-related lncRNAs in a training set, which was subsequently used to analyze a testing set and combination of the two sets. The qRT-PCR was conducted in both normal mammary and breast cancer cell lines. Furthermore, the Kaplan–Meier and receiver operating characteristic (ROC) curves were applied to validate the predictive effect in the three sets. Finally, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to evaluate the association between genomic instability-related lncRNAs and immune checkpoints. As a result, a six-genomic instability-related lncRNA signature (U62317.4, MAPT-AS1, AC115837.2, EGOT, SEMA3B-AS1, and HOTAIR) was identified as the independent prognostic risk model for breast cancer patients. Compared with the normal mammary cells, the qRT-PCR showed that HOTAIR was upregulated while MAPT-AS1, EGOT, and SEMA3B-AS1 were downregulated in breast cancer cells. The areas under the ROC curves at 3 and 5 years were 0.711 and 0.723, respectively. Moreover, the patients classified in the high-risk group by the prognostic model had abundant negative immune checkpoint molecules. In summary, this study suggested that the prognostic model comprising six genomic instability-related lncRNAs may provide survival prediction. It is necessary to identify patients who are suitable for ICIs to avoid severe immune-related adverse effects, especially autoimmune diseases. This model may predict the ICI efficacy, facilitating the identification of patients who may benefit from ICIs.
Collapse
Affiliation(s)
- Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqu Wei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanjie Rong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Kun Zheng
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Zhang,
| |
Collapse
|
21
|
Functional regulations between genetic alteration-driven genes and drug target genes acting as prognostic biomarkers in breast cancer. Sci Rep 2022; 12:10641. [PMID: 35739271 PMCID: PMC9226112 DOI: 10.1038/s41598-022-13835-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Differences in genetic molecular features including mutation, copy number alterations and DNA methylation, can explain interindividual variability in response to anti-cancer drugs in cancer patients. However, identifying genetic alteration-driven genes and characterizing their functional mechanisms in different cancer types are still major challenges for cancer studies. Here, we systematically identified functional regulations between genetic alteration-driven genes and drug target genes and their potential prognostic roles in breast cancer. We identified two mutation and copy number-driven gene pairs (PARP1-ACSL1 and PARP1-SRD5A3), three DNA methylation-driven gene pairs (PRLR-CDKN1C, PRLR-PODXL2 and PRLR-SRD5A3), six gene pairs between mutation-driven genes and drug target genes (SLC19A1-SLC47A2, SLC19A1-SRD5A3, AKR1C3-SLC19A1, ABCB1-SRD5A3, NR3C2-SRD5A3 and AKR1C3-SRD5A3), and four copy number-driven gene pairs (ADIPOR2-SRD5A3, CASP12-SRD5A3, SLC39A11-SRD5A3 and GALNT2-SRD5A3) that all served as prognostic biomarkers of breast cancer. In particular, RARP1 was found to be upregulated by simultaneous copy number amplification and gene mutation. Copy number deletion and downregulated expression of ACSL1 and upregulation of SRD5A3 both were observed in breast cancers. Moreover, copy number deletion of ACSL1 was associated with increased resistance to PARP inhibitors. PARP1-ACSL1 pair significantly correlated with poor overall survival in breast cancer owing to the suppression of the MAPK, mTOR and NF-kB signaling pathways, which induces apoptosis, autophagy and prevents inflammatory processes. Loss of SRD5A3 expression was also associated with increased sensitivity to PARP inhibitors. The PARP1-SRD5A3 pair significantly correlated with poor overall survival in breast cancer through regulating androgen receptors to induce cell proliferation. These results demonstrate that genetic alteration-driven gene pairs might serve as potential biomarkers for the prognosis of breast cancer and facilitate the identification of combination therapeutic targets for breast cancers.
Collapse
|
22
|
Adolf IC, Rweyemamu LP, Akan G, Mselle TF, Dharsee N, Namkinga LA, Lyantagaye SL, Atalar F. The interplay between XPG-Asp1104His polymorphism and reproductive risk factors elevates risk of breast cancer in Tanzanian women: A multiple interaction analysis. Cancer Med 2022; 12:472-487. [PMID: 35691022 PMCID: PMC9844639 DOI: 10.1002/cam4.4914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Reproductive history and genetics are well-known risk factors of breast cancer (BC). Little is known about how these factors interact to effect BC. This study investigated the association of ten polymorphisms in DNA repair genes with BC susceptibility in the Tanzanian samples and further analyzed the association between reproductive risk factors and disease risk METHODS: A hospital-based case-control study in 263 histopathological confirmed BC patients and 250 age-matched cancer-free controls was carried out. Allelic, genotypic, and haplotype association analyses were executed. Also, multifactor dimensionality reduction (MDR), and interaction dendrogram approaches were performed. RESULTS The frequency of genotypic and allelic variants of XRCC1-Arg399Gln (rs25487), XRCC2-Arg188His (rs3218536), XRCC3-Thr241Met (rs861539), XPG-Asp1104His (rs17655), and MSH2-Gly322Asp (rs4987188) were significantly different between the groups (p < 0.05). Moreover, XRCC1-Arg399Gln (rs25487), XRCC3-Thr241Met (rs861539), and XPG-Asp1104His (rs17655) were associated with the increased risk of BC in co-dominant, dominant, recessive, and additive genetic-inheritance models (p < 0.05). XRCC1-Arg/Gln genotype indicated a 3.1-fold increased risk of BC in pre-menopausal patients (p = 0.001) while XPG-His/His genotype showed a 1.2-fold increased risk in younger BC patients (<40 years) (p = 0.028). Asp/His+His/His genotypes indicated a 1.3-fold increased risk of BC in PR+ patients and a 1.1-fold decreased risk of BC in luminal-A patients (p = 0.014, p = 0.020, respectively). MDR analysis revealed a positive interaction between BC and the XPG-Asp1104His (rs17655) together with family history of cancer in the first-degree relatives. Dendrogram analysis indicated that the XPG-Asp1104His (rs17655) and family history of cancer in first-degree relatives were significantly synergistic and might be associated with an elevated risk of BC in Tanzania. CONCLUSIONS The XPG-Asp1104His (rs17655) might exert both independent and interactive effects on BC development in the Tanzanian women.
Collapse
Affiliation(s)
- Ismael C. Adolf
- University of Dar es SalaamMbeya College of Health and Allied SciencesMbeyaTanzania
| | - Linus P. Rweyemamu
- University of Dar es SalaamMbeya College of Health and Allied SciencesMbeyaTanzania,University of Dar es SalaamDepartment of Molecular Biology and BiotechnologyDar es SalaamTanzania
| | - Gokce Akan
- Muhimbili University of Health and Allied SciencesMUHAS Genetic Laboratory, Department of BiochemistryDar es SalaamTanzania,Near East UniversityDESAM Research InstituteNicosiaCyprus
| | - Ted F. Mselle
- Muhimbili University of Health and Allied SciencesMUHAS Genetic Laboratory, Department of BiochemistryDar es SalaamTanzania
| | - Nazima Dharsee
- Ocean Road Cancer InstituteAcademic, Research and Consultancy UnitDar es SalaamTanzania
| | - Lucy A. Namkinga
- University of Dar es SalaamDepartment of Molecular Biology and BiotechnologyDar es SalaamTanzania
| | | | - Fatmahan Atalar
- Muhimbili University of Health and Allied SciencesMUHAS Genetic Laboratory, Department of BiochemistryDar es SalaamTanzania,Istanbul UniversityChild Health Institute, Department of Rare DiseasesIstanbulTurkey
| |
Collapse
|
23
|
Xu L, Hu Y, Liu W. Tumor Microenvironment-Mediated Immune Profiles Characterized by Distinct Survival Outcome and Immunotherapeutic Efficacy in Breast Cancer. Front Genet 2022; 13:840348. [PMID: 35401704 PMCID: PMC8992709 DOI: 10.3389/fgene.2022.840348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Numerous reports have highlighted that the tumor microenvironment (TME) is closely linked to survival outcome and therapeutic efficacy. However, a comprehensive investigation of the TME feature in breast cancer (BC) has not been performed. Methods: Here, we performed consensus clustering analysis based on TME cell expression profiles to construct TME pattern clusters and TME-related gene signature in BC. GSVA combined with CIBERSORT and ssGSEA algorithms were applied to evaluate the differences in biological pathway and immune cell infiltration level, respectively. The PCA method was employed to construct TME-score to quantify the TME-mediated pattern level in individual BC patients. Results: We determined two distinct TME gene clusters among 3,738 BC samples, which exhibited distinct survival outcome and enriched biological processes. The TME features demonstrated that these two clusters corresponded to the established immune profiles: hot and cold tumor phenotypes, respectively. Based on TME-related signature genes, we constructed the TME-score and stratified BC patients into low and high TME-score groups. Patients with high TME-score exhibited favorable outcome and increased infiltration of immune cells. Further investigation revealed that high TME-score was also related with high expression of immunosuppressive molecules, decreased tumor mutation burden (TMB), and high rate of mutation in significantly mutated genes (SMGs) (e.g., PIK3CA and CDH1). Conclusion: Assessing the TME-mediated pattern level of individual BC patients will assist us in better understanding the responses of BC patients to immunotherapies and directing more effective immunotherapeutic approaches.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Geratology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaomin Hu
- Department of Geratology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwen Liu
- Department of Geratology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Li C, Zhang C, Zhang G, Chen B, Li X, Li K, Ren C, Wen L, Liao N. YTHDF1 amplification is correlated with worse outcome and lower immune cell infiltrations in breast cancer. Cancer Biomark 2022; 35:127-142. [PMID: 35342079 DOI: 10.3233/cbm-203103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE N6-methyladenosine (m6A) is a common RNA modification on eukaryotic mRNA and some of the m6a regulatory proteins play a crucial role in breast cancer. However, the copy number variations for m6a regulatory proteins and their role in clinicopathological characteristics and survival in breast cancer remain unclear. METHODS In this study, we screened the m6A related genes alterations in breast cancer by analyzing the Molecular Taxonomy of Breast Cancer International Consortium and The Cancer Genome Atlas database, and further analyzed the clinical prognostic value of YTHDF1 amplification. RESULTS The YTH domain family (YTHDF3 and YTHDF1) amplification exhibited higher alteration rates among 10 m6A regulatory genes. YTHDF1 and YTHDF3 amplification resulted in higher mRNA expression (P< 0.001). Protein expression of YTHDF1 and YTHDF3 were higher in breast cancer (P< 0.001). YTHDF1 amplification presented a high correlation with worse clinicopathological characteristics and overall survival in patients with breast cancer. COX regression analysis showed that YTHDF1 amplification was an independent risk factor for 10-year overall survival in breast cancer (hazard ratio: 1.549; 95% confidence interval: 1.408-1.705; P< 0.001). Gene set enrichment analysis revealed that the downstream target of YTHDF1 may be related to MYC signaling regulation and T cell differentiation. Moreover, YTHDF1 amplification and high expression resulted in lower immune cell infiltration. YTHDF1 knockdown retrained proliferation, migration and invasion in breast cancer cells in vitro. CONCLUSIONS We found significant worse clinical characteristics and lower immune infiltrates in patients with YTHDF1 amplification. The findings indicate that YTHDF1 amplification may be a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Cheukfai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Guochun Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bo Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuerui Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Kai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lingzhu Wen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Chen Y, Luo L, Deng L, Tian X, Chen S, Xu A, Yuan S. New Insights Into the Lineage-Specific Expansion and Functional Diversification of Lamprey AID/APOBEC Family. Front Immunol 2022; 13:822616. [PMID: 35359986 PMCID: PMC8962628 DOI: 10.3389/fimmu.2022.822616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The AID/APOBEC family which converts cytidine to uridine on RNA or DNA experienced dynamic expansion in primates in order to resist exogenous viruses and endogenous retrotransposons. Recently, expansion of AID/APOBEC-like homologs has also been observed in the extant jawless vertebrate lamprey. To reveal what causes such expansion and leads to the functional diversification of lamprey cytosine deaminases (CDAs), we reassessed the CDA genes in Lethenteron japonicum (Lj). We first confirmed the expansion of LjCDA1L1 (CDA1-like 1) genes and found the expression correlation of LjCDA2 and LjCDA1L2 with LjVLRs (variable lymphocyte receptors). Among up to 14 LjCDA1L1 proteins, LjCDA1L1_4a has an extremely high deamination activity on ssDNA and buDNA and, unexpectedly, on dsDNA. LjCDA1L1s can also restrict the infection of HSV-1 particles. Thus, the arms race between the host and pathogens along with the recruitment by VLR assembly may participate together to form a driving force in the expansion and diversification of the lamprey AID/APOBEC family.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingjie Luo
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lisi Deng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Tian
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Shaochun Yuan, ; Anlong Xu,
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Shaochun Yuan, ; Anlong Xu,
| |
Collapse
|
26
|
Establishing a Prognostic Model Based on Three Genomic Instability-related LncRNAs for Clear Cell Renal Cell Cancer. Clin Genitourin Cancer 2022; 20:e317-e329. [DOI: 10.1016/j.clgc.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
|
27
|
Meegdes M, Ibragimova KIE, Lobbezoo DJA, Vriens IJH, Kooreman LFS, Erdkamp FLG, Dercksen MW, Vriens BEPJ, Aaldering KNA, Pepels MJAE, van de Winkel LMH, Tol J, Heijns JB, van de Wouw AJ, Peters NAJB, Hochstenbach-Waelen A, Smidt ML, Geurts SME, Tjan-Heijnen VCG. The initial hormone receptor/HER2 subtype is the main determinator of subtype discordance in advanced breast cancer: a study of the SONABRE registry. Breast Cancer Res Treat 2022; 192:331-342. [PMID: 35025003 PMCID: PMC8926963 DOI: 10.1007/s10549-021-06472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Purpose The hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) are the main parameters in guiding systemic treatment choices in breast cancer, but can change during the disease course. This study aims to evaluate the biopsy rate and receptor subtype discordance rate in patients diagnosed with advanced breast cancer (ABC). Methods Patients diagnosed with ABC in seven hospitals in 2007–2018 were selected from the SOutheast Netherlands Advanced BREast cancer (SONABRE) registry. Multivariable logistic regression analyses were performed to identify factors influencing biopsy and discordance rates. Results Overall, 60% of 2854 patients had a biopsy of a metastatic site at diagnosis. One of the factors associated with a reduced biopsy rate was the HR + /HER2 + primary tumor subtype (versus HR + /HER2- subtype: OR = 0.68; 95% CI: 0.51–0.90). Among the 748 patients with a biopsy of the primary tumor and a metastatic site, the overall receptor discordance rate was 18%. This was the highest for the HR + /HER2 + primary tumor subtype, with 55%. In 624 patients with metachronous metastases, the HR + /HER2 + subtype remained the only predictor significantly related to a higher discordance rate, irrespective of prior (neo-)adjuvant therapies (OR = 7.49; 95% CI: 3.69–15.20). Conclusion The HR + /HER2 + subtype has the highest discordance rate, but the lowest biopsy rate of all four receptor subtypes. Prior systemic therapy was not independently related to subtype discordance. This study highlights the importance of obtaining a biopsy of metastatic disease, especially in the HR + /HER2 + subtype to determine the most optimal treatment strategy. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06472-5.
Collapse
Affiliation(s)
- Marissa Meegdes
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Khava I E Ibragimova
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Dorien J A Lobbezoo
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ingeborg J H Vriens
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Loes F S Kooreman
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Frans L G Erdkamp
- Department of Internal Medicine, Zuyderland Medical Centre, Sittard-Geleen, The Netherlands
| | - M Wouter Dercksen
- Department of Internal Medicine, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Birgit E P J Vriens
- Department of Internal Medicine, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Manon J A E Pepels
- Department of Internal Medicine, Elkerliek Hospital, Helmond, The Netherlands
| | | | - Jolien Tol
- Department of Internal Medicine, Jeroen Bosch Ziekenhuis, Den Bosch, The Netherlands
| | - Joan B Heijns
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - Agnes J van de Wouw
- Department of Internal Medicine, Viecuri Medical Centre, Venlo, The Netherlands
| | | | - Ananda Hochstenbach-Waelen
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein L Smidt
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sandra M E Geurts
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Vivianne C G Tjan-Heijnen
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands. .,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
28
|
Xu L, Hu Y, Liu W. Pyroptosis-Mediated Molecular Subtypes are Characterized by Distinct Tumor Microenvironment Infiltration Characteristics in Breast Cancer. J Inflamm Res 2022; 15:345-362. [PMID: 35079221 PMCID: PMC8779844 DOI: 10.2147/jir.s349186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 01/29/2023] Open
Abstract
Background Numerous reports have highlighted that pyroptosis is closely linked to tumorigenesis and drug resistance of tumors. However, the potential role of pyroptosis in regulating immune cell infiltration in tumor microenvironment (TME) remains unclear. Methods Here, we performed consensus clustering analysis based on the expression of 10 typical pyroptosis-related regulators (PRRs) to construct pyroptosis-mediated tumor pattern clusters and pyroptosis-related gene signature in breast cancer (BC). GSVA combined with ssGSEA methods were applied to evaluate the differences in biological pathway and immune cell infiltration level, respectively. The PCA method was employed to construct the pyro-score to quantify the pyroptosis pattern level of individual BC patient. Results We determined three distinct pyro-clusters among 1852 BC samples, which exhibited different survival outcomes and enriched biological processes. The TME features demonstrated that these three clusters corresponded to three established immune profiles: immune-desert, immune-excluded and immune-inflamed phenotype, respectively. Based on pyroptosis-related signature genes, we constructed the pyro-score and stratified BC patients into high and low pyro-score group. Patients with high pyro-score exhibited favorable outcome and increased infiltration of immune cells. Further investigation revealed that high pyro-score was also related to high expression of immunosuppressive molecules, decreased tumor mutation burden (TMB) and high rate of mutation in significantly mutated genes (SMGs) (eg, PIK3CA and CDH1). Conclusion This research emphasizes the indispensable role of pyroptosis in TME complexity and diversity. Assessing the pyroptosis pattern level of individual BC patient will assist us in better understanding TME features and directing more effective immunotherapeutic approaches.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Geratology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Yaomin Hu
- Department of Geratology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
| | - Wenwen Liu
- Department of Geratology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People’s Republic of China
- Correspondence: Wenwen Liu Email
| |
Collapse
|
29
|
Ding R, Duan Z, Yang M, Wang X, Li D, Kan Q. High miR-3609 expression is associated with better prognosis in TNBC based on mining using systematic integrated public sequencing data. Exp Ther Med 2021; 23:54. [PMID: 34934431 PMCID: PMC8652383 DOI: 10.3892/etm.2021.10976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/09/2021] [Indexed: 12/09/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are small endogenous RNAs that regulate gene expression post-transcriptionally. Abnormal miR-3609 expression is associated with the occurrence of pancreatic cancer, glioma and other diseases, such as polycystic ovary syndrome. However, the prognostic potential of miR-3609 has been reported in breast cancer. Thus, the present study aimed to investigate the differential expression and prognostic value of miR-3609 in patients with breast cancer from the UALCAN, cBioportal and Kaplan-Meier Plotter databases, respectively. Furthermore, the co-expression genes of miR-3609 in breast cancer were investigated using data from the LinkedOmics database, and functional enrichment analysis was performed using the LinkInterpreter module in LinkedOmics. The co-expression gene network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and the cytoHubba plug-in was used to identify the hub genes, which were visualized using Cytoscape software. The prognoses of the hub genes were performed using the Kaplan-Meier Plotter database. The Cell Counting Kit-8 and cell cycle assays were performed to confirm the functions of miR-3609 mimics transfection in MDA-MB-231 cells. Survival analysis using the Kaplan-Meier Plotter database demonstrated that high miR-3609 expression in triple-negative breast cancer (TNBC) was associated with a better prognosis. Furthermore, the experimental results indicated that high miR-3609 expression inhibited the proliferation of TNBC cells and induced cell cycle arrest of TNBC cells in the G0/G1 phase. Taken together, the results of the present study suggest that miR-3609 plays a vital role in mediating cell cycle arrest and inhibiting the proliferation of TNBC cells.
Collapse
Affiliation(s)
- Rumeng Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenfeng Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Meng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xinru Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
30
|
Zeng Q, Jin F, Qian H, Chen H, Wang Y, Zhang D, Wei Y, Chen T, Guo B, Chai C. The miR-345-3p/PPP2CA signaling axis promotes proliferation and invasion of breast cancer cells. Carcinogenesis 2021; 43:150-159. [PMID: 34922339 DOI: 10.1093/carcin/bgab124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most common malignancy among women worldwide. Functional studies have demonstrated that miRNA dysregulation in many cases of cancer, in which miRNAs acting as either oncogenes or tumor suppressor. Here we report that miR-345-3p is generally upregulated in breast cancer tissues and breast cancer cell lines. Overexpression and inhibition of miR-345-3p revealed its capacity in regulating proliferation and invasion of breast cancer cells. Further research identified protein phosphatase 2 catalytic subunit alpha (PPP2CA), a suppressor of AKT phosphorylation, as a candidate target of miR-345-3p. In vitro, miR-345-3p mimics promoted AKT phosphorylation by targeting its negative regulator, PPP2CA. Blocking miR-345-3p relieves its inhibition of PPP2CA, which attenuated PI3K-AKT signaling pathway. In vivo, inhibiting miR-345-3p with miR-345-3p-inhibition lentivirus suppressed tumor growth and invasiveness in mice. Together, the miR-345-3p/PPP2CA signaling axis exhibits tumor promoting functions by regulating proliferation and invasion of breast cancer cells. These data provide a clue to novel therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Fangfang Jin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Hongling Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Yu Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Bianqin Guo
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
31
|
Lee Y, Kang JK, Lee YH, Yoon HJ, Yang SS, Kim SH, Jang S, Park S, Heo DH, Jang WI, Yoo HJ, Paik EK, Lee HR, Seong KM. Chromosome aberration dynamics in breast cancer patients treated with radiotherapy: Implications for radiation biodosimetry. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503419. [PMID: 34798939 DOI: 10.1016/j.mrgentox.2021.503419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Although radiological accidents often result in partial-body radiation exposure, most biodosimetry studies focus on estimating whole-body exposure doses. We have evaluated time-dependent changes in chromosomal aberrations before, during, and after localized fractionated radiotherapy. Twelve patients with carcinoma in situ of the breast who underwent identical adjuvant radiation therapy (50 Gy in 25 fractions) were included in the study. Lymphocytes were collected from patients before, during, and after radiotherapy, to measure chromosome aberrations, such as dicentric chromosomes and translocations. Chromosome aberrations were then used to calculate whole- and partial-body biological absorbed doses of radiation. Dicentric chromosome frequencies in all study participants increased during radiotherapy (p < 0.05 in Kruskal-Wallis test). Increases of translocation frequencies during radiotherapy were observed in seven of the twelve patients. The increased levels of dicentric chromosomes and translocations persisted throughout our 1-year follow-up, and evidence of partial-body exposure (such as Papworth's U-value > 1.96) was observed more than 1 year after radiotherapy. We found that cytogenetic biomarkers reflected partial-body fractionated radiation exposure more than 1 year post-exposure. Our findings suggest that chromosome aberrations can be used to estimate biological absorbed radiation doses and can inform medical intervention for individuals suspected of fractionated or partial-body radiation exposure.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin-Kyu Kang
- Dongnam Radiation Emergency Medical Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyo Jin Yoon
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Su San Yang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung Hyun Kim
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Pathology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Da Hye Heo
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Won Il Jang
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyung Jun Yoo
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eun Kyung Paik
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyo Rak Lee
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Division of Hematology and Medical Oncology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea.
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea.
| |
Collapse
|
32
|
Woo SM, Kim MK, Park B, Cho EH, Lee TR, Ki CS, Yoon KA, Kim YH, Choi W, Kim DY, Hwang JH, Cho JH, Han SS, Lee WJ, Park SJ, Kong SY. Genomic Instability of Circulating Tumor DNA as a Prognostic Marker for Pancreatic Cancer Survival: A Prospective Cohort Study. Cancers (Basel) 2021; 13:5466. [PMID: 34771630 PMCID: PMC8582446 DOI: 10.3390/cancers13215466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic instability of circulating tumor DNA (ctDNA) as a prognostic biomarker has not been evaluated in pancreatic cancer. We investigated the role of the genomic instability index of ctDNA in pancreatic ductal adenocarcinoma (PDAC). We prospectively enrolled 315 patients newly diagnosed with resectable (n = 110), locally advanced (n = 78), and metastatic (n = 127) PDAC from March 2015 through January 2020. Low-depth whole-genome cell-free DNA sequencing identified genome-wide copy number alterations using instability score (I-score) to reflect genome-wide instability. Plasma cell-free and matched tumor tissue DNA from 15 patients with resectable pancreatic cancer was sequenced to assess the concordance of chromosomal copy number alteration profiles. Associations of I-score with clinical factors or survival were assessed. Seventy-six patients had high genomic instability with I-score > 7.3 in pre-treatment ctDNA; proportions of high I-score were 5.5%, 5.1%, and 52% in resectable, locally advanced, and metastatic stages, respectively. Correlation coefficients between Z-scores of plasma and tissue DNA at segment resolution were high (r2 = 0.82). Univariable analysis showed the association of I-score with progression-free survival in each stage. Multivariable analyses demonstrated that clinical stage-adjusted I-scores were significant factors for progression-free and overall survival. In these patients, ctDNA genomic I-scores provided prognostic information relevant to progression-free survival in each clinical stage.
Collapse
Affiliation(s)
- Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
| | - Min Kyeong Kim
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea;
| | - Boram Park
- Biostatistics Collaboration Team, Research Core Center, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Eun-Hae Cho
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Tae-Rim Lee
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Chang-Seok Ki
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Yun-Hee Kim
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
- Molecular Imaging Branch, Division of Convergence Technology, National Cancer Center, Goyang 10408, Korea
| | - Wonyoung Choi
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
| | - Do Yei Kim
- Genome Research Center, GC Genome, Yongin 16924, Korea; (E.-H.C.); (T.-R.L.); (C.-S.K.); (D.Y.K.)
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Jae Hee Cho
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21556, Korea;
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung-Sik Han
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang 10408, Korea; (S.M.W.); (S.-S.H.); (W.J.L.); (S.-J.P.)
| | - Sun-Young Kong
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (Y.-H.K.); (W.C.)
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea;
- Department of Laboratory Medicine, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
33
|
Wang X, Li C, Chen T, Li W, Zhang H, Zhang D, Liu Y, Han D, Li Y, Li Z, Luo D, Zhang N, Yang Q. Identification and Validation of a Five-Gene Signature Associated With Overall Survival in Breast Cancer Patients. Front Oncol 2021; 11:660242. [PMID: 34513664 PMCID: PMC8428534 DOI: 10.3389/fonc.2021.660242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Recent years, the global prevalence of breast cancer (BC) was still high and the underlying molecular mechanisms remained largely unknown. The investigation of prognosis-related biomarkers had become an urgent demand. RESULTS In this study, gene expression profiles and clinical information of breast cancer patients were downloaded from the TCGA database. The differentially expressed genes (DEGs) were estimated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A risk score formula involving five novel prognostic associated biomarkers (EDN2, CLEC3B, SV2C, WT1, and MUC2) were then constructed by LASSO. The prognostic value of the risk model was further confirmed in the TCGA entire cohort and an independent external validation cohort. To explore the biological functions of the selected genes, in vitro assays were performed, indicating that these novel biomarkers could markedly influence breast cancer progression. CONCLUSIONS We established a predictive five-gene signature, which could be helpful for a personalized management in breast cancer patients.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tong Chen
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhao Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dianwen Han
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zheng Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Dan Luo
- Department of Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, China
- Research Institute of Breast Cancer, Shandong University, Jinan, China
| |
Collapse
|
34
|
Mohanty V, Wang F, Mills GB, Chen K. Uncoupling of gene expression from copy number presents therapeutic opportunities in aneuploid cancers. Cell Rep Med 2021; 2:100349. [PMID: 34337565 PMCID: PMC8324495 DOI: 10.1016/j.xcrm.2021.100349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/11/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Uncoupling of mRNA expression from copy number (UECN) might be a strategy for cancer cells to a tolerate high degree of aneuploidy. To test the extent and role of UECN across cancers, we perform integrative multiomic analysis of The Cancer Genome Atlas (TCGA) dataset, encompassing ∼5,000 individual tumors. We find UECN is common in cancers and is associated with increased oncogenic signaling, proliferation, and immune suppression. UECN appears to be orchestrated by complex regulatory changes, with transcription factors (TFs) playing a prominent role. To further dissect the regulatory mechanisms, we develop a systems-biology approach to identify candidate TFs, which could serve as targets to disrupt UECN and reduce tumor fitness. Applying our approach to TCGA data, we identify 21 putative targets, 42.8% of which are validated by independent sources. Together, our study indicates that UECN is likely an important mechanism in development of aneuploid tumors and might be therapeutically targetable.
Collapse
Affiliation(s)
- Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B. Mills
- Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health University, Portland, OR 97201, USA
| | - CTD2 Research Network
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health University, Portland, OR 97201, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Guo M, Wang SM. Genome Instability-Derived Genes Are Novel Prognostic Biomarkers for Triple-Negative Breast Cancer. Front Cell Dev Biol 2021; 9:701073. [PMID: 34322487 PMCID: PMC8312551 DOI: 10.3389/fcell.2021.701073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive disease. Recent studies have identified genome instability-derived genes for patient outcomes. However, most of the studies mainly focused on only one or a few genome instability-related genes. Prognostic potential and clinical significance of genome instability-associated genes in TNBC have not been well explored. Methods In this study, we developed a computational approach to identify TNBC prognostic signature. It consisted of (1) using somatic mutations and copy number variations (CNVs) in TNBC to build a binary matrix and identifying the top and bottom 25% mutated samples, (2) comparing the gene expression between the top and bottom 25% samples to identify genome instability-related genes, and (3) performing univariate Cox proportional hazards regression analysis to identify survival-associated gene signature, and Kaplan–Meier, log-rank test, and multivariate Cox regression analyses to obtain overall survival (OS) information for TNBC outcome prediction. Results From the identified 111 genome instability-related genes, we extracted a genome instability-derived gene signature (GIGenSig) of 11 genes. Through survival analysis, we were able to classify TNBC cases into high- and low-risk groups by the signature in the training dataset (log-rank test p = 2.66e−04), validated its prognostic performance in the testing (log-rank test p = 2.45e−02) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (log-rank test p = 2.57e−05) datasets, and further validated the predictive power of the signature in five independent datasets. Conclusion The identified novel signature provides a better understanding of genome instability in TNBC and can be applied as prognostic markers for clinical TNBC management.
Collapse
Affiliation(s)
- Maoni Guo
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
36
|
Souid S, Aissaoui D, Srairi-Abid N, Essafi-Benkhadir K. Trabectedin (Yondelis®) as a Therapeutic Option in Gynecological Cancers: A Focus on its Mechanisms of Action, Clinical Activity and Genomic Predictors of Drug Response. Curr Drug Targets 2021; 21:996-1007. [PMID: 31994460 DOI: 10.2174/1389450121666200128161733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The use of predictive biomarkers provides potential individualized cancer therapeutic options to prevent therapy failure as well as serious toxicities. Several recent studies showed that predictive and prognostic biomarkers are a notable personalized strategy to improve patients' care in several cancers. Trabectedin (Yondelis®) is a cytotoxic agent, derived from a marine organism, harbouring a significant antitumor activity against several cancers such as soft tissue sarcoma, ovarian, and breast cancers. Recently and with the advent of molecular genetic testing, BRCA mutational status was found as an important predictor of response to this anticancer drug, especially in gynecological cancers. The aim of this updated review is to discuss the mechanisms of action of trabectedin against the wellknown cancer hallmarks described until today. The current advances were also examined related to genomic biomarkers that can be used in the future to predict the efficacy of this potent anticancer natural molecule in various gynecological cancers.
Collapse
Affiliation(s)
- Soumaya Souid
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT04 Epidemiologie Moleculaire et Pathologie Experimentale appliquee aux Maladies infectieuses, 1002, Tunis, Tunisia
| | - Dorra Aissaoui
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT08 Venins et biomolecules therapeutiques, 1002, Tunis, Tunisia
| | - Najet Srairi-Abid
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT08 Venins et biomolecules therapeutiques, 1002, Tunis, Tunisia
| | - Khadija Essafi-Benkhadir
- Universite de Tunis El Manar, Institut Pasteur de Tunis, LR16IPT04 Epidemiologie Moleculaire et Pathologie Experimentale appliquee aux Maladies infectieuses, 1002, Tunis, Tunisia
| |
Collapse
|
37
|
Yan H, Chai H, Zhao H. Detecting lncRNA-Cancer Associations by Combining miRNAs, Genes, and Prognosis With Matrix Factorization. Front Genet 2021; 12:639872. [PMID: 34262591 PMCID: PMC8273282 DOI: 10.3389/fgene.2021.639872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation: Long non-coding RNAs (lncRNAs) play important roles in cancer development. Prediction of lncRNA–cancer association is necessary for efficiently discovering biomarkers and designing treatment for cancers. Currently, several methods have been developed to predict lncRNA–cancer associations. However, most of them do not consider the relationships between lncRNA with other molecules and with cancer prognosis, which has limited the accuracy of the prediction. Method: Here, we constructed relationship matrices between 1,679 lncRNAs, 2,759 miRNAs, and 16,410 genes and cancer prognosis on three types of cancers (breast, lung, and colorectal cancers) to predict lncRNA–cancer associations. The matrices were iteratively reconstructed by matrix factorization to optimize low-rank size. This method is called detecting lncRNA cancer association (DRACA). Results: Application of this method in the prediction of lncRNAs–breast cancer, lncRNA–lung cancer, and lncRNA–colorectal cancer associations achieved an area under curve (AUC) of 0.810, 0.796, and 0.795, respectively, by 10-fold cross-validations. The performances of DRACA in predicting associations between lncRNAs with three kinds of cancers were at least 6.6, 7.2, and 6.9% better than other methods, respectively. To our knowledge, this is the first method employing cancer prognosis in the prediction of lncRNA–cancer associations. When removing the relationships between cancer prognosis and genes, the AUCs were decreased 7.2, 0.6, and 5% for breast, lung, and colorectal cancers, respectively. Moreover, the predicted lncRNAs were found with greater numbers of somatic mutations than the lncRNAs not predicted as cancer-associated for three types of cancers. DRACA predicted many novel lncRNAs, whose expressions were found to be related to survival rates of patients. The method is available at https://github.com/Yanh35/DRACA.
Collapse
Affiliation(s)
- Huan Yan
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Hua Chai
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
38
|
Rtt105 promotes high-fidelity DNA replication and repair by regulating the single-stranded DNA-binding factor RPA. Proc Natl Acad Sci U S A 2021; 118:2106393118. [PMID: 34140406 DOI: 10.1073/pnas.2106393118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or break-induced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.
Collapse
|
39
|
CX-5461 Enhances the Efficacy of APR-246 via Induction of DNA Damage and Replication Stress in Triple-Negative Breast Cancer. Int J Mol Sci 2021; 22:ijms22115782. [PMID: 34071360 PMCID: PMC8198831 DOI: 10.3390/ijms22115782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.
Collapse
|
40
|
Cai M, Li H, Chen R, Zhou X. MRPL13 Promotes Tumor Cell Proliferation, Migration and EMT Process in Breast Cancer Through the PI3K-AKT-mTOR Pathway. Cancer Manag Res 2021; 13:2009-2024. [PMID: 33658859 PMCID: PMC7920513 DOI: 10.2147/cmar.s296038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Breast cancer (BC), with varying histopathology, biology and response to systemic treatment, is the second leading cause of cancer-related mortality. Previous studies have inferred that the expression of mitochondrial ribosomal proteins (MRPs) is possibly related to the occurrence/progression of BC. MRPL13 might be one of the potential MRP candidates that are involved in BC tumorigenesis, but its role in BC has rarely been reported. The purpose of the current study was to evaluate the prognostic significance of MRPL13, as well as to explore its potential biological functions in BC. Materials and Methods A series of bioinformatic and statistical methods were adopted to assess the MRPL13 expression profile, its relationship with clinicopathological characteristics, copy number variation (CNV), impact on clinical outcomes and relevant functions. All the results are analysed by 1097 BC patients collected from The Cancer Genome Atlas (TCGA) dataset and 52 clinical samples for immunohistochemistry (IHC) assay. Results The results demonstrated that the expression of MRPL13 in BC tissues was remarkably elevated than that in normal breast tissues. In addition, the Kaplan-Meier curves and Cox model indicated that patients with high MRPL13 expression were connected to a worse prognosis, heralding the independent prognostic value of this protein in BC. Moreover, an enrichment analysis showed that MRPL13 was mainly involved in cell cycle/division-related, RNA processing (degradation/splicing), MYC targets and the MTORC1 pathways. In addition, RNA interference (RNAi)-mediated MRPL13 silencing remarkedly inhibited proliferation and migration as well as the expression of EMT-related genes of BC cells in vitro. Mechanistically, attenuation of MRPL13 significantly suppressed the phosphorylation of AKT and mTOR, which could be partially abolished by 740Y-P (a PI3K agonist). Conclusion Our results provide evidence for the first time that increased MRPL13 expression correlates with adverse clinicopathological variables and unfavorable clinical outcomes of BC patients. Knockdown of MRPL13 restrains the proliferation and migration potential and EMT process of BC through inhibiting PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Miaomiao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Runfa Chen
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Xiang Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| |
Collapse
|
41
|
Zhang R, Zhu Q, Yin D, Yang Z, Guo J, Zhang J, Zhou Y, Yu JJ. Identification and Validation of an Autophagy-Related lncRNA Signature for Patients With Breast Cancer. Front Oncol 2021; 10:597569. [PMID: 33614483 PMCID: PMC7892971 DOI: 10.3389/fonc.2020.597569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background Autophagy is a “self-feeding” phenomenon of cells, which is crucial in mammalian development. Long non-coding RNA (lncRNA) is a new regulatory factor for cell autophagy, which can regulate the process of autophagy to affect tumor progression. However, poor attention has been paid to the roles of autophagy-related lncRNAs in breast cancer. Objective This study aimed to construct an autophagy-related lncRNA signature that can effectively predict the prognosis of breast cancer patients and explore the potential functions of these lncRNAs. Methods The RNA sequencing (RNA-Seq) data of breast cancer patients was collected from The Cancer Genome Atlas (TCGA) database and the GSE20685 database. Multivariate Cox analysis was implemented to produce an autophagy-related lncRNA signature in the TCGA cohort. The signature was then validated in the GSE20685 cohort. The receiver operator characteristic (ROC) curve was performed to evaluate the predictive ability of the signature. Gene set enrichment analysis (GSEA) was used to explore the potential functions based on the signature. Finally, the study developed a nomogram and internal verification based on the autophagy-related lncRNAs. Results A signature composed of 9 autophagy-related lncRNAs was determined as a prognostic model, and 1,109 breast cancer patients were divided into high-risk group and low-risk group based on median risk score of the signature. Further analysis demonstrated that the over survival (OS) of breast cancer patients in the high-risk group was poorer than that in the low-risk group based on the prognostic signature. The area under the curve (AUC) of ROC curve verified the sensitivity and specificity of this signature. Additionally, we confirmed the signature is an independent factor and found it may be correlated to the progression of breast cancer. GSEA showed gene sets were notably enriched in carcinogenic activation pathways and autophagy-related pathways. The qRT-PCR identified 5 lncRNAs with significantly differential expression in breast cancer cells based on the 9 lncRNAs of the prognostic model, and the results were consistent with the tissues. Conclusion In summary, our signature has potential predictive value in the prognosis of breast cancer and these autophagy-related lncRNAs may play significant roles in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ruyue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingwen Zhu
- Department of Otorhinolaryngology Head and Neck surgery, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxiu Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jane J Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
42
|
Survival outcomes are associated with genomic instability in luminal breast cancers. PLoS One 2021; 16:e0245042. [PMID: 33534788 PMCID: PMC7857737 DOI: 10.1371/journal.pone.0245042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the leading cause of cancer related death among women. Breast cancers are generally diagnosed and treated based on clinical and histopathological features, along with subtype classification determined by the Prosigna Breast Cancer Prognostic Gene Signature Assay (also known as PAM50). Currently the copy number alteration (CNA) landscape of the tumour is not considered. We set out to examine the role of genomic instability (GI) in breast cancer survival since CNAs reflect GI and correlate with survival in other cancers. We focused on the 70% of breast cancers classified as luminal and carried out a comprehensive survival and association analysis using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data to determine whether CNA Score Quartiles derived from absolute CNA counts are associated with survival. Analysis revealed that patients diagnosed with luminal A breast cancer have a CNA landscape associated with disease specific survival, suggesting that CNA Score can provide a statistically robust prognostic factor. Furthermore, stratification of patients into subtypes based on gene expression has shown that luminal A and B cases overlap, and it is in this region we largely observe luminal A cases with reduced survival outlook. Therefore, luminal A breast cancer patients with quantitatively elevated CNA counts may benefit from more aggressive therapy. This demonstrates how individual genomic landscapes can facilitate personalisation of therapeutic interventions to optimise survival outcomes.
Collapse
|
43
|
Almeida M, Soares M, Fonseca-Moutinho J, Ramalhinho AC, Breitenfeld L. Influence of Estrogenic Metabolic Pathway Genes Polymorphisms on Postmenopausal Breast Cancer Risk. Pharmaceuticals (Basel) 2021; 14:ph14020094. [PMID: 33513690 PMCID: PMC7910923 DOI: 10.3390/ph14020094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Estrogen metabolism plays an important role in tumor initiation and development. Lifetime exposure to high estrogens levels and deregulation of enzymes involved in estrogen biosynthetic and metabolic pathway are considered risk factors for breast cancer. The present study aimed to evaluate the impact of mutations acquisition during the lifetime in low penetrance genes that codify enzymes responsible for estrogen detoxification. Genotype analysis of GSTM1 and GSTT1 null polymorphisms, CYP1B1 Val432Leu and MTHFR C677T polymorphisms was performed in 157 samples of women with hormone-dependent breast cancer and correlated with the age at diagnosis. The majority of patients with GSTT1 null genotype and with both GSTM1 and GSTT1 null genotypes were 50 years old or more at the diagnosis (p-value = 0.021 and 0.018, respectively). Older women with GSTM1 null genotype were also carriers of the CYP1B1Val allele (p-value = 0.012). As well, GSTT1 null and CYP1B1Val genotypes were correlated with diagnosis at later ages (p-value = 0.022). Similar results were found associating MTHFR C677T and GSTT1 null polymorphism (p-value = 0.034). Our results suggest that estrogen metabolic pathway polymorphisms constitute a factor to be considered simultaneously with models for breast cancer risk assessment.
Collapse
Affiliation(s)
- Micaela Almeida
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
| | - Mafalda Soares
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
| | - José Fonseca-Moutinho
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
- Academic Hospital of Cova da Beira (CHUCB), Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Ana Cristina Ramalhinho
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
- Academic Hospital of Cova da Beira (CHUCB), Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Luiza Breitenfeld
- Health Sciences Research Centre (CICS), Faculty of Health Sciences, University of Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.A.); (M.S.); (J.F.-M.); (A.C.R.)
- Correspondence: ; Tel.: +351-2753-290-51
| |
Collapse
|
44
|
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, Zeng H, Qin Y, Wan X, Qiao Y, Qiu Y, Teng Y, Liu M. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene 2021; 40:1609-1627. [PMID: 33469161 PMCID: PMC7932928 DOI: 10.1038/s41388-020-01638-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023]
Abstract
The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.
Collapse
Affiliation(s)
- Pengpeng Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Fang He
- Department of pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Li
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Jin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yina Qiao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Teng
- Department of Oral Biology and Dx Sciences, Dental College of Georgia; Georgia Cancer Center, Augusta University, Augusta, GA, 30907, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
45
|
Genomic instability-derived plasma extracellular vesicle-microRNA signature as a minimally invasive predictor of risk and unfavorable prognosis in breast cancer. J Nanobiotechnology 2021; 19:22. [PMID: 33436002 PMCID: PMC7802300 DOI: 10.1186/s12951-020-00767-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer-associated deaths in women. Recent studies have indicated that microRNA (miRNA) regulation in genomic instability (GI) is associated with disease risk and clinical outcome. Herein, we aimed to identify the GI-derived miRNA signature in extracellular vesicles (EVs) as a minimally invasive biomarker for early diagnosis and prognostic risk stratification. Experimental design Integrative analysis of miRNA expression and somatic mutation profiles was performed to identify GI-associated miRNAs. Then, we constructed a discovery and validation study with multicenter prospective cohorts. The GI-derived miRNA signature (miGISig) was developed in the TCGA discovery cohort (n = 261), and was subsequently independently validated in internal TCGA validation (n = 261) and GSE22220 (n = 210) cohorts for prognosis prediction, and in GSE73002 (n = 3966), GSE41922 (n = 54), and in-house clinical exosome (n = 30) cohorts for diagnostic performance. Results We identified a GI-derived three miRNA signature (MIR421, MIR128-1 and MIR128-2) in the serum extracellular vesicles of BC patients, which was significantly associated with poor prognosis in all the cohorts tested and remained as an independent prognostic factor using multivariate analyses. When integrated with the clinical characteristics, the composite miRNA-clinical prognostic indicator showed improved prognostic performance. The miGISig also showed high accuracy in differentiating BC from healthy controls with the area under the receiver operating characteristics curve (ROC) with 0.915, 0.794 and 0.772 in GSE73002, GSE41922 and TCGA cohorts, respectively. Furthermore, circulating EVs from BC patients in the in-house cohort harbored elevated levels of miGISig, with effective diagnostic accuracy. Conclusions We report a novel GI-derived three miRNA signature in EVs, as an excellent minimally invasive biomarker for the early diagnosis and unfavorable prognosis in BC.
Collapse
|
46
|
Bolognesi C, Bruzzone M, Ceppi M, Marcon F. Micronuclei and upper body cancers (head, neck, breast cancers) a systematic review and meta-analysis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108358. [PMID: 34083052 DOI: 10.1016/j.mrrev.2020.108358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
A systematic review and a meta-analysis were performed on 19 studies on head and neck cancer (HNC) and 21 studies on breast cancer (BC) to evaluate the application of micronucleus (MN) assay as a predictive and prognostic test for cancer risk. In these studies the MN test was applied in peripheral lymphocytes and buccal cells of patients and healthy subjects with family history of cancer. The meta-analysis on MN applied in buccal cells of HNC patients was performed on two subgroups of studies. A significant increase of MN frequency in patients compared to healthy controls was observed for the subgroup on oral cancer (243 cases/370 controls, meta-MR = 4.71 95 %CI:2.75-8.06) and HNC (204 patients/163 controls metaMR=2.28 95 %CI:2.02-2.58). A metaMR = 3.27 (95 %CI:1.41-7.59) was obtained for MN applied in peripheral lymphocytes on HNC (160 cases/160 controls). For BC, the analysis of MN in peripheral lymphocytes showed significantly higher values in patients (n = 761) than in controls (n = 788) (meta-MR1.90 95 % CI:1.44-2.49). No statistically significant increase of baseline MN was detected in studies on groups of healthy subjects with BC family history (n = 224) or with BRCA1/2 mutations (n = 101) with respect to the controls. After ex-vivo challenge with ionizing radiation, the meta-analysis revealed a slightly statistically significant increase in MN only in BC patients (n = 614) compared to controls (n = 622)(meta-MR = 1.11 95 %CI:1.02-1.21); no increase was observed in healthy subjects with BC family history carrying or not BRCA1/2 mutations. Significant difference between BC patients (n = 183) and controls (n = 165) was observed by the meta-analysis of data on MN in buccal cells (MR = 3.89 95 %CI:1.54-9.78). The MN assay in buccal cells has some perspective of clinical application in HNC.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Marco Bruzzone
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16131 Genoa, Italy
| | - Marcello Ceppi
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16131 Genoa, Italy
| | - Francesca Marcon
- Dept. Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
47
|
Freitas MO, Gartner J, Rangel-Pozzo A, Mai S. Genomic Instability in Circulating Tumor Cells. Cancers (Basel) 2020; 12:cancers12103001. [PMID: 33081135 PMCID: PMC7602879 DOI: 10.3390/cancers12103001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we focus on recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability of CTCs and the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level. Abstract Circulating tumor cells (CTCs) can promote distant metastases and can be obtained through minimally invasive liquid biopsy for clinical assessment in cancer patients. Having both genomic heterogeneity and instability as common features, the genetic characterization of CTCs can serve as a powerful tool for a better understanding of the molecular changes occurring at tumor initiation and during tumor progression/metastasis. In this review, we will highlight recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability in CTCs. We will focus on the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level by discussing data from different cancer subtypes and their impact on diagnosis and precision medicine.
Collapse
Affiliation(s)
- Monique Oliveira Freitas
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Genetic Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
- Clinical Medicine Postgraduate Programme, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil
| | - John Gartner
- Departments of Pathology and Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| |
Collapse
|
48
|
Yeow ZY, Lambrus BG, Marlow R, Zhan KH, Durin MA, Evans LT, Scott PM, Phan T, Park E, Ruiz LA, Moralli D, Knight EG, Badder LM, Novo D, Haider S, Green CM, Tutt ANJ, Lord CJ, Chapman JR, Holland AJ. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature 2020; 585:447-452. [PMID: 32908313 PMCID: PMC7597367 DOI: 10.1038/s41586-020-2690-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
Genomic instability is a hallmark of cancer, and has a central role in the initiation and development of breast cancer1,2. The success of poly-ADP ribose polymerase inhibitors in the treatment of breast cancers that are deficient in homologous recombination exemplifies the utility of synthetically lethal genetic interactions in the treatment of breast cancers that are driven by genomic instability3. Given that defects in homologous recombination are present in only a subset of breast cancers, there is a need to identify additional driver mechanisms for genomic instability and targeted strategies to exploit these defects in the treatment of cancer. Here we show that centrosome depletion induces synthetic lethality in cancer cells that contain the 17q23 amplicon, a recurrent copy number aberration that defines about 9% of all primary breast cancer tumours and is associated with high levels of genomic instability4-6. Specifically, inhibition of polo-like kinase 4 (PLK4) using small molecules leads to centrosome depletion, which triggers mitotic catastrophe in cells that exhibit amplicon-directed overexpression of TRIM37. To explain this effect, we identify TRIM37 as a negative regulator of centrosomal pericentriolar material. In 17q23-amplified cells that lack centrosomes, increased levels of TRIM37 block the formation of foci that comprise pericentriolar material-these foci are structures with a microtubule-nucleating capacity that are required for successful cell division in the absence of centrosomes. Finally, we find that the overexpression of TRIM37 causes genomic instability by delaying centrosome maturation and separation at mitotic entry, and thereby increases the frequency of mitotic errors. Collectively, these findings highlight TRIM37-dependent genomic instability as a putative driver event in 17q23-amplified breast cancer and provide a rationale for the use of centrosome-targeting therapeutic agents in treating these cancers.
Collapse
Affiliation(s)
- Zhong Y Yeow
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Marlow
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Kevin H Zhan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary-Anne Durin
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao Phan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorena A Ruiz
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eleanor G Knight
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Luned M Badder
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Daniela Novo
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Catherine M Green
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Unit, King's College London, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - J Ross Chapman
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Ivanova E, Ward A, Wiegmans AP, Richard DJ. Circulating Tumor Cells in Metastatic Breast Cancer: From Genome Instability to Metastasis. Front Mol Biosci 2020; 7:134. [PMID: 32766277 PMCID: PMC7378584 DOI: 10.3389/fmolb.2020.00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of clinical resistance in repeatedly treated cancers extends from the primary tumor's capability to exploit genome instability to adapt, escape, and progress. Triple negative breast cancer serves as a good example of such a response demonstrating poor clinical outcome due to a high rate of cellular heterogeneity resulting in metastatic relapse. The capability to effectively track the emergence of therapeutic resistance in real-time and adapt the clinical response is the holy grail for precision medicine and has yet to be realized. In this review we present liquid biopsy using CTCs and ctDNA as a potential replacement and/or addition to the current diagnostic tests to deliver personalized therapies to patients with advanced breast cancer. We outline current uses of liquid biopsy in the metastatic breast cancer setting and discuss their limitations. In addition, we provide a detailed overview of common genome instability events in patients with metastatic breast cancer and how these can be tracked using liquid biopsy.
Collapse
Affiliation(s)
- Ekaterina Ivanova
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolongabba, QLD, Australia.,Centre for Tumour and Immune Biology (ZTI), Philipps University Marburg, Marburg, Germany
| | - Ambber Ward
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston, QLD, Australia
| | - Adrian P Wiegmans
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolongabba, QLD, Australia
| | - Derek John Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolongabba, QLD, Australia
| |
Collapse
|
50
|
Azawi S, Liehr T, Rincic M, Manferrari M. Molecular Cytogenomic Characterization of the Murine Breast Cancer Cell Lines C-127I, EMT6/P and TA3 Hauschka. Int J Mol Sci 2020; 21:ijms21134716. [PMID: 32630352 PMCID: PMC7369978 DOI: 10.3390/ijms21134716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To test and introduce effective and less toxic breast cancer (BC) treatment strategies, animal models, including murine BC cell lines, are considered as perfect platforms. Strikingly, the knowledge on the genetic background of applied BC cell lines is often sparse though urgently necessary for their targeted and really justified application. METHODS In this study, we performed the first molecular cytogenetic characterization for three murine BC cell lines C-127I, EMT6/P and TA3 Hauschka. Besides fluorescence in situ hybridization-banding, array comparative genomic hybridization was also applied. Thus, overall, an in silico translation for the detected imbalances and chromosomal break events in the murine cell lines to the corresponding homologous imbalances in humans could be provided. The latter enabled a comparison of the murine cell line with human BC cytogenomics. RESULTS All three BC cell lines showed a rearranged karyotype at different stages of complexity, which can be interpreted carefully as reflectance of more or less advanced tumor stages. CONCLUSIONS Accordingly, the C-127I cell line would represent the late stage BC while the cell lines EMT6/P and TA3 Hauschka would be models for the premalignant or early BC stage and an early or benign BC, respectively. With this cytogenomic information provided, these cell lines now can be applied really adequately in future research studies.
Collapse
Affiliation(s)
- Shaymaa Azawi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Mattia Manferrari
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|