1
|
Yang Y, Zhang W, Wang F, Li D, Meng X, Sun X, Xu J. Construction of biocatalysts based on P450BM3 for the degradation of non-steroidal anti-inflammatory drugs. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136097. [PMID: 39405679 DOI: 10.1016/j.jhazmat.2024.136097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widespread pollutants in aquatic environments, posing significant risks to both ecosystems and human health due to their persistence and bioaccumulation. Effective and sustainable degradation methods are urgently required to address this environmental challenge. This study aims to design and optimize a cytochrome P450BM3-based biocatalyst for the rapid and efficient degradation of NSAIDs by direct chemical intervention and protein engineering. The novel biocatalyst achieved efficient biodegradation of four common NSAIDs. Notably, the F87I/T268D mutant achieved 99.22 % degradation of diclofenac (DCF) within 10 min, and degraded meloxicam (MEL) and phenylbutazone (PBZ) at rates of 98.86 % and 90.51 % within 5 min, respectively. Furthermore, the F87G mutant accomplished 99.08 % degradation of acetaminophen (APAP) within just 2 min. The catalytic properties of P450BM3 and its mutants were evaluated through kinetic studies, and potential degradation pathways of the four NSAIDs were proposed in conjunction with UPLC-MS. This study provides a novel biocatalytic approach for the rapid degradation of NSAIDs in aquatic systems, offering considerable environmental benefits for pollution mitigation.
Collapse
Affiliation(s)
- Yadan Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Weikang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fang Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Dong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Xiangmin Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochun Sun
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, China
| | - Jiakun Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China.
| |
Collapse
|
2
|
Guo L, Zhang S, Zhang C, Ren S, Zhou Z, Wang F, Wang Y, Chen Q, Wang Y, Lee WH, Zhu K, Qin D, Gao Y, Sun T. Novel analgesic peptide derived from Cinobufacini injection suppressing inflammation and pain via ERK1/2/COX-2 pathway. Int Immunopharmacol 2024; 141:112918. [PMID: 39159558 DOI: 10.1016/j.intimp.2024.112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Inflammatory pain is a chronic pain caused by peripheral tissue inflammation, seriously impacting the patient's life quality. Cinobufacini injection, as a traditional Chinese medicine injection preparation, shows excellent efficacy in anti-inflammatory and analgesic treatment in patients with advanced tumors. In this study, a novel analgesic peptide CI5 with anti-inflammatory and analgesic bio-functions that naturally presents in Cinobufacini injection and its regulatory mechanism are reported. Our results showed that the administration of CI5 significantly relieved the pain of mice in the acetic acid twisting analgesic model and formalin inflammatory pain model. Furthermore, CI5 effectively reduced the inflammatory cytokines (IL-6, TNF-α and IL-1β) and inflammatory mediator (PGE2) expressions, and prevented the carrageenan-induced paw edema in mice. Further LC-MS/MS results showed the anti-inflammatory and analgesic bio-functions of CI5 depended on its interaction with the Rac-2 protein upstream of ERK1/2 and the inflammatory signaling pathway (ERK1/2/COX-2 axis). In summary, CI5, as a novel natural candidate identified from Cinobufacini injection, showed substantial clinical promise for inflammatory pain treatments.
Collapse
Affiliation(s)
- Li Guo
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Sai Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Cong Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Shuang Ren
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Zihan Zhou
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Fengyuan Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Yuexuan Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Qiqi Chen
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Yubing Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Di Qin
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China.
| | - Yuanyuan Gao
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China.
| | - Tongyi Sun
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, PR China.
| |
Collapse
|
3
|
Gu S, Luo Q, Wen C, Zhang Y, Liu L, Liu L, Liu S, Chen C, Lei Q, Zeng S. Application of Advanced Technologies-Nanotechnology, Genomics Technology, and 3D Printing Technology-In Precision Anesthesia: A Comprehensive Narrative Review. Pharmaceutics 2023; 15:2289. [PMID: 37765258 PMCID: PMC10535504 DOI: 10.3390/pharmaceutics15092289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
There has been increasing interest and rapid developments in precision medicine, which is a new medical concept and model based on individualized medicine with the joint application of genomics, bioinformatics engineering, and big data science. By applying numerous emerging medical frontier technologies, precision medicine could allow individualized and precise treatment for specific diseases and patients. This article reviews the application and progress of advanced technologies in the anesthesiology field, in which nanotechnology and genomics can provide more personalized anesthesia protocols, while 3D printing can yield more patient-friendly anesthesia supplies and technical training materials to improve the accuracy and efficiency of decision-making in anesthesiology. The objective of this manuscript is to analyze the recent scientific evidence on the application of nanotechnology in anesthesiology. It specifically focuses on nanomedicine, precision medicine, and clinical anesthesia. In addition, it also includes genomics and 3D printing. By studying the current research and advancements in these advanced technologies, this review aims to provide a deeper understanding of the potential impact of these advanced technologies on improving anesthesia techniques, personalized pain management, and advancing precision medicine in the field of anesthesia.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qingyong Luo
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Li Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Liu Liu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
4
|
Mazzone GL, Coronel MF, Mladinic M, Sámano C. An update to pain management after spinal cord injury: from pharmacology to circRNAs. Rev Neurosci 2023; 34:599-611. [PMID: 36351309 DOI: 10.1515/revneuro-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 08/04/2023]
Abstract
Neuropathic pain (NP) following a spinal cord injury (SCI) is often hard to control and therapies should be focused on the physical, psychological, behavioral, social, and environmental factors that may contribute to chronic sensory symptoms. Novel therapeutic treatments for NP management should be based on the combination of pharmacological and nonpharmacological options. Some of them are addressed in this review with a focus on mechanisms and novel treatments. Several reports demonstrated an aberrant expression of non-coding RNAs (ncRNAs) that may represent key regulatory factors with a crucial role in the pathophysiology of NP and as potential diagnostic biomarkers. This review analyses the latest evidence for cellular and molecular mechanisms associated with the role of circular RNAs (circRNAs) in the management of pain after SCI. Advantages in the use of circRNA are their stability (up to 48 h), and specificity as sponges of different miRNAs related to SCI and nerve injury. The present review discusses novel data about deregulated circRNAs (up or downregulated) that sponge miRNAs, and promote cellular and molecular interactions with mRNAs and proteins. This data support the concept that circRNAs could be considered as novel potential therapeutic targets for NP management especially after spinal cord injuries.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - María F Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Alcaldía Cuajimalpa de Morelos, C.P. 05348, Ciudad de México, México
| |
Collapse
|
5
|
Qiao B, Song X, Zhang W, Xu M, Zhuang B, Li W, Guo H, Wu W, Huang G, Zhang M, Xie X, Zhang N, Luan Y, Zhang C. Intensity-adjustable pain management with prolonged duration based on phase-transitional nanoparticles-assisted ultrasound imaging-guided nerve blockade. J Nanobiotechnology 2022; 20:498. [PMID: 36424657 PMCID: PMC9694595 DOI: 10.1186/s12951-022-01707-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Background The lack of a satisfactory strategy for postoperative pain management significantly impairs the quality of life for many patients. However, existing nanoplatforms cannot provide a longer duration of nerve blockage with intensity-adjustable characteristics under imaging guidance for clinical applications. Results To overcome this challenge, we proposed a biocompatible nanoplatform that enables high-definition ultrasound imaging-guided, intensity-adjustable, and long-lasting analgesia in a postoperative pain management model in awake mice. The nanoplatform was constructed by incorporating perfluoropentane and levobupivacaine with red blood cell membranes decorated liposomes. The fabricated nanoplatform can achieve gas-producing and can finely escape from immune surveillance in vivo to maximize the anesthetic effect. The analgesia effect was assessed from both motor reactions and pain-related histological markers. The findings demonstrated that the duration of intensity-adjustable analgesia in our platform is more than 20 times longer than free levobupivacaine injection with pain relief for around 3 days straight. Moreover, the pain relief was strengthened by repeatable ultrasound irradiation to effectively manage postoperative pain in an intensity-adjustable manner. No apparent systemic and local tissue injury was detected under different treatments. Conclusion Our results suggest that nanoplatform can provide an effective strategy for ultrasound imaging-guided intensity-adjustable pain management with prolonged analgesia duration and show considerable transformation prospects. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01707-z.
Collapse
Affiliation(s)
- Bin Qiao
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Xinye Song
- grid.452435.10000 0004 1798 9070Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Weiyi Zhang
- grid.452435.10000 0004 1798 9070Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Ming Xu
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Bowen Zhuang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Wei Li
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Huanling Guo
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Wenxin Wu
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Guangliang Huang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Minru Zhang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Xiaoyan Xie
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Nan Zhang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| | - Yong Luan
- grid.452435.10000 0004 1798 9070Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011 People’s Republic of China
| | - Chunyang Zhang
- grid.412615.50000 0004 1803 6239Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
6
|
Ke P, Qin Y, Shao Y, Han M, Jin Z, Zhou Y, Zhong H, Lu Y, Wu X, Zeng K. Preparation and evaluation of liposome with ropivacaine ion-pairing in local pain management. Drug Dev Ind Pharm 2022; 48:255-264. [PMID: 36026436 DOI: 10.1080/03639045.2022.2106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Local analgesia is one of the most desirable methods for postoperative pain control, while the existing local anesthetics have a short duration of analgesic effect. Nano-drug carriers have been widely used in various fields and provide an excellent strategy for traditional drugs. Although the existing liposomes for local anesthetics have certain advantages, their instability and complexity of the preparation process still cannot be ignored. Here, we developed novel ropivacaine hydrochloride liposomes with improved stability and sustained release performance by combining ropivacaine hydrochloride with sodium oleate in liposomes via hydrophobic ion-pairing (HIP). The liposomes are easy to prepare, inexpensive, and suitable for mass production. The infrared (IR), particle size, and Zeta potential measurements adequately characterized the complex, which showed a diameter of 81.09 nm and a zeta potential of -83.3 mV. Animal behavioral experiments, including the hot plate test and von Frey fiber test, demonstrated that the liposome system had a prolonged analgesic effect of 2 h versus conventional liposome preparations, consistent with the results of in vitro release experiments. In addition, in vitro cytotoxicity evaluations in RAW264.7 cells and in vivo evaluations revealed the biocompatibility and safety of the ropivacaine-sodium oleate ion-paired liposome (Rop-Ole-Lipo) system as a suitable local anesthetic for local pain management. Our findings provide a new idea for the preparation of local anesthetics.
Collapse
Affiliation(s)
- Peng Ke
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College, Fujian Medical University, Fuzhou, PR China
| | - Yaxin Qin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yeting Shao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Zihao Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College, Fujian Medical University, Fuzhou, PR China
| | - Kai Zeng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
7
|
Babaie S, Taghvimi A, Hong JH, Hamishehkar H, An S, Kim KH. Recent advances in pain management based on nanoparticle technologies. J Nanobiotechnology 2022; 20:290. [PMID: 35717383 PMCID: PMC9206757 DOI: 10.1186/s12951-022-01473-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain is a vital sense that indicates the risk of injury at a particular body part. Successful control of pain is the principal aspect in medical treatment. In recent years, the advances of nanotechnology in pain management have been remarkable. In this review, we focus on literature and published data that reveal various applications of nanotechnology in acute and chronic pain management. METHODS The presented content is based on information collected through pain management publications (227 articles up to April 2021) provided by Web of Science, PubMed, Scopus and Google Scholar services. RESULTS A comprehensive study of the articles revealed that nanotechnology-based drug delivery has provided acceptable results in pain control, limiting the side effects and increasing the efficacy of analgesic drugs. Besides the ability of nanotechnology to deliver drugs, sophisticated nanosystems have been designed to enhance imaging and diagnostics, which help in rapid diagnosis of diseases and have a significant impact on controlling pain. Furthermore, with the development of various tools, nanotechnology can accurately measure pain and use these measurements to display the efficiency of different interventions. CONCLUSIONS Nanotechnology has started a new era in the pain management and many promising results have been achieved in this regard. Nevertheless, there is still no substantial and adequate act of nanotechnology in this field. Therefore, efforts should be directed to broad investigations.
Collapse
Affiliation(s)
- Soraya Babaie
- Physical Medicine and Rehabilitation Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics 2021; 13:pharmaceutics13122166. [PMID: 34959445 PMCID: PMC8703898 DOI: 10.3390/pharmaceutics13122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease affecting millions of people worldwide. Currently, clinical nonsurgical treatments of OA are only limited to pain relief, anti-inflammation, and viscosupplementation. Developing disease-modifying OA drugs (DMOADs) is highly demanded for the efficient treatment of OA. As OA is a local disease, intra-articular (IA) injection directly delivers drugs to synovial joints, resulting in high-concentration drugs in the joint and reduced side effects, accompanied with traditional oral or topical administrations. However, the injected drugs are rapidly cleaved. By properly designing the drug delivery systems, prolonged retention time and targeting could be obtained. In this review, we summarize the drugs investigated for OA treatment and recent advances in the IA drug delivery systems, including micro- and nano-particles, liposomes, and hydrogels, hoping to provide some information for designing the IA injected formulations.
Collapse
|
9
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|