1
|
Lawlor S, Leech M. Established advanced practice roles in radiation therapy: A scoping review. J Med Imaging Radiat Oncol 2024; 68:342-352. [PMID: 38450863 DOI: 10.1111/1754-9485.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Advanced practitioners are healthcare professionals that are highly skilled with a particular area of expertise. These roles have been successfully implemented in many healthcare settings, improving efficiency of the service, as well as enhancing the standard of care received by patients. Although advanced practice roles have been implemented in some radiation therapy departments, their implementation have yet to be facilitated in the majority of countries. The purpose of this review is to scope the literature available regarding established advanced practice roles in radiation therapy. The PRISMA strategy for the identification of relevant literature was adhered to. Two data bases, EMBASE and PubMed, were searched using combinations of the key words 'Advanced', 'Practice', 'APRT', 'Radiation', 'Therapy' and 'Radiotherapy'. Exclusion criteria were applied, and citation lists were also screened for additional relevant sources, including grey literature sources. A total of 35 relevant sources were identified that discussed advanced practice radiation therapy roles in the United Kingdom, Singapore, Canada, Australia and the USA. Means of role establishment and scope of practice were defined, and a number of advantages and challenges for advanced practice radiation therapist roles were identified. There are many benefits of implementing advanced practice roles in radiation therapy departments. Though the implementation of these roles can be challenging, the existing evidence indicates that it would be beneficial for the patient, the radiation therapist and the department as a whole. A more systematic approach, including reporting of quantitative outcomes may assist in the more widespread implementation of these roles.
Collapse
Affiliation(s)
- Sarah Lawlor
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Michelle Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Akhtar A, Akhtar R, Nasir BM. Response to "Integrating pretreatment MRI-detected nodal features and Epstein-Barr virus DNA to identify optimal candidates for intensity-modulated radiotherapy alone in patients with stage II nasopharyngeal carcinoma". Oral Oncol 2024; 149:106674. [PMID: 38154446 DOI: 10.1016/j.oraloncology.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
|
3
|
Hsu EJ, Parsons D, Chiu T, Godley AR, Sher DJ, Vo DT. 3D printed integrated bolus/headrest for radiation therapy for malignancies involving the posterior scalp and neck. 3D Print Med 2022; 8:22. [PMID: 35844030 PMCID: PMC9290275 DOI: 10.1186/s41205-022-00152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Malignancies of the head and neck region, encompassing cutaneous, mucosal, and sarcomatous histologies, are complex entities to manage, comprising of coordination between surgery, radiation therapy, and systemic therapy. Malignancies of the posterior scalp are particular challenging to treat with radiation therapy, given its irregular contours and anatomy as well as the superficial location of the target volume. Bolus material is commonly used in radiation therapy to ensure that the dose to the skin and subcutaneous tissue is appropriate and adequate, accounting for the buildup effect of megavoltage photon treatment. The use of commercially available bolus material on the posterior scalp potentially creates air gaps between the bolus and posterior scalp. Case presentations In this report, we created and utilized a custom 3D-printed integrated bolus and headrest for 5 patients to irradiate malignancies involving the posterior scalp, including those with cutaneous squamous cell carcinoma, melanoma, malignant peripheral nerve sheath tumor, and dermal sarcoma. Treatment setup was consistently reproducible, and patients tolerated treatment well without any unexpected adverse effects. Conclusions We found that the use of this custom 3D-printed integrated bolus/headrest allowed for comfortable, consistent, and reproducible treatment set up while minimizing the risk of creating significant air gaps and should be considered in the radiotherapeutic management of patients with posterior scalp malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s41205-022-00152-w.
Collapse
Affiliation(s)
- Eric J Hsu
- Department of Radiation Oncology, Division of Clinical Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David Parsons
- Department of Radiation Oncology, Division of Medical Physics and Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tsuicheng Chiu
- Department of Radiation Oncology, Division of Medical Physics and Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew R Godley
- Department of Radiation Oncology, Division of Medical Physics and Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David J Sher
- Department of Radiation Oncology, Division of Clinical Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dat T Vo
- Department of Radiation Oncology, Division of Clinical Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Oliveira C, Barbosa B, Couto JG, Bravo I, Khine R, McNair H. Advanced practice roles of therapeutic radiographers/radiation therapists: A systematic literature review. Radiography (Lond) 2022; 28:605-619. [PMID: 35550932 DOI: 10.1016/j.radi.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Advances in Radiotherapy (RT) technology and increase of complexity in cancer care have enabled the implementation of new treatment techniques. Subsequently, a greater level of autonomy, responsibility, and accountability in the practice of Therapeutic Radiographers/Radiation Therapists (TR/RTTs) has led to Advanced Practice (AP) roles. The published evidence of this role is scattered with confusing terminology and divergence regarding the perception of whether a specific role represents AP internationally. This study aims to establish an international baseline of evidence on AP roles in RT to identify roles and activities performed by TR/RTTs at advanced level practice and to summarise the impact. METHODS A systematic PRISMA review of the literature was undertaken. Thematic analysis was used to synthesise the roles and associated activities. Six RT external experts validated the list. The impact was scrutinised in terms of clinical, organisational, and professional outcomes. RESULTS Studies (n = 87) were included and categorised into four groups. AP roles were listed by clinical area, site-specific, and scope of practice, and advanced activities were organised into seven dimensions and 27 sub-dimensions. Three most-reported outcomes were: enhanced service capacity, higher patient satisfaction, and safety maintenance. CONCLUSION Evidence-based AP amongst TR/RTTs show how AP roles were conceptualised, implemented, and evaluated. Congruence studies have shown that TR/RTTs are at par with the gold-standard across the various AP roles. IMPLICATIONS FOR PRACTICE This is the first systematic literature review synthetisising AP roles and activities of TR/RTTs. This study also identified the main areas of AP that can be used to develop professional frameworks and education guiding policy by professional bodies, educators and other stakeholders.
Collapse
Affiliation(s)
- C Oliveira
- Radiotherapy Department, Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal; Escola Internacional de Doutoramento, Universidad de Vigo, Circunvalación Ao Campus Universitario, 36310, Vigo, Pontevedra, Spain.
| | - B Barbosa
- Radiotherapy Department, Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal; Escola Internacional de Doutoramento, Universidad de Vigo, Circunvalación Ao Campus Universitario, 36310, Vigo, Pontevedra, Spain; Medical Physics, Radiobiology Group and Radiation Protection Group, IPO Porto Research Centre (CI-IPOP), Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal.
| | - J G Couto
- Radiography Department, Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta.
| | - I Bravo
- Medical Physics, Radiobiology Group and Radiation Protection Group, IPO Porto Research Centre (CI-IPOP), Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal.
| | - R Khine
- European Federation of Radiographer Societies, PO Box 30511, Utrecht, 3503, AH, Netherlands; School of Health Care and Social Work, Buckinghamshire New University, Buckinghamshire, United Kingdom.
| | - H McNair
- European Federation of Radiographer Societies, PO Box 30511, Utrecht, 3503, AH, Netherlands; The Royal Marsden NHS Foundation Trust, Radiotherapy and the Institute of Cancer Research, Surrey, SM2 5PT, United Kingdom.
| |
Collapse
|