1
|
Rajagopal R, Baltazar MT, Carmichael PL, Dent MP, Head J, Li H, Muller I, Reynolds J, Sadh K, Simpson W, Spriggs S, White A, Kukic P. Beyond AOPs: A Mechanistic Evaluation of NAMs in DART Testing. FRONTIERS IN TOXICOLOGY 2022; 4:838466. [PMID: 35295212 PMCID: PMC8915803 DOI: 10.3389/ftox.2022.838466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
New Approach Methodologies (NAMs) promise to offer a unique opportunity to enable human-relevant safety decisions to be made without the need for animal testing in the context of exposure-driven Next Generation Risk Assessment (NGRA). Protecting human health against the potential effects a chemical may have on embryo-foetal development and/or aspects of reproductive biology using NGRA is particularly challenging. These are not single endpoint or health effects and risk assessments have traditionally relied on data from Developmental and Reproductive Toxicity (DART) tests in animals. There are numerous Adverse Outcome Pathways (AOPs) that can lead to DART, which means defining and developing strict testing strategies for every AOP, to predict apical outcomes, is neither a tenable goal nor a necessity to ensure NAM-based safety assessments are fit-for-purpose. Instead, a pragmatic approach is needed that uses the available knowledge and data to ensure NAM-based exposure-led safety assessments are sufficiently protective. To this end, the mechanistic and biological coverage of existing NAMs for DART were assessed and gaps to be addressed were identified, allowing the development of an approach that relies on generating data relevant to the overall mechanisms involved in human reproduction and embryo-foetal development. Using the knowledge of cellular processes and signalling pathways underlying the key stages in reproduction and development, we have developed a broad outline of endpoints informative of DART. When the existing NAMs were compared against this outline to determine whether they provide comprehensive coverage when integrated in a framework, we found them to generally cover the reproductive and developmental processes underlying the traditionally evaluated apical endpoint studies. The application of this safety assessment framework is illustrated using an exposure-led case study.
Collapse
Affiliation(s)
- Ramya Rajagopal
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Daydé-Cazals B, Fauvel B, Singer M, Feneyrolles C, Bestgen B, Gassiot F, Spenlinhauer A, Warnault P, Van Hijfte N, Borjini N, Chevé G, Yasri A. Rational Design, Synthesis, and Biological Evaluation of 7-Azaindole Derivatives as Potent Focused Multi-Targeted Kinase Inhibitors. J Med Chem 2016; 59:3886-905. [DOI: 10.1021/acs.jmedchem.6b00087] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bénédicte Daydé-Cazals
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Bénédicte Fauvel
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Mathilde Singer
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Clémence Feneyrolles
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Benoit Bestgen
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Fanny Gassiot
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Aurélia Spenlinhauer
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Pierre Warnault
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Nathalie Van Hijfte
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Nozha Borjini
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Gwénaël Chevé
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Abdelaziz Yasri
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| |
Collapse
|
3
|
McCune JS, Mager DE, Bemer MJ, Sandmaier BM, Storer BE, Heimfeld S. Association of fludarabine pharmacokinetic/dynamic biomarkers with donor chimerism in nonmyeloablative HCT recipients. Cancer Chemother Pharmacol 2015; 76:85-96. [PMID: 25983023 DOI: 10.1007/s00280-015-2768-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/05/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE Fludarabine monophosphate (fludarabine) is an integral component of many reduced-intensity conditioning regimens for hematopoietic cell transplantation (HCT). Fludarabine's metabolite, 9-β-D-arabinofuranosyl-2-fluoroadenine (F-ara-A), undergoes cellular uptake and activation to form the active cytotoxic metabolite fludarabine triphosphate (F-ara-ATP), which inhibits cellular DNA synthesis in CD4(+) and CD8(+) cells. In this study, we evaluated whether fludarabine-based pharmacologic biomarkers were associated with clinical outcomes in HCT recipients. METHODS Participants with hematologic diseases were conditioned with fludarabine and low-dose total body irradiation (TBI) followed by allogeneic HCT and post-grafting immunosuppression. After fludarabine administration, we evaluated pharmacological biomarkers for fludarabine-F-ara-A area under the curve (AUC) and the ratio of circulating CD4(+) and CD8(+) cells (CD4(+)/CD8(+) ratio) after fludarabine administration-in 102 patients; F-ara-ATP accumulation rate in enriched CD4(+) and CD8(+) cells was evaluated in 36 and 34 patients, respectively. RESULTS Interpatient variability in the pharmacological biomarkers was high, ranging from 3.7-fold (F-ara-A AUC) to 39-fold (F-ara-ATP in CD8(+) cells). Circulating CD8(+) cells were more sensitive to fludarabine administration. A population pharmacokinetic-based sampling schedule successfully allowed for estimation of F-ara-A AUC in this outpatient population. There was a poor correlation between the F-ara-AUC and the F-ara-ATP accumulation rate in CD4(+) (R (2) = 0.01) and CD8(+) cells (R (2) = 0.00). No associations were seen between the four biomarkers and clinical outcomes (day +28 donor T cell chimerism, acute graft-versus-host disease (GVHD), neutrophil nadirs, cytomegalovirus reactivation, chronic GVHD, relapse, non-relapse mortality, or overall mortality). CONCLUSIONS Considerable interpatient variability exists in pharmacokinetic and fludarabine-based biomarkers, but these biomarkers are not associated with clinical outcomes in fludarabine/TBI-conditioned patients.
Collapse
Affiliation(s)
- Jeannine S McCune
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,
| | | | | | | | | | | |
Collapse
|
4
|
Population pharmacokinetic/dynamic model of lymphosuppression after fludarabine administration. Cancer Chemother Pharmacol 2014; 75:67-75. [PMID: 25374408 DOI: 10.1007/s00280-014-2618-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Quantitative relationships between 9-β-D-arabinofuranosyl-2-fluoroadenine (F-ara-A) concentrations and lymphosuppression have not been reported, but would be useful for regimen design. A population pharmacokinetic/pharmacodynamic model was constructed in this study using data from 41 hematopoietic cell transplant (HCT) recipients conditioned with busulfan in combination with fludarabine (total dose 120 mg/m², Protocol 1519) or with fludarabine (total dose 250 mg/m²) with rabbit antithymocyte globulin (rATG, Protocol 2041). METHODS Individual pharmacokinetic parameters were fixed to post hoc Bayesian estimates, and circulating absolute lymphocyte counts (ALC) were obtained during the 3 weeks prior to graft infusion. A semi-physiological cell-kill model with three lymphocyte transit compartments was applied and aptly characterized the time course of suppression of circulating ALC by fludarabine administration. Drug- and system-specific parameters were estimated using a maximum likelihood expectation maximization algorithm, and the final model was qualified using an internal visual predictive check. RESULTS The final model successfully characterized the time course and variability in ALC. Pharmacodynamic parameters exhibited considerable between subject variability (38.9-211 %). The HCT protocol was the only covariate associated with the pharmacodynamic parameters, specifically the lymphocyte kill rate, the transit rate between lymphocyte compartments, and the baseline ALC. CONCLUSIONS This model can be used to simulate the degree of lymphosuppression for design of future fludarabine-based conditioning regimens.
Collapse
|
5
|
Hattori K, Sugiura S, Kanamori T. Pressure-Driven Microfluidic Perfusion Culture Device for Integrated Dose-Response Assays. ACTA ACUST UNITED AC 2013; 18:437-45. [DOI: 10.1177/2211068213503155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Kojima K, Fujino Y, Goto-Koshino Y, Ohno K, Tsujimoto H. Analyses on activation of NF-κB and effect of bortezomib in canine neoplastic lymphoid cell lines. J Vet Med Sci 2013; 75:727-31. [PMID: 23337362 DOI: 10.1292/jvms.12-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphoid malignancies, such as leukemia, and many types of lymphoma are common and severe disorders in dogs. Since shortening remission duration caused by resistance to chemotherapy often becomes clinically critical problems, development of novel and effective therapy should be required. The present study investigated the status of NF-κB and effect of its inhibitor, bortezomib, in six canine neoplastic lymphoid cell lines. NF-κB p65 and p50 were detected in the nuclear fraction of GL-1, CLBL-1 and CL-1, suggesting that NF-κB was constitutively activated in the cells. NF-κB p65 was detected in the cytoplasmic fraction of UL-1 and Ema. After incubation with bortezomib, NF-κB p50 and p65 became undetectable in the nuclear fraction of GL-1, CLBL-1 and CL-1, and CLBL-1, respectively, and p65 was clearly degraded in the cytoplasmic fraction of CLBL-1 and CL-1. Bortezomib inhibited the proliferation of all cell lines except Nody-1 in a concentration-dependent manner. The results indicated that constitutive activation of NF-κB could contribute to the proliferation of canine neoplastic lymphoid cells, and bortezomib would have suppressive effects on the NF-κB activation and the proliferation of neoplastic lymphoid cells in dogs.
Collapse
Affiliation(s)
- Ko Kojima
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
7
|
Seshadri P, Rajaram A, Rajaram R. Plumbagin and juglone induce caspase-3-dependent apoptosis involving the mitochondria through ROS generation in human peripheral blood lymphocytes. Free Radic Biol Med 2011; 51:2090-107. [PMID: 21982843 DOI: 10.1016/j.freeradbiomed.2011.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 11/23/2022]
Abstract
The phytochemicals plumbagin and juglone have recently been gaining importance because of their various pharmacological activities. In this study, these compounds are shown to induce concentration- and time-dependent toxicity in human peripheral blood lymphocytes via the apoptotic pathway. Flow cytometry data revealed the occurrence of about 28% early apoptotic cells after 6h exposure to 10μM plumbagin and 35% late apoptotic cells and about 43% sub-G1 population after 24h. The cytotoxic effect of plumbagin was at least twofold higher than that of juglone as evidenced by the IC(50) value for cytotoxicity. Characteristic apoptotic features such as chromatin condensation and apoptotic body formation were observed through TEM, and membrane blebbing and cell surface smoothening were seen in SEM studies. Generation of ROS was evidenced through the HPLC analysis of superoxide-specific 2-OH-E+ formation. In addition, a decrease in GSH levels parallel to ROS production was observed. Reversal of apoptosis in both NAC- and Tempol-pretreated cells indicates the involvement of both ROS generation and GSH depletion in plumbagin- and juglone-induced apoptosis. The mechanistic pathway involves a decrease in MMP; alterations in the levels of Bcl-2, Bax, and cytosolic cytochrome c; and PARP-1 cleavage subsequent to caspase-3 activation.
Collapse
Affiliation(s)
- Priya Seshadri
- Biochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | |
Collapse
|
8
|
Kuo JS, Chiu DT. Controlling mass transport in microfluidic devices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:275-96. [PMID: 21456968 PMCID: PMC5724977 DOI: 10.1146/annurev-anchem-061010-113926] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microfluidic platforms offer exquisite capabilities in controlling mass transport for biological studies. In this review, we focus on recent developments in manipulating chemical concentrations at the microscale. Some techniques prevent or accelerate mixing, whereas others shape the concentration gradients of chemical and biological molecules. We also highlight several in vitro biological studies in the areas of organ engineering, cancer, and blood coagulation that have benefited from accurate control of mass transfer.
Collapse
Affiliation(s)
- Jason S Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
9
|
Sugiura S, Hattori K, Kanamori T. Microfluidic Serial Dilution Cell-Based Assay for Analyzing Drug Dose Response over a Wide Concentration Range. Anal Chem 2010; 82:8278-82. [DOI: 10.1021/ac1017666] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shinji Sugiura
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
10
|
Haglund C, Åleskog A, Håkansson LD, Höglund M, Jacobsson S, Larsson R, Lindhagen E. The FMCA-GM assays, high throughput non-clonogenic alternatives to CFU-GM in preclinical hematotoxicity testing. Toxicol Lett 2010; 194:102-7. [DOI: 10.1016/j.toxlet.2010.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/18/2010] [Accepted: 02/05/2010] [Indexed: 12/31/2022]
|
11
|
Scaling the time-course of myelosuppression from rats to patients with a semi-physiological model. Invest New Drugs 2009; 28:744-53. [DOI: 10.1007/s10637-009-9308-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
|
12
|
Hattori K, Sugiura S, Kanamori T. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. LAB ON A CHIP 2009; 9:1763-72. [PMID: 19495461 DOI: 10.1039/b816995k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This paper reports a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio for generating linear concentration profiles as well as logarithmic concentration profiles spanning 3 and 6 orders of magnitude. The microfluidic networks were composed of thin fluidic-resistance microchannels with 160 to 730 microm(2) cross-sectional areas and thick diffusion-mixing microchannels with 3,600 to 17,000 microm(2) cross-sectional areas, and were fabricated from polydimethylsiloxane by multilayer photolithography and replica molding. We proposed a design algorithm of the microfluidic network for an arbitrary monotonic concentration profile by means of a hydrodynamic calculation. Because of the high fluidic-resistance ratio of the fluidic-resistance microchannels to the diffusion-mixing microchannels, appropriate geometry and dimensions of the fluidic-resistance microchannels allowed us to obtain desired concentration profiles. The fabricated microfluidic network was compact, occupying a 8 x 18 to 21.0 x 13.5 mm(2) area on the microchip. Both the linear and the logarithmic concentration profiles were successfully generated with the error less than 15% for the linear concentration profile, 22% and 35% for the logarithmic concentration profiles of 3 and 6 orders of magnitude, respectively. The generated linear concentration profiles of the small molecule, calcein, were independent of the flow rate within the range of 0.009 to 0.23 microL/min. The concentration profiles of the large molecules, dextrans, depended on the flow rate and molecular weight. The required residence time of large molecules in the diffusion-mixing microchannel was correlated with dimensionless diffusion time, Fick number, and was discussed based on the scaling law. These compact, stable serial dilution microfluidic networks are expected to be applied to various integrated on-chip analyses.
Collapse
Affiliation(s)
- Koji Hattori
- Research Center of Advanced Bionics, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | | | | |
Collapse
|
13
|
|