1
|
Jalli R, Mehrabani D, Zare S, Saeedi Moghadam M, Jamhiri I, Manafi N, Mehrabani G, Ghabanchi J, Razeghian Jahromi I, Rasouli-Nia A, Karimi-Busheri F. Cell Proliferation, Viability, Differentiation, and Apoptosis of Iron Oxide Labeled Stem Cells Transfected with Lipofectamine Assessed by MRI. J Clin Med 2023; 12:jcm12062395. [PMID: 36983399 PMCID: PMC10054380 DOI: 10.3390/jcm12062395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
To assess in vitro and in vivo tracking of iron oxide labeled stem cells transfected by lipofectamine using magnetic resonance imaging (MRI), rat dental pulp stem cells (DPSCs) were characterized, labeled with iron oxide nanoparticles, and then transfected with lipofectamine to facilitate the internalization of these nanoparticles. Cell proliferation, viability, differentiation, and apoptosis were investigated. Prussian blue staining and MRI were used to trace transfected labeled cells. DPSCs were a morphologically spindle shape, adherent to culture plates, and positive for adipogenic and osteogenic inductions. They expressed CD73 and CD90 markers and lacked CD34 and CD45. Iron oxide labeling and transfection with lipofectamine in DPSCs had no toxic impact on viability, proliferation, and differentiation, and did not induce any apoptosis. In vitro and in vivo internalization of iron oxide nanoparticles within DPSCs were confirmed by Prussian blue staining and MRI tracking. Prussian blue staining and MRI tracking in the absence of any toxic effects on cell viability, proliferation, differentiation, and apoptosis were safe and accurate to track DPSCs labeled with iron oxide and transfected with lipofectamine. MRI can be a useful imaging modality when treatment outcome is targeted.
Collapse
Affiliation(s)
- Reza Jalli
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Science, Shiraz 71439-14693, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mahdi Saeedi Moghadam
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Navid Manafi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 71439-14693, Iran
| | - Golshid Mehrabani
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02215, USA
| | - Janan Ghabanchi
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Iman Razeghian Jahromi
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
2
|
Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes (Basel) 2022. [DOI: 10.3390/pr10112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable.
Collapse
|
3
|
Wang L, Cui YR, Oh S, Paik MJ, Je JG, Heo JH, Lee TK, Fu X, Xu J, Gao X, Jeon YJ. Arsenic removal from the popular edible seaweed Sargassum fusiforme by sequential processing involving hot water, citric acid, and fermentation. CHEMOSPHERE 2022; 292:133409. [PMID: 34953872 DOI: 10.1016/j.chemosphere.2021.133409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Higher quantities of arsenic (As) in Sargassum fusiforme limit its use as a food ingredient. The present study aimed to reduce As in S. fusiforme using sequential processing involving hot water, citric acid, and fermentation. The As content in S. fusiforme of 76.18 mg/kg was reduced to 30.47 mg/kg and 24.45 mg/kg using hot water and citric acid processing, respectively. However, the As content in S. fusiforme was reduced to 9.09 mg/kg by sequential processing with hot water and citric acid. Using response surface methodology, optimal processing conditions for S. fusiforme were determined to be treatment with hot water at 60 °C for 120 min followed by treatment with 0.4% citric acid. To further reduce the As content, the processed S. fusiforme was fermented by Lactobacillus rhamnosus, and the As content was further reduced to 1.64 mg/kg. In addition, the levels of organic acids and amino acids in S. fusiforme pre- and post-fermentation were significantly altered. These results indicated that the As content in S. fusiforme could be effectively reduced using the sequential processing with hot water, citric acid, and L. rhamnosus fermentation, and the organic acid and amino acid levels were significantly altered by L. rhamnosus fermentation.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yong Ri Cui
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Kangmaichen Biotechnology Co., Ltd., Qingdao, 266114, China
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jun-Ho Heo
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Tae-Ki Lee
- Department of Hotel Cuisine & Baking, Jeonnam State University, Damyang-Gun, Jeonnam, 57337, Republic of Korea
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
4
|
Dragar Č, Kralj S, Kocbek P. Bioevaluation methods for iron-oxide-based magnetic nanoparticles. Int J Pharm 2021; 597:120348. [DOI: 10.1016/j.ijpharm.2021.120348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
|
5
|
Sol-gel synthesis, characterization, dielectric and anti-bacterial properties of soft ferromagnetic oxide system Gd4-xSr1+xFe5-xZnxO14+δ [0 ≤ x ≤ 0.45]. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Al-Rawi NN, Anwer BA, Al-Rawi NH, Uthman AT, Ahmed IS. Magnetism in drug delivery: The marvels of iron oxides and substituted ferrites nanoparticles. Saudi Pharm J 2020; 28:876-887. [PMID: 32647490 PMCID: PMC7335713 DOI: 10.1016/j.jsps.2020.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The conventional utilization of drugs is characterized by poor biodistribution, limited effectiveness, and lack of selectivity, besides undesirable side effects on multiple body systems. Seeking a DDS with a modifiable skeleton to customize drug targeting is of extreme importance for successful therapy of many diseases. Among the different synthesis strategies for MNPs, chemical methods are the most common, and on top of the pyramid, is the co-precipitation method. MNPs have customizable properties, where applying a hydrophilic coating protects the particles from opsonization and human-immunity recognition, which increases their circulation time. The route MNPs usually follow in the body starts with magnetic guidance to the target, immobilization for drug release, and finally clearance. Interestingly, multifunctional nanocomplexes with conjugated SPIONS and PEI presented enhanced transfection while decreased PEI toxicity. Theranostic applications of MNPs are limitless, whether it is a dual function of diagnosis and therapy simultaneously, or a multimodal imaging system. IONPs participate in the production of oxidative stress that leads to cell damage. Metal ferrite NPs can overcome the drawbacks of IONPs provided that the substituting metal in use is less toxic. Metal ferrite NPs present unique properties of high saturation magnetization, enhanced encapsulation efficacy, as well as enzyme-mimetic activities. Magnesium ferrite NPs (MFNPs) were found to exhibit greater magnetic heating capacity compared to other ferrites. MFNPs also show safe metabolism and high biocompatibility, making them a promising system for cancer applications.
In modern drug delivery, seeking a drug delivery system (DDS) with a modifiable skeleton for proper targeting of loaded actives to specific sites in the body is of extreme importance for a successful therapy. Magnetically guided nanosystems, where particles such as iron oxides are guided to specific regions using an external magnetic field, can provide magnetic resonance imaging (MRI) while delivering a therapeutic payload at the same time, which represents a breakthrough in disease therapy and make MNPs excellent candidates for several biomedical applications. In this review, magnetic nanoparticles (MNPs) along with their distinguishable properties, including pharmacokinetics and toxicity, especially in cancer therapy will be discussed. The potential perspective of using other elements within the MNP system to reduce toxicity, improve pharmacokinetics, increase the magnetization ability, improve physical targeting precision and/or widen the scope of its biomedical application will be also discussed.
Collapse
Affiliation(s)
- Noor Natheer Al-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma Azad Anwer
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Natheer Hashim Al-Rawi
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Asmaa Tahseen Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Ariji Y, Ariji E, Nakashima M, Iohara K. Magnetic resonance imaging in endodontics: a literature review. Oral Radiol 2018; 34:10-16. [PMID: 30484095 DOI: 10.1007/s11282-017-0301-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) has recently been used for the evaluation of dental pulp anatomy, vitality, and regeneration. This study reviewed the recent use of MRI in the endodontic field. METHODS Literature published from January 2000 to March 2017 was searched in PubMed using the following Medical Subject Heading (MeSH) terms: (1) MRI and (dental pulp anatomy or endodontic pulp); (2) MRI and dental pulp regeneration. Studies were narrowed down based on specific inclusion criteria and categorized as in vitro, in vivo, or dental pulp regeneration studies. The MRI sequences and imaging findings were summarized. RESULTS In the in vitro studies on dental pulp anatomy, T1-weighted imaging with high resolution was frequently used to evaluate dental pulp morphology, demineralization depth, and tooth abnormalities. Other sequences such as apparent diffusion coefficient mapping and sweep imaging with Fourier transformation were used to evaluate pulpal fluid and decayed teeth, and short-T2 tissues (dentin and enamel), respectively. In the in vivo studies, pulp vitality and reperfusion were visible with fat-saturated T2-weighted imaging or contrast-enhanced T1-weighted imaging. In both the in vitro and in vivo studies, MRI could reveal pulp regeneration after stem cell therapy. Stem cells labeled with superparamagnetic iron oxide particles were also visible on MRI. Angiogenesis induced by stem cells could be confirmed on enhanced T1-weighted imaging. CONCLUSION MRI can be successfully used to visualize pulp morphology as well as pulp vitality and regeneration. The use of MRI in the endodontic field is likely to increase in the future.
Collapse
Affiliation(s)
- Yoshiko Ariji
- Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan.
| | - Eiichiro Ariji
- Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-cho, Obu, 474-8511, Japan
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-cho, Obu, 474-8511, Japan
| |
Collapse
|
8
|
Rosenberg JT, Yuan X, Helsper SN, Bagdasarian FA, Ma T, Grant SC. Effects of labeling human mesenchymal stem cells with superparamagnetic iron oxides on cellular functions and magnetic resonance contrast in hypoxic environments and long-term monitoring. Brain Circ 2018; 4:133-138. [PMID: 30450421 PMCID: PMC6187941 DOI: 10.4103/bc.bc_18_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 01/25/2023] Open
Abstract
Ischemia, which involves decreased blood flow to a region and a corresponding deprivation of oxygen and nutrients, can be induced as a consequence of stroke or heart attack. A prevalent disease that affects many individuals worldwide, ischemic stroke results in functional and cognitive impairments, as neural cells in the brain receive inadequate nourishment and encounter inflammation and various other detrimental toxic factors that lead to their death. Given the scarce treatments for this disease in the clinic such as the administration of tissue plasminogen activator, which is only effective in a limited time window after the occurrence of stroke, it will be necessary to develop new strategies to ameliorate or prevent stroke-induced brain damage. Cell-based therapies appear to be a promising solution for treating ischemic stroke and many other ischemia-associated and neurodegenerative maladies. Particularly, human mesenchymal stem cells (hMSCs) are of interest for cell transplantation in stroke, given their multipotency, accessibility, and reparative abilities. To determine the fate and survival of hMSC, which will be imperative for successful transplantation therapies, these cells may be monitored using magnetic resonance imaging and transfected with superparamagnetic iron oxide (SPIO), a contrast agent that facilitates the detection of these hMSCs. This review encompasses pertinent research and findings to reveal the effects of SPIO on hMSC functions in the context of transplantation in ischemic environments and over extended time periods. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Jens T Rosenberg
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA.,The National High Magnetic Field Laboratory, CIMAR, Florida State University, Tallahassee, Florida, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA
| | - Shannon N Helsper
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA.,The National High Magnetic Field Laboratory, CIMAR, Florida State University, Tallahassee, Florida, USA
| | - F Andrew Bagdasarian
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA.,The National High Magnetic Field Laboratory, CIMAR, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA.,The National High Magnetic Field Laboratory, CIMAR, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
9
|
Patil RM, Thorat ND, Shete PB, Bedge PA, Gavde S, Joshi MG, Tofail SA, Bohara RA. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 2018; 13:63-72. [PMID: 29349357 PMCID: PMC5766481 DOI: 10.1016/j.bbrep.2017.12.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022] Open
Abstract
Recently lots of efforts have been taken to develop superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications. So it is utmost necessary to have in depth knowledge of the toxicity occurred by this material. This article is designed in such way that it covers all the associated toxicity issues of SPIONs. It mainly emphasis on toxicity occurred at different levels including cellular alterations in the form of damage to nucleic acids due to oxidative stress and altered cellular response. In addition focus is been devoted for in vitro and in vivo toxicity of SPIONs, so that a better therapeutics can be designed. At the end the time dependent nature of toxicity and its ultimate faith inside the body is being discussed.
Collapse
Affiliation(s)
- Rakesh M. Patil
- Directorate of Forensic Science Laboratory, Govt. of Maharashtra Kalina, Mumbai, India
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Nanasaheb D. Thorat
- Material and Surface Science Institute, Bernal Institute, University of Limerick, Ireland
| | - Prajkta B. Shete
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Poonam A. Bedge
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
| | - Shambala Gavde
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Meghnad G. Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
| | - Syed A.M. Tofail
- Material and Surface Science Institute, Bernal Institute, University of Limerick, Ireland
| | - Raghvendra A. Bohara
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
- Research and Innovations for Comprehensive Health (RICH), Cell D.Y.Patil University, Kolhapur, India
| |
Collapse
|
10
|
Rosenberg JT, Yuan X, Grant S, Ma T. Tracking mesenchymal stem cells using magnetic resonance imaging. Brain Circ 2016; 2:108-113. [PMID: 30276283 PMCID: PMC6126273 DOI: 10.4103/2394-8108.192521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 01/12/2023] Open
Abstract
Recent translational studies in the fields of tissue regeneration and cell therapy have characterized mesenchymal stem cells (MSCs) as a potentially effective and accessible measure for treating ischemic cerebral and neurodegenerative disorders such as stroke, Parkinson's disease, and amyotrophic lateral sclerosis. Developing more efficient cell tracking techniques bear the potential to optimize MSC transplantation therapies by providing a more accurate picture of the fate and area of effect of implanted cells. Currently, determining the location of transplanted MSCs involves a histological approach, but magnetic resonance imaging (MRI) presents a noninvasive paradigm that permits repeat evaluations. To visualize MSCs using MRI, the implanted cells must be treated with an intracellular contrast agent. These are commonly paramagnetic compounds, many of which are based on superparamagnetic iron oxide (SPIO) nanoparticles. Recent research has set out characterize the effects of SPIO-uptake on the cellular activity of in vitro human MSCs and the resultant influence that respective SPIO concentration has on MRI sensitivity. As these studies reveal, SPIO-uptake has no effect on the cellular processes of proliferation and differentiation while producing high contrast MRI signals. Moreover, transplantation of SPIO-labeled MSCs in animal models encouragingly showed no loss in MRI contrast, suggesting that SPIO labeling may be an appealing regime for lasting MRI detection. This study is a review article. Referred literature in this study has been listed in the reference part. The datasets supporting the conclusions of this article are available online by searching the PubMed. Some original points in this article come from the laboratory practice in our research centers and the authors’ experiences.
Collapse
Affiliation(s)
- Jens T Rosenberg
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Samuel Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
11
|
Naito E, Kudo D, Sekine SI, Watanabe K, Kobatake Y, Tamaoki N, Inden M, Iida K, Ito Y, Hozumi I, Shibata T, Maeda S, Kamishina H. Characterization of canine dental pulp cells and their neuroregenerative potential. In Vitro Cell Dev Biol Anim 2015; 51:1012-22. [PMID: 26170225 DOI: 10.1007/s11626-015-9935-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/18/2015] [Indexed: 12/13/2022]
Abstract
Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials. It was also reported that superparamagnetic iron oxide (SPIO) particles were useful for labeling of MSCs and tracking with magnetic resonance imaging (MRI). Our data suggested that cDPCs hold higher proliferation capacity than bone marrow stromal cells, the other type of mesenchymal stem cells which have been the target of intensive research. Canine DPCs constitutively expressed neural markers, suggesting a close relationship to the nervous system in their developmental origin. Canine DPCs promoted neuritogenesis of PC12 cells, most likely through secretion of neurotrophic factors. Furthermore, SPIO nanoparticles could be effectively transported to cDPCs without significant cytotoxicity and unfavorable effects on neuritogenesis. SPIO-labeled cDPCs embedded in agarose spinal cord phantoms were successfully visualized with a magnetic resonance imaging arousing a hope for noninvasive cell tracking in transplantation studies.
Collapse
Affiliation(s)
- Eiji Naito
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Daichi Kudo
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Shin-ichiro Sekine
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Watanabe
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yui Kobatake
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Naritaka Tamaoki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuki Iida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yusuke Ito
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Sadatoshi Maeda
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroaki Kamishina
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
12
|
Sibov TT, Miyaki LAM, Mamani JB, Marti LC, Sardinha LR, Pavon LF, Oliveira DMD, Cardenas WH, Gamarra LF. Evaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine. EINSTEIN-SAO PAULO 2013; 10:180-8. [PMID: 23052453 DOI: 10.1590/s1679-45082012000200011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 06/06/2012] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. METHODS The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37°C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxy-fluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. RESULTS mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine continue to proliferate over seven days and the percentage of cells in early or late apoptosis is low compared to the percentage of live cells over the three days. CONCLUSION Our results showed that the use of poly-L-lysine complexed with superparamagnetic iron oxide nanoparticles/dextran provides better internalization of these superparamagnetic iron oxide nanoparticles in mesenchymal stem cells Thus, we demonstrated that this type of labeling is not cytotoxic to the mesenchymal stem cells, since the viability and apoptosis assays showed that the cells remain alive and proliferating. The efficiency of this type of labeling in mesenchymal stem cells can provide non-invasive methods for monitoring these cells in vivo.
Collapse
Affiliation(s)
- Tatiana Taís Sibov
- Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Miyaki LAM, Sibov TT, Pavon LF, Mamani JB, Gamarra LF. Study of internalization and viability of multimodal nanoparticles for labeling of human umbilical cord mesenchymal stem cells. EINSTEIN-SAO PAULO 2013; 10:189-96. [PMID: 23052454 DOI: 10.1590/s1679-45082012000200012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10µg Fe/mL and 100µg Fe/mL. METHODS We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. RESULTS The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which were shown as blue granules co-localized in fluorescent clusters, thus characterizing magnetic and fluorescent properties of multimodal magnetic nanoparticles-Rhodamine B. CONCLUSION The stability of multimodal magnetic nanoparticles-Rhodamine B found in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium assured intracellular mesenchymal stem cells labeling. This cell labeling did not affect viability of labeled mesenchymal stem cells since they continued to proliferate for five days.
Collapse
|
14
|
Struys T, Ketkar-Atre A, Gervois P, Leten C, Hilkens P, Martens W, Bronckaers A, Dresselaers T, Politis C, Lambrichts I, Himmelreich U. Magnetic Resonance Imaging of Human Dental Pulp Stem Cells in Vitro and in Vivo. Cell Transplant 2013; 22:1813-29. [DOI: 10.3727/096368912x657774] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent advances in stem cell research have shown the promising nature of mesenchymal stem cells as plausible candidates for cell-based regenerative medicine. Many studies reported the use of human dental pulp stem cells (hDPSCs), which possess self-renewal capacity, high proliferation potential, and the ability to undergo multilineage differentiation. Together with this therapeutic approach, development of effective, noninvasive and nontoxic imaging techniques for visualizing and tracking the cells in vivo is crucial for the evaluation and improvement of stem cell therapy. Magnetic resonance imaging (MRI) is one of the most powerful diagnostic imaging techniques currently available for in vivo diagnosis and has been proposed as the most attractive modality for monitoring stem cell migration. The aim of this study was to investigate the labeling efficiency of hDPSCs using superparamagnetic iron oxide (SPIO) particles in order to allow visualization using in vitro and in vivo MRI without influencing cellular metabolism. MRI and transmission electron microscopy (TEM) showed optimal uptake with low SPIO concentrations of 15 μg/ml in combination with 0.75 μg/ml poly-l-lysine (PLL) resulting in more than 13 pg iron/cell and an in vitro detection limit of 50 labeled cells/μl. Very low SPIO concentrations in the culture medium resulted in extremely high labeling efficiency not reported before. For these conditions, tetrazolium salt assays showed no adverse effects on cell viability. Furthermore, in vivo MRI was performed to detect labeled hDPSCs transplanted into the brain of Rag 2-γ C immune-deficient mice. Transplanted cells did not show any signs of tumorgenecity or teratoma formation during the studied time course. We have reported on a labeling and imaging strategy to visualize human dental pulp stem cells in vivo using MRI. These data provide a solid base to allow cell tracking in future regenerative studies in the brain longitudinally.
Collapse
Affiliation(s)
- T. Struys
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - A. Ketkar-Atre
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - P. Gervois
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - C. Leten
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - P. Hilkens
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - W. Martens
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - A. Bronckaers
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - T. Dresselaers
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - C. Politis
- Ziekenhuis Oost-Limburg (ZOL), Genk, Belgium
| | - I. Lambrichts
- Biomedical Research Institute, Lab of Histology, Hasselt University, Diepenbeek, Belgium
| | - U. Himmelreich
- Biomedical MRI Unit-MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Mohammadian M, Shamsasenjan K, Lotfi Nezhad P, Talebi M, Jahedi M, Nickkhah H, Minayi N, Movassagh Pour A. Mesenchymal stem cells: new aspect in cell-based regenerative therapy. Adv Pharm Bull 2013; 3:433-7. [PMID: 24312873 DOI: 10.5681/apb.2013.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/24/2022] Open
Abstract
MSCs are multipotent progenitors which reside in bone marrow. They support hematopoietic stem cells homing, self renewal and differentiation in bone marrow. They can also differentiate into osteoblasts, adipocytes, chondrocytes, myocyates and many other tissues. In vivo, when trauma happens, MSCs operate cell renewal and migrate to the damaged tissues to regenerate that injury. In vitro, MSCs are able to proliferate and differentiate to a variety of cell lineages. This makes them a very hopeful tool for cell-based regenerative therapy for large bone defects, maxillofacial skeletal reconstruction, cardiovascular and spinal cord injury and so many other defects. The most important characteristic that make MSCs an excellent tool for cell replacement is their ability to escape from immune rejection. For therapeutic purposes they usually isolated from human bone marrow or fat and they should proliferate in order to reach an adequate number for implantation. Conventionally DMEM medium supplemented with 10% FBS is used for their expansion, but currently autologous platelet rich products are replaced FBS. Platelet granules contain so many growth factors that can support MSCs proliferation.
Collapse
Affiliation(s)
- Mozhdeh Mohammadian
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1450-66. [PMID: 23233377 DOI: 10.1002/smll.201202111] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Indexed: 05/26/2023]
Abstract
Iron oxide nanoparticles are one of the most versatile and safe nanomaterials used in medicine. Recent progress in nanochemistry enables fine control of the size, crystallinity, uniformity, and surface properties of iron oxide nanoparticles. In this review, the synthesis of chemically designed biocompatible iron oxide nanoparticles with improved quality and reduced toxicity is discussed for use in diverse biomedical applications.
Collapse
Affiliation(s)
- Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
17
|
Lorenzo Y, Costa S, Collins AR, Azqueta A. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis 2013; 28:427-32. [PMID: 23630247 DOI: 10.1093/mutage/get018] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA damage is commonly measured at the level of individual cells using the so-called comet assay (single-cell gel electrophoresis). As the frequency of DNA breaks increases, so does the fraction of the DNA extending towards the anode, forming the comet tail. Comets with almost all DNA in the tail are often referred to as 'hedgehog' comets and are widely assumed to represent apoptotic cells. We review the literature and present theoretical and empirical arguments against this interpretation. The level of DNA damage in these comets is far less than the massive fragmentation that occurs in apoptosis. 'Hedgehog' comets are formed after moderate exposure of cells to, for example, H2O2, but if the cells are incubated for a short period, 'hedgehogs' are no longer seen. We confirm that this is not because DNA has degraded further and been lost from the gel, but because the DNA is repaired. The comet assay may detect the earliest stages of apoptosis, but as it proceeds, comets disappear in a smear of unattached DNA. It is clear that 'hedgehogs' can correspond to one level on a continuum of genotoxic damage, are not diagnostic of apoptosis and should not be regarded as an indicator of cytotoxicity.
Collapse
Affiliation(s)
- Yolanda Lorenzo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
18
|
Rosenberg JT, Sellgren KL, Sachi-Kocher A, Calixto Bejarano F, Baird MA, Davidson MW, Ma T, Grant SC. Magnetic resonance contrast and biological effects of intracellular superparamagnetic iron oxides on human mesenchymal stem cells with long-term culture and hypoxic exposure. Cytotherapy 2013; 15:307-22. [DOI: 10.1016/j.jcyt.2012.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 12/01/2022]
|
19
|
Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 2011; 112:2323-38. [PMID: 22216932 DOI: 10.1021/cr2002596] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Morteza Mahmoudi
- Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
20
|
Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 2011; 26:351-61. [PMID: 22210200 DOI: 10.1016/j.tiv.2011.12.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/14/2011] [Accepted: 12/12/2011] [Indexed: 01/21/2023]
Abstract
Titanium dioxide nanoparticles (TiO(2)-NPs) induced cytotoxicity and DNA damage have been investigated using human amnion epithelial (WISH) cells, as an in vitro model for nanotoxicity assessment. Crystalline, polyhedral rutile TiO(2)-NPs were synthesized and characterized using X-ray diffraction (XRD), UV-Visible spectroscopy, Fourier transform infra red (FTIR) spectroscopy, and transmission electron microscopic (TEM) analyses. The neutral red uptake (NRU) and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assays revealed the concentration dependent cytotoxic effects of TiO(2)-NPs (30.6nm) in concentration range of 0.625-10μg/ml. Cells exposed to TiO(2)-NPs (10μg/ml) exhibited significant reduction (46.3% and 34.6%; p<0.05) in catalase activity and glutathione (GSH) level, respectively. Treated cells showed 1.87-fold increase in intracellular reactive oxygen species (ROS) generation and 7.3% (p<0.01) increase in G(2)/M cell cycle arrest, as compared to the untreated control. TiO(2)-NPs treated cells also demonstrated the formation of DNA double strand breaks with 14.6-fold (p<0.05) increase in Olive tail moment (OTM) value at 20μg/ml concentration, vis-à-vis untreated control, under neutral comet assay conditions. Thus, the reduction in cell viability, morphological alterations, compromised antioxidant system, intracellular ROS production, and significant DNA damage in TiO(2)-NPs exposed cells signify the potential of these NPs to induce cyto- and genotoxicity in cultured WISH cells.
Collapse
|
21
|
Karlsson HL. The comet assay in nanotoxicology research. Anal Bioanal Chem 2010; 398:651-66. [DOI: 10.1007/s00216-010-3977-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 01/22/2023]
|
22
|
Nohroudi K, Arnhold S, Berhorn T, Addicks K, Hoehn M, Himmelreich U. In Vivo MRI Stem Cell Tracking Requires Balancing of Detection Limit and Cell Viability. Cell Transplant 2010; 19:431-41. [DOI: 10.3727/096368909x484699] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell-based therapy using adult mesenchymal stem cells (MSCs) has already been the subject of clinical trials, but for further development and optimization the distribution and integration of the engrafted cells into host tissues have to be monitored. Today, for this purpose magnetic resonance imaging (MRI) is the most suitable technique, and micron-sized iron oxide particles (MPIOs) used for labeling are favorable due to their low detection limit. However, constitutional data concerning labeling efficiency, cell viability, and function are lacking. We demonstrate that cell viability and migratory potential of bone marrow mesenchymal stromal cells (BMSCs) are negatively correlated with incorporated MPIOs, presumably due to interference with the actin cytoskeleton. Nevertheless, labeling of BMSCs with low amounts of MPIOs results in maintained cellular function and sufficient contrast for in vivo observation of single cells by MRI in a rat glioma model. Conclusively, though careful titration is indicated, MPIOs are a promising tool for in vivo cell tracking and evaluation of cell-based therapies.
Collapse
Affiliation(s)
- K. Nohroudi
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - S. Arnhold
- Department of Veterinary Anatomy, University of Giessen, Giessen, Germany
| | - T. Berhorn
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - K. Addicks
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - M. Hoehn
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - U. Himmelreich
- Max Planck Institute for Neurological Research, Cologne, Germany
| |
Collapse
|
23
|
van Buul GM, Farrell E, Kops N, van Tiel ST, Bos PK, Weinans H, Krestin GP, van Osch GJVM, Bernsen MR. Ferumoxides-protamine sulfate is more effective than ferucarbotran for cell labeling: implications for clinically applicable cell tracking using MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 4:230-6. [PMID: 19839030 DOI: 10.1002/cmmi.289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of superparamagnetic iron oxide (SPIO) for labeling cells holds great promise for clinically applicable cell tracking using magnetic resonance imaging. For clinical application, an effectively and specifically labeled cell preparation is highly desired (i.e. a large amount of intracellular iron and a negligible amount of extracellular iron). In this study we performed a direct comparison of two SPIO labeling strategies that have both been reported as efficient and clinically translatable approaches. These approaches are cell labeling using ferumoxides-protamine complexes or ferucarabotran particles. Cell labeling was performed on primary human bone marrow stromal cells (hBMSCs) and chondrocytes. For both cell types ferumoxides-protamine resulted in a higher percentage of labeled cells, a higher total iron load, a larger amount of intracellular iron and a lower amount of extracellular iron aggregates, compared with ferucarbotran. Consequently, hBMSC and chondrocyte labeling with ferumoxides-protamine is more effective and results in more specific cell labeling than ferucarbotran.
Collapse
Affiliation(s)
- G M van Buul
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Henning TD, Sutton EJ, Kim A, Golovko D, Horvai A, Ackerman L, Sennino B, McDonald D, Lotz J, Daldrup-Link HE. The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 4:165-73. [PMID: 19670250 DOI: 10.1002/cmmi.276] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with ferucarbotran using various protocols: cells were labeled with 100 microg Fe/ml for 4 and 18 h and additional samples were cultured for 6 or 12 days after the 18 h labeling. Supplementary samples were labeled by transfection with protamine sulfate. Iron uptake was quantified by ICP-spectrometry and labeled cells were investigated by transmission electron microscopy and by immunostaining for ferucarbotran. The differentiation potential of labeled cells was compared with unlabeled controls by staining with Alcian blue and Hematoxylin and Eosin, then quantified by measurements of glucosaminoglycans (GAG). Contrast agent effect at 3 T was investigated on days 1 and 14 of chondrogenic differentiation by measuring signal-to-noise ratios on T(2)-SE and T(2)*-GE sequences. Iron uptake was significant for all labeling protocols (p < 0.05). The uptake was highest after transfection with protamine sulfate (25.65 +/- 3.96 pg/cell) and lowest at an incubation time of 4 h without transfection (3.21 +/- 0.21 pg/cell). While chondrogenic differentiation was decreased using all labeling protocols, the decrease in GAG synthesis was not significant after labeling for 4 h without transfection. After labeling by simple incubation, chondrogenesis was found to be dose-dependent. MR imaging showed markedly lower SNR values of all labeled cells compared with the unlabeled controls. This contrast agent effect persisted for 14 days and the duration of differentiation. Magnetic labeling of hMSC with ferucarbotran inhibits chondrogenesis in a dose-dependent manner when using simple incubation techniques. When decreasing the incubation time to 4 h, inhibition of chondrogenesis was not significant.
Collapse
Affiliation(s)
- Tobias D Henning
- Department of Radiology, UCSF Medical Center, University of California, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marquis BJ, Love SA, Braun KL, Haynes CL. Analytical methods to assess nanoparticle toxicity. Analyst 2009; 134:425-39. [PMID: 19238274 DOI: 10.1039/b818082b] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During the past 20 years, improvements in nanoscale materials synthesis and characterization have given scientists great control over the fabrication of materials with features between 1 and 100 nm, unlocking many unique size-dependent properties and, thus, promising many new and/or improved technologies. Recent years have found the integration of such materials into commercial goods; a current estimate suggests there are over 800 nanoparticle-containing consumer products (The Project on Emerging Nanotechnologies Consumer Products Inventory, , accessed Oct. 2008), accounting for 147 billion USD in products in 2007 (Nanomaterials state of the market Q3 2008: stealth success, broad impact, Lux Research Inc., New York, NY, 2008). Despite this increase in the prevalence of engineered nanomaterials, there is little known about their potential impacts on environmental health and safety. The field of nanotoxicology has formed in response to this lack of information and resulted in a flurry of research studies. Nanotoxicology relies on many analytical methods for the characterization of nanomaterials as well as their impacts on in vitro and in vivo function. This review provides a critical overview of these techniques from the perspective of an analytical chemist, and is intended to be used as a reference for scientists interested in conducting nanotoxicological research as well as those interested in nanotoxicological assay development.
Collapse
Affiliation(s)
- Bryce J Marquis
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
26
|
Schäfer R, Kehlbach R, Müller M, Bantleon R, Kluba T, Ayturan M, Siegel G, Wolburg H, Northoff H, Dietz K, Claussen CD, Wiskirchen J. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy 2009; 11:68-78. [DOI: 10.1080/14653240802666043] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Delcroix GJR, Jacquart M, Lemaire L, Sindji L, Franconi F, Le Jeune JJ, Montero-Menei CN. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Res 2008; 1255:18-31. [PMID: 19103182 DOI: 10.1016/j.brainres.2008.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/21/2008] [Accepted: 12/01/2008] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSC) may transdifferentiate into neural cells in vitro under the influence of matrix molecules and growth factors present in neurogenic niches. However, further experiments on the behavior of such stem cells remain to be done in vivo. In this study, rat MSC (rMSC) have been grafted in a neurogenic environment of the rat brain, the subventricular zone (SVZ), in order to detect and follow their migration using superparamagnetic iron oxide (SPIO) nanoparticles. We sought to characterize the potential effect of iron loading on the behavior of rMSC as well as to address the potential of rMSC to migrate when exposed to the adequate brain microenvironment. 1-hydroxyethylidene-1.1-bisphosphonic acid (HEDP)-coated SPIO nanoparticles efficiently labeled rMSC without significant adverse effects on cell viability and on the in vitro differentiation potential. In opposition to iron-labeled rat neural stem cells (rNSC), used as a positive control, iron-labeled rMSC did not respond to the SVZ microenvironment in vivo and did not migrate, unless a mechanical lesion of the olfactory bulb was performed. This confirmed the known potential of iron-labeled rMSC to migrate toward lesions and, as far as we know, this is the first study describing such a long distance migration from the SVZ toward the olfactory bulb through the rostral migratory stream (RMS).
Collapse
|