Luo T, Chen J, Li X, Zhang S, Yao H, Peijnenburg WJGM. Effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation.
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018;
166:63-70. [PMID:
30248562 DOI:
10.1016/j.ecoenv.2018.09.067]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Lomefloxacin, an antibacterial agent with known photo-induced toxicity in clinical studies, is frequently detected in aquatic environments. Investigating the photo-induced toxicity of lomefloxacin in aquatic organisms is therefore of importance for assessing its ecological risks. In this study, the effects of lomefloxacin on survival, growth and reproduction of Daphnia magna under simulated sunlight radiation (SSR) were investigated, and the mechanism of action was revealed. Results indicated that SSR containing UV radiation increased the acute toxicity of lomefloxacin to Daphnia magna relative to white fluorescent light irradiation. Under SSR, 100 μM lomefloxacin significantly enhanced reactive oxygen species (ROS) generation and lipid peroxidation, and decreased activities of superoxide dismutase and catalase. The biochemical observations and apparent effects on the organism indicate that oxidative stress plays a central role in the acute photo-induced toxicity. Chronic toxicity results showed that SSR significantly affected growth and reproduction of Daphnia magna, whereas lomefloxacin reduced the damage of UV radiation in SSR through light shielding. This study provides insight into the mechanism of photo-induced toxicity and can support the risk assessment of chemicals in the aquatic environment by including the impacts of sunlight irradiation on toxicity.
Collapse