1
|
Almami IS, Aldubayan MA, Felemban SG, Alyamani N, Howden R, Robinson AJ, Pearson TDZ, Boocock D, Algarni AS, Garner AC, Griffin M, Bonner PLR, Hargreaves AJ. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol 2020; 94:3861-3875. [PMID: 32749514 PMCID: PMC7603472 DOI: 10.1007/s00204-020-02852-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Organophosphate compounds (OPs) induce both acute and delayed neurotoxic effects, the latter of which is believed to involve their interaction with proteins other than acetylcholinesterase. However, few OP-binding proteins have been identified that may have a direct role in OP-induced delayed neurotoxicity. Given their ability to disrupt Ca2+ homeostasis, a key aim of the current work was to investigate the effects of sub-lethal neurite outgrowth inhibitory levels of OPs on the Ca2+-dependent enzyme tissue transglutaminase (TG2). At 1-10 µM, the OPs phenyl saligenin phosphate (PSP) and chlorpyrifos oxon (CPO) had no effect cell viability but induced concentration-dependent decreases in neurite outgrowth in differentiating N2a neuroblastoma cells. The activity of TG2 increased in cell lysates of differentiating cells exposed for 24 h to PSP and chlorpyrifos oxon CPO (10 µM), as determined by biotin-cadaverine incorporation assays. Exposure to both OPs (3 and/or 10 µM) also enhanced in situ incorporation of the membrane permeable substrate biotin-X-cadaverine, as indicated by Western blot analysis of treated cell lysates probed with ExtrAvidin peroxidase and fluorescence microscopy of cell monolayers incubated with FITC-streptavidin. Both OPs (10 µM) stimulated the activity of human and mouse recombinant TG2 and covalent labelling of TG2 with dansylamine-labelled PSP was demonstrated by fluorescence imaging following SDS-PAGE. A number of TG2 substrates were tentatively identified by mass spectrometry, including cytoskeletal proteins, chaperones and proteins involved protein synthesis and gene regulation. We propose that the elevated TG2 activity observed is due to the formation of a novel covalent adduct between TG2 and OPs.
Collapse
Affiliation(s)
- Ibtesam S Almami
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, College of Science, Qassim University, Al-Qassim, Saudi Arabia
| | - Maha A Aldubayan
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Shatha G Felemban
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Medical Laboratory Science, Fakeeh College for Medical Science, Jeddah, Saudi Arabia
| | - Najiah Alyamani
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Richard Howden
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander J Robinson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Edgbaston, B15 3TN, UK
| | - Tom D Z Pearson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - A Christopher Garner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Martin Griffin
- Department of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Philip L R Bonner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
2
|
Leung MCK, Silva MH, Palumbo AJ, Lohstroh PN, Koshlukova SE, DuTeaux SB. Adverse outcome pathway of developmental neurotoxicity resulting from prenatal exposures to cannabis contaminated with organophosphate pesticide residues. Reprod Toxicol 2019; 85:12-18. [PMID: 30668982 DOI: 10.1016/j.reprotox.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/07/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
Abstract
There is growing concern that increased use of medical and recreational cannabis may result in increased exposure to contaminants on the cannabis, such as pesticides. Several states are moving towards implementing robust regulation of the sales, cultivation, and manufacture of cannabis products. However, there are challenges with creating health-protective regulations in an industry that, to date, has been largely unregulated. The focus of this publication is a theoretical examination of what may happen when women are exposed pre-conceptually or during pregnancy to cannabis contaminated with pesticides. We propose an adverse outcome pathway of concomitant prenatal exposure to cannabinoids and the organophosphate pesticide chlorpyrifos by curating what we consider to be the key events at the molecular, cellular, and tissue levels that result in developmental neurotoxicity. The implications of this adverse outcome pathway underscore the need to elucidate the potential developmental neurotoxicity that may result from prenatal exposure to pesticide-contaminated cannabis.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States.
| | - Marilyn H Silva
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Amanda J Palumbo
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Peter N Lohstroh
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Svetlana E Koshlukova
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Shelley B DuTeaux
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| |
Collapse
|
3
|
Chen XP, Wang TT, Wu XZ, Wang DW, Chao YS. An in vivo study in mice: mother's gestational exposure to organophosphorus pesticide retards the division and migration process of neural progenitors in the fetal developing brain. Toxicol Res (Camb) 2016; 5:1359-1370. [PMID: 30090440 PMCID: PMC6062264 DOI: 10.1039/c5tx00282f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 06/11/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Widely utilized pesticides such as chlorpyrifos (CPF) can cause cognitive abnormalities, neurotransmitter disruptions and brain cytoarchitecture deficits in adulthood due to exposure in the prenatal period, but the mechanism underlying the development and maintenance of such neurotoxicity in embryonic neurogenesis remains largely unclear. Using embryonic neocortex slices, we investigated mitosis population constituents and characteristic interkinetic nuclear migration (INM) to evaluate the CPF effects on the proliferation process of neural progenitors. Methods: Gestational days (GD) 14 and GD 7.5-11.5 ICR dams were exposed to 5 mg kg-1 of CPF to investigate immediate toxicity and sustained toxicity. Proliferating nuclei were labeled with 50 mg kg-1 of Brdu at 1, 3, 6 and 9 hours before samples were collected. The mitoses count and Brdu positive nuclei (BPN) location were measured and analyzed in standard sections of the embryonic dorsolateral cortex. Results: CPF reduced the mitoses count in the primary progenitors but not in the secondary progenitors which are time sustained. CPF retarded BPN migration with a 6-9 μm delay of the relative location in the immediate groups and a 3-6 μm delay in the sustained ones. CPF had no or little effects on the global mitoses count and BPN count. Conclusion: Prenatal CPF exposure disrupts the proliferation process of primary progenitors in the embryonic dorsolateral cortex immediately and with sustained effects, which may contribute to explain the toxicity mechanism in early neurogenesis.
Collapse
Affiliation(s)
- Xiao-Ping Chen
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Ting-Ting Wang
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Xiu-Zhong Wu
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Da-Wei Wang
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| | - Yong-Sheng Chao
- Department of Biotechnology , College of Biological Engineering , Zhejiang University of Technology , Hangzhou , China . ; ; Tel: +86-571-88320823
| |
Collapse
|
4
|
D'Agostino J, Zhang H, Kenaan C, Hollenberg PF. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos. Chem Res Toxicol 2015; 28:1484-95. [PMID: 26075493 DOI: 10.1021/acs.chemrestox.5b00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions.
Collapse
Affiliation(s)
- Jaime D'Agostino
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Cesar Kenaan
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, 2220C MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| |
Collapse
|
5
|
Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases—A mechanistic approach. Toxicol Lett 2014; 230:85-103. [PMID: 24503016 DOI: 10.1016/j.toxlet.2014.01.039] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/06/2013] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
|
6
|
Estevan C, Fuster E, Del Río E, Pamies D, Vilanova E, Sogorb MA. Organophosphorus pesticide chlorpyrifos and its metabolites alter the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells in a comparable way to other model neurodevelopmental toxicants. Chem Res Toxicol 2014; 27:1487-95. [PMID: 25137620 DOI: 10.1021/tx500051k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are discrepancies about whether chlorpyrifos is able to induce neurodevelopmental toxicity or not. We previously reported alterations in the pattern of expression of biomarker genes of differentiation in D3 mouse embryonic stem cells caused by chlorpyrifos and its metabolites chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol. Now, we reanalyze these data comparing the effects on these genes with those caused in the same genes by retinoic acid, valproic acid, and penicillin-G (model compounds considered as strong, weak, and non-neurodevelopmental toxicants, respectively). We also compare the effects of chlorpyrifos and its metabolites on the cell viability of D3 cells and 3T3 mouse fibroblasts with the effects caused in the same cells by the three model compounds. We conclude that chlorpyrifos and its metabolites act, regarding these end-points, as the weak neurodevelopmental toxicant valproic acid, and consequently, a principle of caution should be applied avoiding occupational exposures in pregnant women. A second independent experiment run with different cellular batches coming from the same clone obtained the same result as the first one.
Collapse
Affiliation(s)
- Carmen Estevan
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche , Avenida de la Universidad s/n, 03202-Elche, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Flaskos J. The Neuronal Cytoskeleton as a Potential Target in the Developmental Neurotoxicity of Organophosphorothionate Insecticides. Basic Clin Pharmacol Toxicol 2014; 115:201-8. [DOI: 10.1111/bcpt.12204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Affiliation(s)
- John Flaskos
- School of Veterinary Medicine; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
8
|
Genomic and phenotypic alterations of the neuronal-like cells derived from human embryonal carcinoma stem cells (NT2) caused by exposure to organophosphorus compounds paraoxon and mipafox. Int J Mol Sci 2014; 15:905-26. [PMID: 24413757 PMCID: PMC3907846 DOI: 10.3390/ijms15010905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/08/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
Historically, only few chemicals have been identified as neurodevelopmental toxicants, however, concern remains, and has recently increased, based upon the association between chemical exposures and increased developmental disorders. Diminution in motor speed and latency has been reported in preschool children from agricultural communities. Organophosphorus compounds (OPs) are pesticides due to their acute insecticidal effects mediated by the inhibition of acetylcholinesterase, although other esterases as neuropathy target esterase (NTE) can also be inhibited. Other neurological and neurodevelopmental toxic effects with unknown targets have been reported after chronic exposure to OPs in vivo. We studied the initial stages of retinoic acid acid-triggered differentiation of pluripotent cells towards neural progenitors derived from human embryonal carcinoma stem cells to determine if neuropathic OP, mipafox, and non-neuropathic OP, paraoxon, are able to alter differentiation of neural precursor cells in vitro. Exposure to 1 μM paraoxon (non-cytotoxic concentrations) altered the expression of different genes involved in signaling pathways related to chromatin assembly and nucleosome integrity. Conversely, exposure to 5 μM mipafox, a known inhibitor of NTE activity, showed no significant changes on gene expression. We conclude that 1 μM paraoxon could affect the initial stage of in vitro neurodifferentiation possibly due to a teratogenic effect, while the absence of transcriptional alterations by mipafox exposure did not allow us to conclude a possible effect on neurodifferentiation pathways at the tested concentration.
Collapse
|
9
|
Influence of organophosphate poisoning on human dendritic cells. Chem Biol Interact 2013; 206:472-8. [DOI: 10.1016/j.cbi.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/13/2022]
|
10
|
Acetylcholine esterase is a regulator of GFAP expression and a target of dichlorvos in astrocytic differentiation of rat glioma C6 cells. Brain Res 2013; 1537:37-45. [PMID: 24001591 DOI: 10.1016/j.brainres.2013.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/16/2013] [Indexed: 02/07/2023]
Abstract
The main target of neurotoxins is neurons because they comprise the main part of neural function, but glial cells may be indirect targets because they support the function of neurons. Among the glial cells, astrocytes in particular act as "nurse cells", regulating neuronal survival and functions. In the present study, to reveal whether a known neurotoxic substance, organophosphate dichlorvos (DDVP), affects the differentiation of astrocytes, we used an astrocyte differentiation model in rat glioma C6 cells. Morphological change and induction of GFAP expression in the differentiating C6 cells were suppressed by DDVP treatment. The known potential targets of DDVP are acetylcholine esterase (AChE), fatty acid amide hydrolase and methyl guanine methyl transferase. Among the specific inhibitors against these enzymes, the AChE inhibitor paraoxon successfully suppressed the cellular morphological changes and the induction of GFAP expression in differentiating C6 cells. These results indicate that DDVP inhibits differentiation in the C6 astrocyte-differentiation model, in which at least AChE inhibition is involved and that AChE is a potent regulator of the differentiation. Furthermore, considering that the main substrate of AChE is ACh, thus, ACh may act as regulators of astrocyte differentiation.
Collapse
|
11
|
Chlorpyrifos developmental neurotoxicity: interaction with glucocorticoids in PC12 cells. Neurotoxicol Teratol 2012; 34:505-12. [PMID: 22796634 DOI: 10.1016/j.ntt.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
Abstract
Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on models relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuritogenesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent.
Collapse
|
12
|
Flaskos J. The developmental neurotoxicity of organophosphorus insecticides: A direct role for the oxon metabolites. Toxicol Lett 2012; 209:86-93. [DOI: 10.1016/j.toxlet.2011.11.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 01/14/2023]
|
13
|
Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells. Toxicol Appl Pharmacol 2011; 256:330-6. [DOI: 10.1016/j.taap.2011.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022]
|
14
|
Elmazoudy RH, Attia AA, Abdelgawad HS. Evaluation of developmental toxicity induced by anticholinesterase insecticide, diazinon in female rats. ACTA ACUST UNITED AC 2011; 92:534-42. [PMID: 21770030 DOI: 10.1002/bdrb.20322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 11/11/2022]
Abstract
Developmental toxicities, including birth defects, are significant public health problems. This study was planned to assess the cholinergic and developmental potentials of diazinon that is widely used as an organophosphate insecticide. Pregnant female Sprague-Dawley rats were given diazinon orally at doses of 0, 1.9, 3.8, and 7.6 mg/kg body weight (b.w.)/day on gestation days 6 to 15. Maternal brain acetylcholinesterase activities, measured on gestation day20, were significantly decreased at 3.8 and 7.6 mg/kg b.w./day, but fetal acetylcholinesterase activity was not altered. Maternal toxicities, as evidenced by cholinergic symptoms including diarrhea, tremors, weakness, salivation, and decreased activities, were observed at the 3.8 and 7.6 mg/kg b.w./day dose groups. Net gravid uterine weight was decreased at a dose of 7.6 mg/kg b.w./day. No maternal effects were apparent in the 1.9 mg/kg b.w./day dose group. Maternal toxicity at a dose of 3.8 mg/kg b.w./day did not induce fetotoxicity or teratogeneicity. However, 7.6 mg/kg b.w./day doses significantly resulted in fetal toxicity and malformations in addition to maternal toxicity in animals. In conclusion, teratogenic disorders only outlined by doses that produced marked maternal toxicity. Since the malformations were not morphologically related, they were considered to be secondary to maternal toxicity; hence, the malformations were not related to cholinesterase inhibition.
Collapse
|
15
|
The Use of Differentiating N2a and C6 Cell Lines for Studies of Organophosphate Toxicity. NEUROMETHODS 2011. [DOI: 10.1007/978-1-61779-077-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Human variation in CYP-specific chlorpyrifos metabolism. Toxicology 2010; 276:184-91. [DOI: 10.1016/j.tox.2010.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/21/2022]
|
17
|
Effects of chlorpyrifos on transglutaminase activity in differentiating rat C6 glioma cells. Toxicol In Vitro 2010; 24:2104-7. [PMID: 20637855 DOI: 10.1016/j.tiv.2010.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 06/16/2010] [Accepted: 07/09/2010] [Indexed: 11/21/2022]
Abstract
The organophosphorothioate compound chlorpyrifos (CPF) is a widely used pesticide, which is known to inhibit the differentiation of mouse N2a neuroblastoma and rat C6 glioma cells. This study in focused on the possible effects of CPF in the activity and expression of tissue transglutaminase (TGase 2) in differentiating C6 cells. Cells exposed for 24 h to 10 μM CPF, which had no effect on cell viability, exhibited a significant increase in cytosolic TGase 2 activity. Western blotting analysis indicated that there was no change in the cytosolic TGase 2 protein levels, suggesting that the enzyme was activated under these conditions. When commercially available TGase 2 was incubated with CPF in vitro, an increase in activity was also observed, suggesting that CPF might interact directly with TGase 2.
Collapse
|
18
|
Jiang W, Duysen EG, Hansen H, Shlyakhtenko L, Schopfer LM, Lockridge O. Mice treated with chlorpyrifos or chlorpyrifos oxon have organophosphorylated tubulin in the brain and disrupted microtubule structures, suggesting a role for tubulin in neurotoxicity associated with exposure to organophosphorus agents. Toxicol Sci 2010; 115:183-93. [PMID: 20142434 DOI: 10.1093/toxsci/kfq032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exposure to organophosphorus (OP) agents can lead to learning and memory deficits. Disruption of axonal transport has been proposed as a possible explanation. Microtubules are an essential component of axonal transport. In vitro studies have demonstrated that OP agents react with tubulin and disrupt the structure of microtubules. Our goal was to determine whether in vivo exposure affects microtubule structure. One group of mice was treated daily for 14 days with a dose of chlorpyrifos that did not significantly inhibit acetylcholinesterase. Beta-tubulin from the brains of these mice was diethoxyphosphorylated on tyrosine 281 in peptide GSQQY(281)RALTVPELTQQMFDSK. A second group of mice was treated with a single sublethal dose of chlorpyrifos oxon (CPO). Microtubules and cosedimenting proteins from the brains of these mice were visualized by atomic force microscopy nanoimaging and by Coomassie blue staining of polyacrylamide gel electrophoresis bands. Proteins in gel slices were identified by mass spectrometry. Nanoimaging showed that microtubules from control mice were decorated with many proteins, whereas microtubules from CPO-treated mice had fewer associated proteins, a result confirmed by mass spectrometry of proteins extracted from gel slices. The dimensions of microtubules from CPO-treated mice (height 8.7 +/- 3.1 nm and width 36.5 +/- 15.5 nm) were about 60% of those from control mice (height 13.6 +/- 3.6 nm and width 64.8 +/- 15.9 nm). A third group of mice was treated with six sublethal doses of CPO over 50.15 h. Mass spectrometry identified diethoxyphosphorylated serine 338 in peptide NS(338)NFVEWIPNNVK of beta-tubulin. In conclusion, microtubules from mice exposed to chlorpyrifos or to CPO have covalently modified amino acids and abnormal structure, suggesting disruption of microtubule function. Covalent binding of CPO to tubulin and to tubulin-associated proteins is a potential mechanism of neurotoxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | | | | | | | | | | |
Collapse
|
19
|
Diazinon oxon interferes with differentiation of rat C6 glioma cells. Toxicol In Vitro 2009; 23:1548-52. [DOI: 10.1016/j.tiv.2009.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 06/12/2009] [Accepted: 07/06/2009] [Indexed: 11/22/2022]
|
20
|
Harris W, Muñoz D, Bonner P, Hargreaves A. Effects of phenyl saligenin phosphate on cell viability and transglutaminase activity in N2a neuroblastoma and HepG2 hepatoma cell lines. Toxicol In Vitro 2009; 23:1559-63. [DOI: 10.1016/j.tiv.2009.08.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 08/21/2009] [Accepted: 08/30/2009] [Indexed: 01/22/2023]
|
21
|
Sidiropoulou E, Sachana M, Flaskos J, Harris W, Hargreaves AJ, Woldehiwet Z. Diazinon oxon affects the differentiation of mouse N2a neuroblastoma cells. Arch Toxicol 2008; 83:373-80. [DOI: 10.1007/s00204-008-0339-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/03/2008] [Indexed: 12/31/2022]
|