1
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early Western diet-induced MASLD progression. J Lipid Res 2025:100757. [PMID: 39952566 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-Hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their wild type (WT) counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation and immune system including retinol metabolism, arachidonic acid metabolism and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. This data strongly suggested these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
2
|
Cyt-C Mediated Mitochondrial Pathway Plays an Important Role in Oocyte Apoptosis in Ricefield Eel (Monopterus albus). Int J Mol Sci 2022; 23:ijms231810555. [PMID: 36142467 PMCID: PMC9503458 DOI: 10.3390/ijms231810555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis plays a key role in the effective removal of excessive and defective germ cells, which is essential for sequential hermaphroditism and sex change in vertebrates. The ricefield eel, Monopterus albus is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. Previous studies have demonstrated that apoptosis is involved in sex change in M. albus. However, the apoptotic signaling pathway is unclear. In the current study, we explored the underlying mechanism of apoptosis during gonadal development and focused on the role of the mitochondrial apoptosis signaling pathway in sex change in M. albus. Flow cytometry was performed to detect apoptosis in gonads at five sexual stages and ovary tissues exposed to hydrogen peroxide (H2O2) in vitro. Then the expression patterns of key genes and proteins in the mitochondrial pathway, death receptor pathway and endoplasmic reticulum (ER) pathway were examined. The results showed that the apoptosis rate was significantly increased in the early intersexual stage and then decreased with the natural sex change from female to male. Quantitative real-time PCR revealed that bax, tnfr1, and calpain were mainly expressed in the five stages. ELISA demonstrated that the relative content of cytochrome-c (cyt-c) in the mitochondrial pathway was significantly higher than that of caspase8 and caspase12, with a peak in the early intersexual stage, while the levels of caspase8 and caspase12 peaked in the late intersexual stage. Interestingly, the Pearson’s coefficient between cyt-c and the apoptosis rate was 0.705, which suggests that these factors are closely related during the gonadal development of M. albus. Furthermore, the cyt-c signal was found to be increased in the intersexual stage by immunohistochemistry. After incubation with H2O2, the mRNA expression of mitochondrial pathway molecules such as bax, apaf-1, and caspase3 increased in ovary tissues. In conclusion, the present results suggest that the mitochondrial apoptotic pathway may play a more important role than the other apoptotic pathways in sex change in M. albus.
Collapse
|
3
|
Kongmanas K, Saewu A, Kiattiburut W, Baker MA, Faull KF, Burger D, Tanphaichitr N. Accumulation of Seminolipid in Sertoli Cells Is Associated with Increased Levels of Reactive Oxygen Species and Male Subfertility: Studies in Aging Arsa Null Male Mice. Antioxidants (Basel) 2021; 10:antiox10060912. [PMID: 34199863 PMCID: PMC8227610 DOI: 10.3390/antiox10060912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
Seminolipid (also known as sulfogalactosylglycerolipid-SGG), present selectively in male germ cells, plays important roles in spermatogenesis and sperm–egg interaction. The proper degradation of SGG in apoptotic germ cells is also as important. Sertoli cells first phagocytose apoptotic germ cells, then Sertoli lysosomal arylsulfatase A (ARSA) desulfates SGG, the first step of SGG degradation. We have reported that aging male Arsa−/− mice become subfertile with SGG accumulation in Sertoli cell lysosomes, typical of a lysosomal storage disorder (LSD). Since reactive oxygen species (ROS) levels are increased in other glycolipid-accumulated LSDs, we quantified ROS in Arsa−/− Sertoli cells. Our analyses indicated increases in superoxide and H2O2 in Arsa−/− Sertoli cells with elevated apoptosis rates, relative to WT counterparts. Excess H2O2 from Arsa−/− Sertoli cells could travel into testicular germ cells (TGCs) to induce ROS production. Our results indeed indicated higher superoxide levels in Arsa−/− TGCs, compared with WT TGCs. Increased ROS levels in Arsa−/− Sertoli cells and TGCs likely caused the decrease in spermatogenesis and increased the abnormal sperm population in aging Arsa−/− mice, including the 50% decrease in sperm SGG with egg binding ability. In summary, our study indicated that increased ROS production was the mechanism through which subfertility manifested following SGG accumulation in Sertoli cells.
Collapse
Affiliation(s)
- Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Division of Dengue Hemorrhagic Fever Research/Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
| | - Wongsakorn Kiattiburut
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
| | - Mark A Baker
- Department of Biological Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90024, USA;
| | - Dylan Burger
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-(613)-737-8899 (ext. 72793); Fax: +1-(613)-739-6968
| |
Collapse
|
4
|
Grilo LF, Martins JD, Cavallaro CH, Nathanielsz PW, Oliveira PJ, Pereira SP. Development of a 96-well based assay for kinetic determination of catalase enzymatic-activity in biological samples. Toxicol In Vitro 2020; 69:104996. [DOI: 10.1016/j.tiv.2020.104996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
5
|
Wang Y, Song X, Geng Y. Effects of IC 50 dose of retinol on metabolomics of RAW264.7 cells. J Food Biochem 2020; 44:e13327. [PMID: 32539219 DOI: 10.1111/jfbc.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
Abstract
Vitamin A is one of the most multifunctional vitamins in normal human physiology and is involved in several basic physiological processes from embryonic development to adulthood, such as embryogenesis, vision, immunity, cell differentiation, and proliferation. In this study, we conducted 1 H- NMR to evaluate the metabolomic changes in RAW264.7 cells after treatment with retinol at an IC50 dose to identify its effects on the differential metabolites and main metabolic pathways. Our results showed that the IC50 dose (140 μM) of retinol affected the metabolism of RAW264.7 cells, with a total of 22 differential metabolites identified via 1 H-NMR, including amino acids, sugars, organic acids, glutathione, glycerin, and creatine. Additionally, multiple metabolic pathways were affected by retinol treatment, including downregulation of amino acid biosynthesis, protein synthesis, and pyruvate metabolism. We speculate that the cytotoxicity of retinol at the IC50 dose is attributed to mitochondrial dysfunction as a result of oxidative stress or lipid peroxidation. PRACTICAL APPLICATIONS: With the general improvement of people's living standards, people use dietary supplements to improve the level of retinol to prevent non-specific diseases. But there are more and more cases of acute or chronic poisoning caused by excessive intake of vitamin A. Therefore, it is necessary to study the toxicity of vitamin A, and more attention should be paid to the excessive intake of vitamin A. From the perspective of metabolomics, this experiment studies the adverse effects of high dose retinol through the changes of metabolites and metabolic pathways at the cellular level. This study will assist further analyses of the toxic mechanism of excessive retinol as fortified foods and nutrient supplementation.
Collapse
Affiliation(s)
- Yali Wang
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao Song
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Na J, Choi SA, Khan A, Huh JY, Piao L, Hwang I, Ha H, Park YH. Integrative Omics Reveals Metabolic and Transcriptomic Alteration of Nonalcoholic Fatty Liver Disease in Catalase Knockout Mice. Biomol Ther (Seoul) 2019; 27:134-144. [PMID: 30630288 PMCID: PMC6430223 DOI: 10.4062/biomolther.2018.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased with the incidence of obesity; however, the underlying mechanisms are unknown. In this study, high-resolution metabolomics (HRM) along with transcriptomics were applied on animal models to draw a mechanistic insight of NAFLD. Wild type (WT) and catalase knockout (CKO) mice were fed with normal fat diet (NFD) or high fat diet (HFD) to identify the changes in metabolic and transcriptomic profiles caused by catalase gene deletion in correspondence with HFD. Integrated omics analysis revealed that cholic acid and 3β, 7α-dihydroxy-5-cholestenoate along with cyp7b1 gene involved in primary bile acid biosynthesis were strongly affected by HFD. The analysis also showed that CKO significantly changed all-trans-5,6-epoxy-retinoic acid or all-trans-4-hydroxy-retinoic acid and all-trans-4-oxo-retinoic acid along with cyp3a41b gene in retinol metabolism, and α/γ-linolenic acid, eicosapentaenoic acid and thromboxane A2 along with ptgs1 and tbxas1 genes in linolenic acid metabolism. Our results suggest that dysregulated primary bile acid biosynthesis may contribute to liver steatohepatitis, while up-regulated retinol metabolism and linolenic acid metabolism may have contributed to oxidative stress and inflammatory phenomena in our NAFLD model created using CKO mice fed with HFD.
Collapse
Affiliation(s)
- Jinhyuk Na
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Soo An Choi
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Adnan Khan
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Lingjuan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngja H Park
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
7
|
Mingori MR, Heimfarth L, Ferreira CF, Gomes HM, Moresco KS, Delgado J, Roncato S, Zeidán-Chuliá F, Gelain DP, Moreira JCF. Effect of Paullinia cupana Mart. Commercial Extract During the Aging of Middle Age Wistar Rats: Differential Effects on the Hippocampus and Striatum. Neurochem Res 2017; 42:2257-2273. [DOI: 10.1007/s11064-017-2238-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 01/19/2023]
|
8
|
Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol 2016; 54:6903-6916. [PMID: 27771902 DOI: 10.1007/s12035-016-0189-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Human neuroblastoma SH-SY5Y cells have been used as an in vitro model for neurodegenerative disorders such as Parkinson's disease and can be induced to a mature neuronal phenotype through retinoic acid (RA) differentiation. However, mechanisms of RA-induced differentiation remain unclear. Here, we investigate the role of reactive species (RS) on SH-SY5Y neuroblastoma cells under RA differentiation, using the antioxidant Trolox® as co-treatment. We found that RA treatment for 7 days reduced the cell number and proliferative capacity and induced the expression of adult catecholaminergic/neuronal markers such as tyrosine hydroxylase (TH), β-III tubulin, and enolase-2. Evaluation of intracellular RS production by DCFH oxidation assay and quantification of cell non-enzymatic antioxidant activity by TRAP demonstrated that RA increases RS production. Furthermore, mitochondrial NADH oxidation showed to be inhibited under differentiation with RA. Cells subjected to co-treatment with antioxidant Trolox® demonstrated a remaining proliferative capacity and a decrease in the pro-oxidant state and RS production. Besides, antioxidant treatment restores the mitochondrial NADH oxidation. Importantly, Trolox® co-treatment inhibited the appearance of morphological characteristics such as neurite extension and branching, and decreased the expression of TH, β-III tubulin, and enolase-2 after a seven-day differentiation with RA, indicating that RS production is a necessary step in this process. Trolox® also inhibited the phosphorylation of Akt and ERK1/2, which are involved in differentiation and survival, respectively, of these cells. Altogether, these data indicate the presence of a redox-dependent mechanism in SH-SY5Y RA-differentiation process and can be a useful insight to improve understanding of neuronal differentiation signaling.
Collapse
|
9
|
Glorieux C, Sandoval JM, Fattaccioli A, Dejeans N, Garbe JC, Dieu M, Verrax J, Renard P, Huang P, Calderon PB. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress. Free Radic Biol Med 2016; 99:436-450. [PMID: 27591797 DOI: 10.1016/j.freeradbiomed.2016.08.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/27/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022]
Abstract
Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.
Collapse
Affiliation(s)
- Christophe Glorieux
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 510275 Guangzhou, China.
| | - Juan Marcelo Sandoval
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Nicolas Dejeans
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium
| | - James C Garbe
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marc Dieu
- Mass Spectrometry University of Namur (MaSUN), University of Namur, 5000 Namur, Belgium
| | - Julien Verrax
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 510275 Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pedro Buc Calderon
- Université catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile.
| |
Collapse
|
10
|
Souza NC, de Oliveira JM, Morrone MDS, Albanus RD, Amarante MDSM, Camillo CDS, Langassner SMZ, Gelain DP, Moreira JCF, Dalmolin RJS, de Bittencourt Pasquali MA. Turnera subulata Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J Med Food 2016; 19:922-930. [DOI: 10.1089/jmf.2016.0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Natália Cabral Souza
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Medeiros de Oliveira
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ricardo D'Oliveira Albanus
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Daniel Pens Gelain
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Matheus Augusto de Bittencourt Pasquali
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| |
Collapse
|
11
|
Schnorr CE, Bittencourt LDS, Petiz LL, Gelain DP, Zeidán-Chuliá F, Moreira JCF. Chronic retinyl palmitate supplementation to middle-aged Wistar rats disrupts the brain redox homeostasis and induces changes in emotional behavior. Mol Nutr Food Res 2015; 59:979-90. [DOI: 10.1002/mnfr.201400637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Carlos Eduardo Schnorr
- Centro de Estudos de Estresse Oxidativo; Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Leonardo da Silva Bittencourt
- Centro de Estudos de Estresse Oxidativo; Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Lyvia Lintzmaier Petiz
- Centro de Estudos de Estresse Oxidativo; Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Daniel Pens Gelain
- Centro de Estudos de Estresse Oxidativo; Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Fares Zeidán-Chuliá
- Centro de Estudos de Estresse Oxidativo; Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos de Estresse Oxidativo; Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
12
|
Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid. Mol Neurobiol 2014; 53:423-435. [PMID: 25465239 DOI: 10.1007/s12035-014-8998-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/12/2014] [Indexed: 01/17/2023]
Abstract
SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.
Collapse
|
13
|
Wu XR, Liu L, Zhang ZF, Zhang B, Sun H, Chan GL, Li N. Selective protection of normal cells during chemotherapy by RY4 peptides. Mol Cancer Res 2014; 12:1365-76. [PMID: 24874433 DOI: 10.1158/1541-7786.mcr-13-0425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Mitochondrial targeted Szeto-Schiller (SS) peptides have recently gained attention for their antioxidative stress ability; however, the functional variations between normal and cancer cells have not been determined. Here, we report the results of such experiments conducted with a newly designed class of peptide called RY4, which is based on SS peptide sequence characteristics. The RY4 peptide exhibits distinct differences in antioxidative stress response between normal and cancer cells when challenged with chemotherapeutics like the glycolytic inhibitor dichloroacetate (DCA), the platinating agent carboplatin, and the DNA damage inducer doxorubicin. Interestingly, only normal human cells were protected by the RY4 peptide and catalase (CAT) activity was significantly enhanced in normal but not tumor cells when incubated with RY4. Pull-down, coimmunoprecipitation, and LC/MS-MS proteomic analysis demonstrated that RY4 and catalase are capable of forming protein complexes. Finally, in vivo efficacy was evaluated by intraperitoneal administration of RY4 into a lung cancer xenograft model, which revealed significant myocardiocyte protection from doxorubicin-induced cardiotoxicity without diminishing doxorubicin's tumoricidal effects. Taken together, RY4 offers selective protection to normal cells from chemotherapy-induced toxicity by enhancing the activity of cellular antioxidant enzymes. IMPLICATIONS RY4 peptides selectively reduce chemotherapeutic-induced oxidative stress and represent a new class of chemoprotective agents with clinical potential.
Collapse
Affiliation(s)
- Xiao-Rong Wu
- Peking University Shenzhen Graduate School - Morningside Laboratory of Integrative Pathobiology, Beijing, China
| | - Lihua Liu
- Peking University Shenzhen Graduate School - Morningside Laboratory of Integrative Pathobiology, Beijing, China
| | - Zhi-Fu Zhang
- Peking University Shenzhen Graduate School - Morningside Laboratory of Integrative Pathobiology, Beijing, China
| | - Bing Zhang
- Peking University Shenzhen Graduate School - Morningside Laboratory of Integrative Pathobiology, Beijing, China
| | - Hongzhe Sun
- Peking University Shenzhen Graduate School - Morningside Laboratory of Integrative Pathobiology, Beijing, China
| | - Gerald L Chan
- Peking University Shenzhen Graduate School - Morningside Laboratory of Integrative Pathobiology, Beijing, China
| | - Na Li
- Peking University Shenzhen Graduate School - Morningside Laboratory of Integrative Pathobiology, Beijing, China.
| |
Collapse
|
14
|
Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells. Cell Signal 2013; 25:939-54. [PMID: 23333461 DOI: 10.1016/j.cellsig.2013.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/10/2013] [Indexed: 12/24/2022]
Abstract
As an essential component of the diet, retinol supplementation is often considered harmless and its application is poorly controlled. However, recent works demonstrated that retinol may induce a wide array of deleterious effects, especially when doses used are elevated. Controlled clinical trials have demonstrated that retinol supplementation increased the incidence of lung cancer and mortality in smokers. Experimental works in cell cultures and animal models showed that retinol may induce free radical production, oxidative stress and extensive biomolecular damage. Here, we evaluated the effect of retinol on the regulation of the receptor for advanced glycation end-products (RAGE) in the human lung cancer cell line A549. RAGE is constitutively expressed in lungs and was observed to be down-regulated in lung cancer patients. A549 cells were treated with retinol doses reported as physiologic (2 μM) or therapeutic (5, 10 or 20 μM). Retinol at 10 and 20 μM increased free radical production, oxidative damage and antioxidant enzyme activity in A549 cells. These doses also downregulated RAGE expression. Antioxidant co-treatment with Trolox®, a hydrophilic analog of α-tocopherol, reversed the effects of retinol on oxidative parameters and RAGE downregulation. The effect of retinol on RAGE was mediated by p38 MAPK activation, as blockade of p38 with PD169316 (10 μM), SB203580 (10 μM) or siRNA to either p38α (MAPK14) or p38β (MAPK11) reversed the effect of retinol on RAGE. Trolox also inhibited p38 phosphorylation, indicating that retinol induced a redox-dependent activation of this MAPK. Besides, we observed that NF-kB acted as a downstream effector of p38 in RAGE downregulation by retinol, as NF-kB inhibition by SN50 (100 μg/mL) and siRNA to p65 blocked the effect of retinol on RAGE, and p38 inhibitors reversed NF-kB activation. Taken together, our results indicate a pro-oxidant effect of retinol on A549 cells, and suggest that modulation of RAGE expression by retinol is mediated by the redox-dependent activation of p38/NF-kB signaling pathway.
Collapse
|
15
|
Hill GE, Johnson JD. The Vitamin A–Redox Hypothesis: A Biochemical Basis for Honest Signaling via Carotenoid Pigmentation. Am Nat 2012; 180:E127-50. [DOI: 10.1086/667861] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
de Bittencourt Pasquali MA, Roberto de Oliveira M, De Bastiani MA, da Rocha RF, Schnorr CE, Gasparotto J, Gelain DP, Moreira JCF. L-NAME co-treatment prevent oxidative damage in the lung of adult Wistar rats treated with vitamin A supplementation. Cell Biochem Funct 2012; 30:256-63. [PMID: 22574324 DOI: 10.1002/cbf.2791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on the fact that vitamin A in clinical doses is a potent pro-oxidant agent to the lungs, we investigated here the role of nitric oxide (NO•) in the disturbances affecting the lung redox environment in vitamin A-treated rats (retinol palmitate, doses of 1000-9000 IU•kg(-1)•day(-1)) for 28 days. Lung mitochondrial function and redox parameters, such as lipid peroxidation, protein carbonylation and the level of 3-nytrotyrosine, were quantified. We observed, for the first time, that vitamin A supplementation increases the levels of 3-nytrotyrosine in rat lung mitochondria. To determine whether nitric oxide (NO •) or its derivatives such as peroxynitrite (ONOO-) was involved in this damage, animals were co-treated with the nitric oxide synthase inhibitor L-NAME (30 mg•kg(-1), four times a week), and we analysed if this treatment prevented (or minimized) the biochemical disturbances resulting from vitamin A supplementation. We observed that L-NAME inhibited some effects caused by vitamin A supplementation. Nonetheless, L-NAME was not able to reverse completely the negative effects triggered by vitamin A supplementation, indicating that other factors rather than only NO• or ONOO- exert a prominent role in mediating the redox effects in the lung of rats that received vitamin A supplementation.
Collapse
Affiliation(s)
- Matheus Augusto de Bittencourt Pasquali
- Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dash B, Phillips TD. Molecular characterization of a catalase from Hydra vulgaris. Gene 2012; 501:144-52. [PMID: 22521743 DOI: 10.1016/j.gene.2012.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
Abstract
Catalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3'- and 5'- (RLM) RACE approaches. The 1859 bp HvCatalase cDNA included an open reading frame of 1518 bp encoding a putative protein of 505 amino acids with a predicted molecular mass of 57.44 kDa. The deduced amino acid sequence of HvCatalase contained several highly conserved motifs including the heme-ligand signature sequence RLFSYGDTH and the active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved catalytic amino acids [His(71), Asn(145), and Tyr(354)] in HvCatalase as well. Homology modeling indicated the presence of the conserved features of mammalian catalase fold. Hydrae exposed to thermal, starvation, metal and oxidative stress responded by regulating its catalase mRNA transcription. These results indicated that the HvCatalase gene is involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure.
Collapse
Affiliation(s)
- Bhagirathi Dash
- Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
18
|
Gelain DP, de Bittencourt Pasquali MA, Caregnato FF, Moreira JCF. Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation. Toxicology 2011; 289:38-44. [PMID: 21807062 DOI: 10.1016/j.tox.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/01/2022]
Abstract
Retinol (vitamin A) is believed to exert preventive/protective effects against malignant, neurodegenerative and cardiovascular diseases by acting as an antioxidant. However, later clinical and experimental data show a pro-oxidant action of retinol and other retinoids at specific conditions. The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor, being activated by different ligands such as S100 proteins, HMGB1 (amphoterin), β-amyloid peptide and advanced glycation endproducts (AGE). RAGE activation influences a wide range of pathological conditions such as diabetes, pro-inflammatory states and neurodegenerative processes. Here, we investigated the involvement of different mitogen-activated protein kinases (MAPK: ERK1/2, p38 and JNK), PKC, PKA and Akt in the up-regulation of RAGE by retinol. As previously reported, we observed that the increase in RAGE immunocontent by retinol is reversed by antioxidant co-treatment, indicating the involvement of oxidative stress in this process. Furthermore, the p38 inhibitor SB203580 and the Akt inhibitor LY294002 also decreased the effect of retinol on RAGE levels, suggesting the involvement of these protein kinases in such effect. Both p38 and Akt phosphorylation were increased by treatment with pro-oxidant concentrations of retinol, and the antioxidant co-treatment blocked this effect, indicating that activation of p38 and Akt during retinol treatment is dependent on reactive species production. The 2',7'-dichlorohydrofluorescein diacetate (DCFH) assay also indicated that retinol treatment enhances cellular reactive species production. Altogether, these data indicate that RAGE up-regulation by retinol is mediated by the free radical-dependent activation of p38 and Akt.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
19
|
Vitamin A supplementation to pregnant and breastfeeding female rats induces oxidative stress in the neonatal lung. Reprod Toxicol 2010; 30:452-6. [DOI: 10.1016/j.reprotox.2010.05.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 05/15/2010] [Accepted: 05/28/2010] [Indexed: 11/24/2022]
|
20
|
Mei N, Hu J, Xia Q, Fu PP, Moore MM, Chen T. Cytotoxicity and mutagenicity of retinol with ultraviolet A irradiation in mouse lymphoma cells. Toxicol In Vitro 2010; 24:439-44. [PMID: 19835946 PMCID: PMC6359890 DOI: 10.1016/j.tiv.2009.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022]
Abstract
Vitamin A (all-trans-retinol; retinol) is an essential human nutrient and plays an important role in several biological functions. However, under certain circumstances, retinol treatment can cause free radical generation and induce oxidative stress. In this study, we investigated photocytotoxicity and photomutagenicity of retinol using L5178Y/Tk(+/-) mouse lymphoma cells concomitantly exposed to retinol and ultraviolet A (UVA) light. While the cells treated with retinol alone at the doses of 5 or 10microg/ml in the absence of light did not increase the mutant frequency (MF) in the Tk gene, the treatment of the cells with 1-4microg/ml retinol under UVA light (1.38mW/cm(2) for 30min) increased the MF in the Tk gene in a dose-responsive manner. To elucidate the underlying mechanism of action, we also examined the mutational types of the Tk mutants by determining their loss of heterozygosity (LOH) at four microsatellite loci spanning the entire chromosome 11 on which the Tk gene is located. The mutational spectrum for the retinol+UVA treatment was significantly different from those of the control and UVA alone. More than 93% of the mutants from retinol+UVA treatment lost heterozygosity at the Tk1 locus and the major type (58%) of mutations was LOHs extending to D11Mit42, an alternation involving approximately 6cM of the chromosome, whereas the main type of mutations in the control was non-LOH mutations. These results suggest that retinol is mutagenic when exposed to UVA in mouse lymphoma cells through a clastogenic mode-of-action.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Pasquali MADB, Gelain DP, de Oliveira MR, Behr GA, da Motta LL, da Rocha RF, Klamt F, Moreira JCF. Vitamin A Supplementation for Different Periods Alters Oxidative Parameters in Lungs of Rats. J Med Food 2009; 12:1375-80. [DOI: 10.1089/jmf.2008.0298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porte Alegre, Rio Grande do Sul, Brazil
| | - Marcos Roberto de Oliveira
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porte Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Antônio Behr
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porte Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Lisbôa da Motta
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porte Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Fagundes da Rocha
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porte Alegre, Rio Grande do Sul, Brazil
| | - Fábio Klamt
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porte Alegre, Rio Grande do Sul, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porte Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Kwitniewski M, Jankowski D, Jaskiewicz K, Dziadziuszko H, Juzeniene A, Moan J, Ma LW, Peksa R, Kunikowska D, Graczyk A, Kwasny M, Kaliszewski M, Glosnicka R. Photodynamic therapy with 5-aminolevulinic acid and diamino acid derivatives of protoporphyrin IX reduces papillomas in mice without eliminating transformation into squamous cell carcinoma of the skin. Int J Cancer 2009; 125:1721-7. [PMID: 19521986 DOI: 10.1002/ijc.24488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photodynamic therapy (PDT) is used to treat malignant and nonmalignant diseases. It is also used for cosmetological skin treatment. PDT is generally considered to have a low risk of carcinogenicity. However, instances of nonmalignant human tumors turning malignant have been linked to PDT. In this study, we used 5-aminolevulinic (ALA) acid and 3 water soluble photosensitizers-PP(Arg)(2), PP(Ser)(2)Arg(2), PP(Ala)(2)Arg(2), all diamino acid derivatives of protoporphyrin IX-to treat benign papillomas in FVB/N mice induced by 7,12-dimethylbenz(a)anthracene (DMBA)-12-O-tetradecanoyl-phorbol-13-acetate (TPA). Of these drugs, ALA and PP(Arg)(2) were found the most efficient. PDT reduced the number of papillomas, but with increasing effectiveness of the drugs, the risk of malignant transformation of the papillomas into squamous cell carcinomas increased. The underlying mechanisms are not clear and further investigations are needed.
Collapse
Affiliation(s)
- Mateusz Kwitniewski
- Department of Molecular Microbiology and Serology, National Salmonella Centre, Medical University of Gdansk, Gdansk, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pasquali MAB, Gelain DP, Oliveira MR, Behr GA, Motta LL, Rocha RF, Klamt F, Moreira JCF. VITAMIN A SUPPLEMENTATION INDUCES OXIDATIVE STRESS AND DECREASES THE IMMUNOCONTENT OF CATALASE AND SUPEROXIDE DISMUTASE IN RAT LUNGS. Exp Lung Res 2009; 35:427-38. [DOI: 10.1080/01902140902747436] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
de Oliveira MR, Soares Oliveira MW, Müller Hoff ML, Behr GA, da Rocha RF, Fonseca Moreira JC. Evaluation of redox and bioenergetics states in the liver of vitamin A-treated rats. Eur J Pharmacol 2009; 610:99-105. [PMID: 19324036 DOI: 10.1016/j.ejphar.2009.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/04/2009] [Accepted: 03/15/2009] [Indexed: 12/19/2022]
Abstract
Vitamin A is normally stored in the mammalian liver and is physiologically released depending on the need of the organism for the vitamin. However, there is a compelling evidence showing that even the liver is affected by conditions of high vitamin A intake. Based on these previously reported findings showing negative effects of vitamin A on mammalian tissues, we have investigated the effects of a supplementation with vitamin A at clinical doses (1000-9000 IU/kg day(-1)) on some rat liver parameters. We have analyzed hepatic redox environment, as well as the activity of the mitochondrial electron transfer chain in vitamin A-treated rats. Additionally, activity of the detoxifying enzyme glutathione S-transferase was checked. Also, caspase-3 and caspase-8 and tumor necrosis factor-alpha levels were quantified to assess either cell death or inflammation effects of vitamin A on rat liver. We found increased free radical production and, consequently, increased oxidative damage in biomolecules in the liver of vitamin A-treated rats. Interestingly, we found increased mitochondrial electron transfer chain activity, as well as glutathione-S-transferase enzyme activity. Neither caspases activity, nor tumor necrosis factor-alpha levels change in this experimental model. Our results suggest a pro-oxidant, but not pro-inflammatory effect of vitamin A on rat liver.
Collapse
Affiliation(s)
- Marcos R de Oliveira
- Centro de Estudos em Estresse Oxidativo (Lab. 32), Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
25
|
Increased receptor for advanced glycation endproducts immunocontent in the cerebral cortex of vitamin A-treated rats. Neurochem Res 2009; 34:1410-6. [PMID: 19255841 DOI: 10.1007/s11064-009-9927-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2009] [Indexed: 01/08/2023]
Abstract
Vitamin A, beyond its biological role, is an alternative choice in treating some life threatening pathologies, for instance leukemia and immunodeficiency. On the other hand, vitamin A therapy at moderate to high doses has caused concern among public health researchers due to the toxicological aspect resulting from such habit. It has been described hepatotoxicity, cognitive disturbances and increased mortality rates among subjects ingesting increased levels of vitamin A daily. Then, based on the previously reported data, we investigated here receptor for advanced glycation endproducts (RAGE) immunocontent and oxidative damage levels in cerebral cortex of vitamin A-treated rats at clinical doses (1,000-9,000 IU/kg day(-1)). RAGE immunocontent, as well as oxidative damage levels, were observed increased in cerebral cortex of vitamin A-treated rats. Whether increased RAGE levels exert negative effects during vitamin A supplementation it remains to be investigated, but it is very likely that deleterious consequences may arise from such alteration.
Collapse
|