1
|
Abduraman MA, Amanah A, Hamid SBS, Abdullah MFIL, Sulaiman SF, Tan ML. The regulatory effects of mitragynine on P-glycoprotein transporter. J Pharm Pharmacol 2024:rgae131. [PMID: 39541262 DOI: 10.1093/jpp/rgae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Kratom preparation containing Mitragyna speciosa Korth plant is frequently used as a recreational drug. Mitragynine, a major alkaloid isolated from M. speciosa, is often detected concurrently with other drugs during forensic analysis, indicating a safety concern. P-glycoprotein (P-gp) is a multidrug transporter. Modulation of P-gp transport activity by drugs or herbal compounds in the brain may lead to drug-herb interactions, resulting in neurotoxicity. We aim to determine the effects of mitragynine on the P-gp regulation and possible neurotoxicity. METHODS The effects of mitragynine on the P-gp regulation were investigated in human brain capillary endothelial cells (hCMEC/D3) using molecular docking and dynamic simulation and an optimized bidirectional transport assay, respectively. Repeated-dose treatment and neurotoxicity assessment were carried out using a blood-brain barrier model and polimerase chain reaction (PCR) array. KEY FINDINGS Mitragynine inhibits the P-gp transport activity via binding onto the nucleotide-binding domain site and forms a stable interaction with the P-gp protein complex. Nontoxic concentrations of mitragynine (<4 μM) and substrate drugs (0.001 μM) in the cells significantly enhanced endothelial cell permeability and elicited signs of neurotoxicity in PC-12 cells. CONCLUSIONS Mitragynine is likely a P-gp inhibitor, hence concurrent administration of kratom products with P-gp substrates may lead to clinically significant interactions and neurotoxicity.
Collapse
Affiliation(s)
- Muhammad Asyraf Abduraman
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institute of Biotechnology Malaysia, 11700, Gelugor, Pulau Pinang, Malaysia
| | - Shahrul Bariyah Sahul Hamid
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | | | - Shaida Fariza Sulaiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Bridgeman L, Juan C, Berrada H, Juan-García A. Effect of Acrylamide and Mycotoxins in SH-SY5Y Cells: A Review. Toxins (Basel) 2024; 16:87. [PMID: 38393165 PMCID: PMC10892127 DOI: 10.3390/toxins16020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Thermal processes induce the formation of undesired toxic components, such as acrylamide (AA), which has been shown to induce brain toxicity in humans and classified as Group 2A by the International Agency of Research in Cancer (IARC), as well as some mycotoxins. AA and mycotoxins' toxicity is studied in several in vitro models, including the neuroblastoma cell line model SH-SY5Y cells. Both AA and mycotoxins occur together in the same food matrix cereal base (bread, pasta, potatoes, coffee roasting, etc.). Therefore, the goal of this review is to deepen the knowledge about the neurological effects that AA and mycotoxins can induce on the in vitro model SH-SY5Y and its mechanism of action (MoA) focusing on the experimental assays reported in publications of the last 10 years. The analysis of the latest publications shows that most of them are focused on cytotoxicity, apoptosis, and alteration in protein expression, while others are interested in oxidative stress, axonopathy, and the disruption of neurite outgrowth. While both AA and mycotoxins have been studied in SH-SY5Y cells separately, the mixture of them is starting to draw the interest of the scientific community. This highlights a new and interesting field to explore due to the findings reported in several publications that can be compared and the implications in human health that both could cause. In relation to the assays used, the most employed were the MTT, axonopathy, and qPCR assays. The concentration dose range studied was 0.1-10 mM for AA and 2 fM to 200 µM depending on the toxicity and time of exposure for mycotoxins. A healthy and varied diet allows the incorporation of a large family of bioactive compounds that can mitigate the toxic effects associated with contaminants present in food. Although this has been reported in some publications for mycotoxins, there is still a big gap for AA which evidences that more investigations are needed to better explore the risks for human health when exposed to AA and mycotoxins.
Collapse
Affiliation(s)
| | | | | | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (L.B.); (C.J.); (H.B.)
| |
Collapse
|
3
|
The Therapeutic Potential of Carnosine as an Antidote against Drug-Induced Cardiotoxicity and Neurotoxicity: Focus on Nrf2 Pathway. Molecules 2022; 27:molecules27144452. [PMID: 35889325 PMCID: PMC9324774 DOI: 10.3390/molecules27144452] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Different drug classes such as antineoplastic drugs (anthracyclines, cyclophosphamide, 5-fluorouracil, taxanes, tyrosine kinase inhibitors), antiretroviral drugs, antipsychotic, and immunosuppressant drugs are known to induce cardiotoxic and neurotoxic effects. Recent studies have demonstrated that the impairment of the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway is a primary event in the pathophysiology of drug-induced cardiotoxicity and neurotoxicity. The Nrf2 pathway regulates the expression of different genes whose products are involved in antioxidant and inflammatory responses and the detoxification of toxic species. Cardiotoxic drugs, such as the anthracycline doxorubicin, or neurotoxic drugs, such as paclitaxel, suppress or impair the Nrf2 pathway, whereas the rescue of this pathway counteracts both the oxidative stress and inflammation that are related to drug-induced cardiotoxicity and neurotoxicity. Therefore Nrf2 represents a novel pharmacological target to develop new antidotes in the field of clinical toxicology. Interestingly, carnosine (β-alanyl-l-histidine), an endogenous dipeptide that is characterized by strong antioxidant, anti-inflammatory, and neuroprotective properties is able to rescue/activate the Nrf2 pathway, as demonstrated by different preclinical studies and preliminary clinical evidence. Starting from these new data, in the present review, we examined the evidence on the therapeutic potential of carnosine as an endogenous antidote that is able to rescue the Nrf2 pathway and then counteract drug-induced cardiotoxicity and neurotoxicity.
Collapse
|
4
|
Moya ELJ, Vandenhaute E, Rizzi E, Boucau MC, Hachani J, Maubon N, Gosselet F, Dehouck MP. Miniaturization and Automation of a Human In Vitro Blood-Brain Barrier Model for the High-Throughput Screening of Compounds in the Early Stage of Drug Discovery. Pharmaceutics 2021; 13:pharmaceutics13060892. [PMID: 34208550 PMCID: PMC8233835 DOI: 10.3390/pharmaceutics13060892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/25/2023] Open
Abstract
Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.
Collapse
Affiliation(s)
- Elisa L. J. Moya
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | | | - Eleonora Rizzi
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | - Marie-Christine Boucau
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | - Johan Hachani
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | | | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
- Correspondence:
| |
Collapse
|
5
|
da Silva Júnior OS, Franco CDJP, de Moraes AAB, Cruz JN, da Costa KS, do Nascimento LD, Andrade EHDA. In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon 2021; 195:111-118. [PMID: 33667485 DOI: 10.1016/j.toxicon.2021.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/22/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022]
Abstract
Convolvulaceae Juss. is a family of vines and shrubs composed of species of ecological and economic importance. Ipomoea asarifolia (Desr.) Roem. & Schult. and I. setifera Poir. are ruderal and evergreen weeds that invade pastures and cause intoxication in cattle during the dry season. In the present study, the essential oils (EOs) of the leaves from I. setifera (dry season) and I. asarifolia (dry and wet seasons) were obtained by steam distillation for 3h. The chemical composition of the EOs was determined using gas chromatography coupled to gas spectrometry (CG/MS) and gas chromatography with flame ionization detector (CG-FID). To correlate the toxicity of the major chemical constituents of I. setifera and I. asarifolia EOs, we predicted the inhibition activity against the cytochrome P450 (CYP450) and P-glycoprotein 1 (P-gp) using a machine learning-based (ML-based) algorithm. In silico analyses were also applied to evaluate the pharmacokinetics properties related to the penetration in the blood-brain barrier (BBB) and gastrointestinal absorption. The chemical composition of the EO of I. setifera was characterized by high levels of (E)-caryophyllene (36.7%) and β-elemene (20.49%). The I. asarifolia EO showed a phytol derivative as the main chemical constituent in the dry season (35.49%), and its content was reduced in the sample collected during the wet season (10.67%). The constituent (E)-caryophyllene was also present in the leaves of I. asarifolia, but at lower levels (15.93-19.93%) when compared to the EOs of I. setifera. Our computational analyses indicated that the constituents caryophyllene oxide, cedroxyde, pentadecanal, and phytol can be related to the toxicity of these weeds. This is the first study to report the chemical composition of I. asarifolia and I. setifera EOs and correlate their molecular mechanism of toxicity using in silico approaches.
Collapse
Affiliation(s)
- Oseias Souza da Silva Júnior
- Programa de Pós-graduação em Ciências Biológicas - Botânica Tropical, Museu Paraense Emilio Goeldi/ Universidade Federal Rural da Amazônia, Avenida Perimetral, 1901, 66077-830, Belém, Pará, Brazil
| | - Celeste de Jesus Pereira Franco
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830, Belém, Pará, Brazil
| | - Angelo Antonio Barbosa de Moraes
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830, Belém, Pará, Brazil
| | - Jorddy Neves Cruz
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830, Belém, Pará, Brazil
| | - Kauê Santana da Costa
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Rua Vera Paz, Unidade Tapajós, 68040-255, Santarém, Pará, Brazil.
| | - Lidiane Diniz do Nascimento
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830, Belém, Pará, Brazil
| | - Eloisa Helena de Aguiar Andrade
- Programa de Pós-graduação em Ciências Biológicas - Botânica Tropical, Museu Paraense Emilio Goeldi/ Universidade Federal Rural da Amazônia, Avenida Perimetral, 1901, 66077-830, Belém, Pará, Brazil; Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830, Belém, Pará, Brazil.
| |
Collapse
|
6
|
Wellens S, Dehouck L, Chandrasekaran V, Singh P, Loiola RA, Sevin E, Exner T, Jennings P, Gosselet F, Culot M. Evaluation of a human iPSC-derived BBB model for repeated dose toxicity testing with cyclosporine A as model compound. Toxicol In Vitro 2021; 73:105112. [PMID: 33631201 DOI: 10.1016/j.tiv.2021.105112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
The blood-brain barrier (BBB) is a highly restrictive barrier that preserves central nervous system homeostasis and ensures optimal brain functioning. Using BBB cell assays makes it possible to investigate whether a compound is likely to compromise BBBs functionality, thereby probably resulting in neurotoxicity. Recently, several protocols to obtain human brain-like endothelial cells (BLECs) from induced pluripotent stem cells (iPSCs) have been reported. Within the framework of the European MSCA-ITN in3 project, we explored the possibility to use an iPSC-derived BBB model to assess the effects of repeated dose treatment with chemicals, using Cyclosporine A (CsA) as a model compound. The BLECs were found to exhibit important BBB characteristics up to 15 days after the end of the differentiation and could be used to assess the effects of repeated dose treatment. Although BLECs were still undergoing transcriptional changes over time, a targeted transcriptome analysis (TempO-Seq) indicated a time and concentration dependent activation of ATF4, XBP1, Nrf2 and p53 stress response pathways under CsA treatment. Taken together, these results demonstrate that this iPSC-derived BBB model and iPSC-derived models in general hold great potential to study the effects of repeated dose exposure with chemicals, allowing personalized and patient-specific studies in the future.
Collapse
Affiliation(s)
- Sara Wellens
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Lucie Dehouck
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Vidya Chandrasekaran
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Rodrigo Azevedo Loiola
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Emmanuel Sevin
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Thomas Exner
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Fabien Gosselet
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Maxime Culot
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France.
| |
Collapse
|
7
|
Kan HL, Wang CC, Lin YC, Tung CW. Computational identification of preservatives with potential neuronal cytotoxicity. Regul Toxicol Pharmacol 2020; 119:104815. [PMID: 33159970 DOI: 10.1016/j.yrtph.2020.104815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/17/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
Preservatives play a vital role in cosmetics by preventing microbiological contamination for keeping products safe to use. However, a few commonly used preservatives have been suggested to be neurotoxic. Cytotoxicity to neuronal cells is commonly used as the first-tier assay for assessing chemical-induced neurotoxicity. Given the time and resources required for chemical screening, computational methods are attractive alternatives over experimental approaches in prioritizing chemicals prior to further experimental evaluations. In this study, we developed a Quantitative Structure-Activity Relationships (QSAR) model for the identification of potential neurotoxicants. A set of 681 chemicals was utilized to construct a robust prediction model using oversampling and Random Forest algorithms. Within a defined applicability domain, the independent test on 452 chemicals showed a high accuracy of 87.7%. The application of the model to 157 preservatives identified 15 chemicals potentially toxic to neuronal cells. Three of them were further validated by in vitro experiments. The results suggested that further experiments are desirable for assessing the neurotoxicity of the identified preservatives with potential neuronal cytotoxicity.
Collapse
Affiliation(s)
- Hung-Lin Kan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ying-Chi Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 106, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 350, Taiwan.
| |
Collapse
|
8
|
Pomponio G, Zurich MG, Schultz L, Weiss DG, Romanelli L, Gramowski-Voss A, Di Consiglio E, Testai E. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures. Toxicol In Vitro 2015; 30:192-202. [DOI: 10.1016/j.tiv.2015.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/09/2015] [Accepted: 01/26/2015] [Indexed: 12/23/2022]
|
9
|
Schultz L, Zurich MG, Culot M, da Costa A, Landry C, Bellwon P, Kristl T, Hörmann K, Ruzek S, Aiche S, Reinert K, Bielow C, Gosselet F, Cecchelli R, Huber CG, Schroeder OHU, Gramowski-Voss A, Weiss DG, Bal-Price A. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro 2015; 30:138-65. [DOI: 10.1016/j.tiv.2015.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 12/14/2022]
|
10
|
Efficient Docosahexaenoic Acid Uptake by the Brain from a Structured Phospholipid. Mol Neurobiol 2015; 53:3205-3215. [DOI: 10.1007/s12035-015-9228-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/21/2015] [Indexed: 11/26/2022]
|
11
|
Smith AST, Long CJ, McAleer C, Guo X, Esch M, Prot JM, Shuler ML, Hickman JJ. ‘Body-on-a-Chip’ Technology and Supporting Microfluidics. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to effectively streamline current drug development protocols, there is a need to generate high information content preclinical screens capable of generating data with a predictive power in relation to the activity of novel therapeutics in humans. Given the poor predictive power of animal models, and the lack of complexity and interconnectivity of standard in vitro culture methodologies, many investigators are now moving toward the development of physiologically and functionally accurate culture platforms composed of human cells to investigate cellular responses to drug compounds in high-throughput preclinical studies. The generation of complex, multi-organ in vitro platforms, built to recapitulate physiological dimensions, flow rates and shear stresses, is being investigated as the logical extension of this drive. Production and application of a biologically accurate multi-organ platform, or ‘body-on-a-chip’, would facilitate the correct modelling of the dynamic and interconnected state of living systems for high-throughput drug studies as well as basic and applied biomolecular research. This chapter will discuss current technologies aimed at producing ‘body-on-a-chip’ models, as well as highlighting recent advances and important challenges still to be met in the development of biomimetic single-organ systems for drug development purposes.
Collapse
Affiliation(s)
- A. S. T. Smith
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - C. J. Long
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - C. McAleer
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - X. Guo
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - M. Esch
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - J. M. Prot
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - M. L. Shuler
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - J. J. Hickman
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| |
Collapse
|
12
|
Blood–brain barrier (BBB) toxicity and permeability assessment after L-(4-10Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model. Brain Res 2014; 1583:34-44. [DOI: 10.1016/j.brainres.2014.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022]
|
13
|
Using Pluripotent Stem Cells and Their Progeny as an In VitroModel to Assess (Developmental) Neurotoxicity. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Fabulas-da Costa A, Aijjou R, Hachani J, Landry C, Cecchelli R, Culot M. In vitro blood–brain barrier model adapted to repeated-dose toxicological screening. Toxicol In Vitro 2013; 27:1944-53. [DOI: 10.1016/j.tiv.2013.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 11/28/2022]
|
15
|
Saint-Pol J, Candela P, Boucau MC, Fenart L, Gosselet F. Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells. Brain Res 2013; 1517:1-15. [PMID: 23603412 DOI: 10.1016/j.brainres.2013.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/03/2023]
Abstract
It is known that activation of the liver X receptors (LXRs) by natural or synthetic agonists decreases the amyloid burden and enhances cognitive function in transgenic murine models of Alzheimer's disease (AD). Recent evidence suggests that LXR activation may affect the transport of amyloid ß (Aß) peptides across the blood-brain barrier (the BBB, which isolates the brain from the peripheral circulation). By using a well-characterized in vitro BBB model, we demonstrated that LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol and T0901317) modulated the expression of target genes involved in cholesterol homeostasis (such as ATP-binding cassette sub-family A member 1 (ABCA1)) and promoted cellular cholesterol efflux to apolipoprotein A-I and high density lipoproteins. Interestingly, we also observed a decrease in Aß peptide influx across brain capillary endothelial cells, although ABCA1 did not appear to be directly involved in this process. By focusing on others receptors and transporters that are thought to have major roles in Aß peptide entry into the brain, we then demonstrated that LXR stimulation provoked an increase in expression of the ABCB1 transporter (also named P-glycoprotein (P-gp)). Further investigations confirmed ABCB1's involvement in the restriction of Aß peptide influx. Taken as a whole, our results not only reinforce the BBB's key role in cerebral cholesterol homeostasis but also demonstrate the importance of the LXR/ABCB1 axis in Aß peptide influx-highlighting an attractive new therapeutic approach whereby the brain could be protected from peripheral Aß peptide entry.
Collapse
|
16
|
Morin-Brureau M, De Bock F, Lerner-Natoli M. Organotypic brain slices: a model to study the neurovascular unit micro-environment in epilepsies. Fluids Barriers CNS 2013; 10:11. [PMID: 23391266 PMCID: PMC3605299 DOI: 10.1186/2045-8118-10-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022] Open
Abstract
Background It is now recognized that the neuro-vascular unit (NVU) plays a key role in several neurological diseases including epilepsy, stroke, Alzheimer’s disease, multiple sclerosis and the development of gliomas. Most of these disorders are associated with NVU dysfunction, due to overexpression of inflammatory factors such as vascular endothelial growth factor (VEGF). Various in vitro models have been developed previously to study the micro-environment of the blood–brain barrier (BBB). However none of these in vitro models contained a complete complement of NVU cells, nor maintained their interactions, thus minimizing the influence of the surrounding tissue on the BBB development and function. The organotypic hippocampal culture (OHC) is an integrative in vitro model that allows repeated manipulations over time to further understand the development of cell circuits or the mechanisms of brain diseases. Methods/design OHCs were cultured from hippocampi of 6–7 day-old Sprague Dawley rats. After 2 weeks in culture, seizures were induced by application of kainate or bicuculline into culture medium. The regulation of BBB integrity under physiological and pathological conditions was evaluated by immunostaining of the main tight junction (TJ) proteins and of the basal membrane of microvessels. To mimic or prevent BBB disassembly, we used diverse pro- or anti-angiogenic treatments. Discussion This study demonstrates that NVU regulation can be investigated using OHCs. We observed in this model system an increase in vascularization and a down-regulation of TJ proteins, similar to the vascular changes described in a chronic focus of epileptic patients, and in rodent models of epilepsy or inflammation. We observed that Zonula occludens-1 (ZO-1) protein disappeared after seizures associated with neuronal damage. In these conditions, the angiopoeitin-1 system was down-regulated, and the application of r-angiopoeitin-1 allowed TJ re-assembly. This article demonstrates that organotypic culture is a useful model to decipher the links between epileptic activity and vascular damage, and also to investigate NVU regulation in diverse neurological disorders.
Collapse
Affiliation(s)
- Mélanie Morin-Brureau
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Université Montpellier 1, 2, Montpellier, France.
| | | | | |
Collapse
|
17
|
Zurich MG, Stanzel S, Kopp-Schneider A, Prieto P, Honegger P. Evaluation of aggregating brain cell cultures for the detection of acute organ-specific toxicity. Toxicol In Vitro 2012; 27:1416-24. [PMID: 22954530 DOI: 10.1016/j.tiv.2012.06.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 06/11/2012] [Accepted: 06/29/2012] [Indexed: 01/05/2023]
Abstract
As part of the ACuteTox project aimed at the development of non-animal testing strategies for predicting human acute oral toxicity, aggregating brain cell cultures (AGGR) were examined for their capability to detect organ-specific toxicity. Previous multicenter evaluations of in vitro cytotoxicity showed that some 20% of the tested chemicals exhibited significantly lower in vitro toxicity as expected from in vivo toxicity data. This was supposed to be due to toxicity at supracellular (organ or system) levels. To examine the capability of AGGR to alert for potential organ-specific toxicants, concentration-response studies were carried out in AGGR for 86 chemicals, taking as endpoints the mRNA expression levels of four selected genes. The lowest observed effect concentration (LOEC) determined for each chemical was compared with the IC20 reported for the 3T3/NRU cytotoxicity assay. A LOEC lower than IC20 by at least a factor of 5 was taken to alert for organ-specific toxicity. The results showed that the frequency of alerts increased with the level of toxicity observed in AGGR. Among the chemicals identified as alert were many compounds known for their organ-specific toxicity. These findings suggest that AGGR are suitable for the detection of organ-specific toxicity and that they could, in conjunction with the 3T3/NRU cytotoxicity assay, improve the predictive capacity of in vitro toxicity testing.
Collapse
Affiliation(s)
- Marie-Gabrielle Zurich
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
18
|
Tralau T, Luch A. Drug-mediated toxicity: illuminating the ‘bad’ in the test tube by means of cellular assays? Trends Pharmacol Sci 2012; 33:353-64. [DOI: 10.1016/j.tips.2012.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
|
19
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Götte M, Hofmann G, Michou-Gallani AI, Glickman JF, Wishart W, Gabriel D. An imaging assay to analyze primary neurons for cellular neurotoxicity. J Neurosci Methods 2010; 192:7-16. [PMID: 20620166 DOI: 10.1016/j.jneumeth.2010.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/25/2010] [Accepted: 07/01/2010] [Indexed: 02/06/2023]
Abstract
The development of high-content screening technologies including automated immunostaining, automated image acquisition and automated image analysis have enabled higher throughput of cellular imaging-based assays. Here we used high-content imaging to thoroughly characterize the cultures of primary rat cerebellar granule neurons (CGNs). We describe procedures to isolate and cultivate the CGNs in 96-well and 384-well format, as well as a procedure to freeze and thaw the CGNs. These methods allow the use of CGNs in 96-well format analyzing 2500 samples per experiment using freshly isolated cells. Down-scaling to 384-well format and freezing and thawing of the CGNs allow even higher throughput. A cellular assay with rat CGN cultures was established to study the neurotoxicity of compounds in order to filter out toxic compounds at an early phase of drug development. The imaging-based toxicity assay was able to reveal adverse effects of compounds on primary neurons which were not detected in neuroblastoma or other cell lines tested.
Collapse
Affiliation(s)
- Marjo Götte
- Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, CH-4002 Basle, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Blaauboer BJ. Biokinetic modeling and in vitro-in vivo extrapolations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2010; 13:242-52. [PMID: 20574900 DOI: 10.1080/10937404.2010.483940] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The introduction of in vitro methodologies in the toxicological risk assessment process requires a number of prerequisites regarding both the toxicodynamics and the biokinetics of the compounds under study. In vitro systems will need to be relevant for measuring those structural and physiological changes that are good indicators for adverse effects. Furthermore, the dose metric found to have an effect in the in vitro system should be relevant. One element in defining the appropriate dose metric is related to the kinetic behavior of the compound in the in vitro system: binding to proteins, binding to plastic, evaporation, and the interaction between the culture medium and the cells. Ways to measure and model "in vitro biokinetics" are described. Second, the appropriate dose metric in vitro, e.g., the effective concentration, will need to be extrapolated to relevant in vivo exposure scenarios. The application of physiologically based biokinetic modelling is essential in such extrapolations. The parameters needed to build these models often can be estimated based on nonanimal data, namely chemical properties (QSARs) and in vitro experiments.
Collapse
Affiliation(s)
- Bas J Blaauboer
- Division of Toxicology, Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Balbuena P, Li W, Magnin-Bissel G, Meldrum JB, Ehrich M. Comparison of two blood-brain barrier in vitro systems: cytotoxicity and transfer assessments of malathion/oxon and lead acetate. Toxicol Sci 2010; 114:260-71. [PMID: 20064834 DOI: 10.1093/toxsci/kfq001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxicity and integrity disruption in response to transport through the blood-brain barrier (BBB) of the organophosphates malathion and malaoxon and heavy metal lead acetate were assessed in two in vitro barrier systems. One system was constructed using bovine brain microvascular endothelial cells (BMEC), while the other system was constructed with rat brain microvascular endothelial cells (RBE4); both were cocultured with rat astrocytes. We hypothesized that these models would respond differently to neurotoxic compounds. Concentrations of malathion, malaoxon, and lead acetate between 0.01 microM and 1 mM were assessed for their capacity to cause cytotoxicity to the astrocytes and endothelial cells utilized to construct the BBB systems, with the least cytotoxic concentrations chosen for transfer assessments of neurotoxicants through the barrier systems. Concentrations of malathion at 10 microM, malaoxon at 1 microM, and lead acetate at 1 and 10 microM were selected. Lead concentrations were measured in media of the abluminal and luminal sides of both systems using graphite furnace atomic absorption at the beginning of the treatment (T0) and 14 h later (T14). Passage of organophosphate compounds was determined utilizing inhibition of acetylcholinesterase enzyme in a neuroblastoma cell line (SH-SY5Y) localized below the barrier system. Transendothelial electrical resistance was assessed as a measurement of integrity of the barrier systems, with baseline values higher with the RBE4-astrocyte system than with the BMEC-astrocyte system. Metabolic capability, as measured by esterase activity, was higher in BMECs, which were more likely to retain lead than RBE4 cells. Results suggest that differences in endothelial cell source can affect the outcome of studies on toxicant transfer through in vitro BBB systems.
Collapse
Affiliation(s)
- Pergentino Balbuena
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
24
|
Forsby A, Bal-Price A, Camins A, Coecke S, Fabre N, Gustafsson H, Honegger P, Kinsner-Ovaskainen A, Pallas M, Rimbau V, Rodríguez-Farré E, Suñol C, Vericat J, Zurich M. Neuronal in vitro models for the estimation of acute systemic toxicity. Toxicol In Vitro 2009; 23:1564-9. [DOI: 10.1016/j.tiv.2009.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 12/18/2022]
|
25
|
Abstract
During the last 40 years, studies incorporating in vitro methodologies have greatly advanced our understanding of human nerve cell biology. Attempts have been made to apply these to investigations of neurotoxicity. Due to the complexity of the nervous system, underpinned by an array of integrated interactions between a host of cell types, it is concluded that, at present, alternative neural models are most successful in determining the underlying mechanisms which can cause perturbation of normal functioning of the nervous system, both in adults and during the embryonic period. The use of tiered batteries of test models has been proposed in screening programmes for neurotoxicity, with the generation of much encouraging data in laboratories across the globe. This review aims to discuss the development of neural alternatives, considers the various model systems available, and highlights specific neuronal endpoints which can be tested, in addition to the cytotoxic evaluation of neuronal viability. Developments in molecular and stem cell biology, which are appropriate to neural tissue, and which offer the prospect of exciting advances for the next decade, are cited.
Collapse
Affiliation(s)
- Robert A. Smith
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|