1
|
Funakoshi Y, Azuma A, Ishikawa M, Itsuki S, Tamura Y, Kanemaru K, Hirai S, Oyama Y. Cytometrical analysis of the adverse effects of indican, indoxyl, indigo, and indirubin on rat thymic lymphocytes. Toxicol Res (Camb) 2018; 7:513-520. [PMID: 30090601 PMCID: PMC6062345 DOI: 10.1039/c7tx00244k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Many businesses thrive by producing health supplements from agricultural products, as exemplified by the production of functional (or health) foods using plants traditionally cultivated in rural areas. Dyes, such as indican, indigo, indoxyl, and indirubin, present in dye plants, possess antibacterial, antifungal, and antiproliferative activities. However, these effects may also lead to cytotoxicity. Thus, studies on normal mammalian cells are necessary to identify cytotoxicity and prevent adverse effects of functional foods that contain these dyes. In this study, the effects of indican, indigo, indoxyl, and indirubin were evaluated by flow cytometry using appropriate fluorescent probes in rat thymic lymphocytes. Among the dyes analyzed, indirubin exerted distinct cellular activities. Treatment with indirubin (10-30 μM) increased the population of shrunken dead cells. The side scatter, but not forward scatter, increased in indirubin-treated living cells. It increased the population of annexin V-bound living and dead cells and that of dead cells without annexin V. Indirubin elevated intracellular Ca2+, but not Zn2+ levels. The cellular content of superoxide anions increased and that of glutathione decreased. Indirubin depolarized the cellular plasma and mitochondrial membranes. It did not potentiate or attenuate the cytotoxicity of A23187 (Ca2+ overload) and H2O2 (oxidative stress). The results suggested that indirubin induces both apoptotic and non-apoptotic cell death. It may be difficult to predict and prevent the adverse effects of indirubin due to its diverse activities on normal mammalian cells. Therefore, indirubin should be removed from products that contain dye plant extracts.
Collapse
Affiliation(s)
- Yurie Funakoshi
- Faculty of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan . ; Tel: +81-88-656-7256
| | - Ayako Azuma
- Graduate School of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan
| | - Mizuki Ishikawa
- Graduate School of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan
| | - Satoru Itsuki
- Graduate School of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan
| | - Yasuaki Tamura
- Graduate School of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan
| | - Kaori Kanemaru
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan
| | - Shogo Hirai
- Faculty of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan . ; Tel: +81-88-656-7256
- Graduate School of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan
| | - Yasuo Oyama
- Faculty of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan . ; Tel: +81-88-656-7256
- Graduate School of Integrated Arts and Sciences , Tokushima University , Tokushima 770-8502 , Japan
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan
| |
Collapse
|
2
|
Kamemura N, Oyama K, Kanemaru K, Yokoigawa K, Oyama Y. Diverse cellular actions of tert-butylhydroquinone, a food additive, on rat thymocytes. Toxicol Res (Camb) 2017; 6:922-929. [PMID: 30090553 DOI: 10.1039/c7tx00183e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Tertiary butylhydroquinone (TBHQ) is a food additive that possesses antioxidant activity. Its alternative applications have been explored in recent studies. However, there is controversy regarding safety. In this study using rat thymocytes, the cellular actions of TBHQ at sublethal concentrations were examined. TBHQ at concentrations of 3 μM or more elevated intracellular Zn2+ concentration ([Zn2+]i) in a dose-dependent manner, by increasing membrane Zn2+ permeability and releasing Zn2+ from cellular stores. TBHQ at 30 μM significantly increased side scatter (cell density) and the exposure of phosphatidylserine (PS) on cell membrane surfaces. It also decreased cellular glutathione (GSH) content without affecting cell lethality. Forward scatter was attenuated by 100 μM TBHQ. Thus, it is considered that TBHQ at sublethal concentrations (30 μM or less) exerts some adverse actions on cells. TBHQ at 10-30 μM attenuated the increase in cell lethality induced by hydrogen peroxide (H2O2), while potentiation of H2O2 cytotoxicity by 100 μM TBHQ was observed. The range of concentrations of TBHQ from benefit to toxicity under in vitro conditions may be 10-30 μM. Although TBHQ exhibits antioxidative actions at concentrations that are lower than those which elicit adverse cellular effects, sublethal levels of TBHQ cause some adverse actions that may be clinically concerned.
Collapse
Affiliation(s)
- Norio Kamemura
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| | - Keisuke Oyama
- Tokushima Prefectural Central Hospital , Tokushima 770-8539 , Japan
| | - Kaori Kanemaru
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| | - Kumio Yokoigawa
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| | - Yasuo Oyama
- Faculty of Bioscience and Bioindustry , Tokushima University , Tokushima 770-8513 , Japan . ; Tel: +81-88-656-7256
| |
Collapse
|
3
|
Mitani T, Elmarhomy AIE, Dulamjav L, Anu E, Saitoh S, Ishida S, Oyama Y. Zinc-related actions of sublethal levels of benzalkonium chloride: Potentiation of benzalkonium cytotoxicity by zinc. Chem Biol Interact 2017; 268:31-36. [PMID: 28257953 DOI: 10.1016/j.cbi.2017.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/19/2017] [Accepted: 02/26/2017] [Indexed: 11/17/2022]
Abstract
Benzalkonium chloride (BZK) is a common preservative used in pharmaceutical and personal care products. ZnCl2 was recently reported to significantly potentiate the cytotoxicity of some biocidal compounds. In the present study, therefore, we compared the cytotoxic potency of BZK and then further studied the Zn2+-related actions of the most cytotoxic agent among BZK, using flow cytometric techniques with appropriate fluorescent probes in rat thymocytes. Cytotoxicity of benzylcetyldimethylammonium (BZK-C16) was more potent that those of benzyldodecyldimethylammonium and benzyldimethyltetradecylammonium. ZnCl2 (1-10 μM) significantly potentiated the cytotoxicity of BZK-C16 at a sublethal concentration (1 μM). The co-treatment of cells with 3 μM ZnCl2 and 1 μM BZK-C16 increased the population of both living cells with phosphatidylserine exposed on membrane surfaces and dead cells. BZK-C16 at 0.3-1.0 μM elevated intracellular Zn2+ levels by increasing Zn2+ influx, and augmented the cytotoxicity of 100 μM H2O2. Zn2+ is concluded to facilitate the toxicity of BZK. We suggest that the toxicity of BZK is determined after taking extracellular (plasma) and/or environmental Zn2+ levels into account.
Collapse
Affiliation(s)
- Tsuyoshi Mitani
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | | | - Luvsandorj Dulamjav
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Enkhtumur Anu
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Shohei Saitoh
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shiro Ishida
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8512, Japan
| | - Yasuo Oyama
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
4
|
Chong DQ, Toh XY, Ho IAW, Sia KC, Newman JP, Yulyana Y, Ng WH, Lai SH, Ho MMF, Dinesh N, Tham CK, Lam PYP. Combined treatment of Nimotuzumab and rapamycin is effective against temozolomide-resistant human gliomas regardless of the EGFR mutation status. BMC Cancer 2015; 15:255. [PMID: 25886314 PMCID: PMC4408574 DOI: 10.1186/s12885-015-1191-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/13/2015] [Indexed: 11/11/2022] Open
Abstract
Background The treatment of glioblastoma multiforme (GBM) is an unmet clinical need. The 5-year survival rate of patients with GBM is less than 3%. Temozolomide (TMZ) remains the standard first-line treatment regimen for gliomas despite the fact that more than 90% of recurrent gliomas do not respond to TMZ after repeated exposure. We have also independently shown that many of the Asian-derived glioma cell lines and primary cells derived from Singaporean high-grade glioma patients are indeed resistant to TMZ. This issue highlights the need to develop new effective anti-cancer treatment strategies. In a recent study, wild-type epidermal growth factor receptor (wtEGFR) has been shown to phosphorylate a truncated EGFR (known as EGFRvIII), leading to the phosphorylation of STAT proteins and progression in gliomagenesis. Despite the fact that combination of EGFR targeting drugs and rapamycin has been used before, the effect of mono-treatment of Nimotuzumab, rapamycin and combination therapy in human glioma expressing different types of EGFR is not well-studied. Herein, we evaluated the efficacy of dual blockage using monoclonal antibody against EGFR (Nimotuzumab) and an mTOR inhibitor (rapamycin) in Caucasian patient-derived human glioma cell lines, Asian patient-derived human glioma cell lines, primary glioma cells derived from the Mayo GBM xenografts, and primary short-term glioma culture derived from high-grade glioma patients. Methods The combination effect of Nimotuzumab and rapamycin was examined in a series of primary human glioma cell lines and glioma cell lines. The cell viability was compared to TMZ treatment alone. Endogenous expressions of EGFR in various GBM cells were determined by western blotting. Results The results showed that combination of Nimotuzumab with rapamycin significantly enhanced the therapeutic efficacy of human glioma cells compared to single treatment. More importantly, many of the Asian patient-derived glioma cell lines and primary cells derived from Singaporean high-grade gliomas, which showed resistance to TMZ, were susceptible to the combined treatments. Conclusions In conclusion, our results strongly suggest that combination usage of Nimotuzumab and rapamycin exert higher cytotoxic activities than TMZ. Our data suggest that this combination may provide an alternative treatment for TMZ-resistant gliomas regardless of the EGFR status.
Collapse
Affiliation(s)
- Dawn Q Chong
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Xin Y Toh
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Ivy A W Ho
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Kian C Sia
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Jennifer P Newman
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Yulyana Yulyana
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Wai-Hoe Ng
- National Neuroscience Institute, Singapore, 308433, Singapore.
| | - Siang H Lai
- Department of Pathology, Singapore General Hospital, Singapore, 169608, Singapore.
| | - Mac M F Ho
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Nivedh Dinesh
- Division of Neurosurgery, National University Hospital, Singapore, 119074, Singapore.
| | - Chee K Tham
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. tham.c.k.@nccs.com.sg
| | - Paula Y P Lam
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. .,Department of Physiology, National University of Singapore, Singapore, 117597, Singapore. .,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, 169547, Singapore.
| |
Collapse
|
5
|
Fukunaga E, Oyama TM, Oyama Y. Elevation of the intracellular Zn2+ level by 2-n-octyl-4-isothiazolin-3-one in rat thymocytes: an involvement of a temperature-sensitive Zn2+ pathway. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00060a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High amounts of 2-n-octyl-4-isothiazolin-3-one (OIT), an antimicrobial, are found in wet polyvinyl alcohol towels with cooling properties.
Collapse
Affiliation(s)
- Eri Fukunaga
- Laboratory of Cell Signaling
- Graduate School of Integrated Arts and Sciences
- The University of Tokushima
- Tokushima 770-8502
- Japan
| | - Tomohiro M. Oyama
- Laboratory of Cell Signaling
- Graduate School of Integrated Arts and Sciences
- The University of Tokushima
- Tokushima 770-8502
- Japan
| | - Yasuo Oyama
- Laboratory of Cell Signaling
- Graduate School of Integrated Arts and Sciences
- The University of Tokushima
- Tokushima 770-8502
- Japan
| |
Collapse
|
6
|
De Leon-Rodriguez L, Lubag AJM, Sherry AD. Imaging free zinc levels in vivo - what can be learned? Inorganica Chim Acta 2012; 393:12-23. [PMID: 23180883 PMCID: PMC3501686 DOI: 10.1016/j.ica.2012.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.
Collapse
Affiliation(s)
- Luis De Leon-Rodriguez
- Departamento de Quimica. Universidad de Guanajuato. Cerro de la Venada S.N. Col. Pueblito de Rocha., Guanajuato, Gto. Mexico, C.P, 36040
| | | | | |
Collapse
|
7
|
A comparison of the cellular actions of polaprezinc (zinc-l-carnosine) and ZnCl2. Life Sci 2012; 90:1015-9. [DOI: 10.1016/j.lfs.2012.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/08/2012] [Accepted: 05/19/2012] [Indexed: 01/08/2023]
|
8
|
Chen F, Zhu YJ, Wang KW, Zhao KL. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. CrystEngComm 2011. [DOI: 10.1039/c0ce00574f] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|