1
|
Çiçek S. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109559. [PMID: 36738901 DOI: 10.1016/j.cbpc.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
In parallel with the raising use of copper oxide nanoparticles (CuO NPs) in various industrial and commercial practices, scientific reports on their release to the environment and toxicity are increasing. The toxicity of CuO NPs is mostly based on their oxidative stress. Therefore, it is necessary to investigate the efficacy of well-known therapeutic agents as antioxidants against CuO NPs damage. This study aimed to investigate the mechanism of this damage and to display whether l-ascorbic acid could preserve against the cell toxicities induced by CuO NPs in the rainbow trout gonad cells-2 (RTG-2). While CuO NPs treatment significantly diminished cell viability, the l-ascorbic acid supplement reversed this. l-ascorbic acid treatment reversed the changes in expressions of sod1, sod2, gpx1a, and gpx4b genes while playing a supportive role in the changes in the expression of the cat gene induced by CuO NPs treatment. Moreover, CuO NPs treatment caused an upregulation in the expressions of growth-related genes (gh1, igf1, and igf2) and l-ascorbic acid treatment further increased these effects. CuO NPs treatment significantly up-regulated the expression of the gapdh gene (glycolytic enzyme gene) compared to the control group, and l-ascorbic acid treatment significantly down-regulated the expression of the gapdh gene compared to CuO NPs treatment. The genotoxicity test demonstrated that l-ascorbic acid treatment increased the genotoxic effect caused by CuO NPs by acting as a co-mutagen. Based on the findings, l-ascorbic acid has the potential to be sometimes inhibitory and sometimes supportive of cellular mechanisms caused by CuO NPs.
Collapse
Affiliation(s)
- Semra Çiçek
- Animal Biotechnology Department, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
2
|
Satyanarayana Acharyulu N, Sohan A, Banoth P, Chintalapati S, Doshi S, Reddy V, Santhosh C, Grace AN, De Los Santos Valladares L, Kollu P. Effect of the Graphene- Ni/NiFe 2O 4 Composite on Bacterial Inhibition Mediated by Protein Degradation. ACS OMEGA 2022; 7:30794-30800. [PMID: 36092631 PMCID: PMC9453936 DOI: 10.1021/acsomega.2c02064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/05/2022] [Indexed: 05/15/2023]
Abstract
Recent investigations have demonstrated that nickel ferrite nanoparticles and their derivatives have toxicity effects on bacterial cells. In this study, we have prepared nickel ferrite nanoparticles (Ni/NiFe2O4) and nickel/nickel ferrite graphene oxide (Ni/NiFe2O4-GO) nanocomposite and evaluated their toxic effects on E. coli cells ATCC 25922. The prepared nanomaterials were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry techniques. The toxicity was evaluated using variations in cell viability, cell morphology, protein degradation, and oxidative stress. Ni/NiFe2O4-GO nanocomposites likewise prompt oxidative stress proved by the age of reactive oxygen species (ROS) and exhaustion of antioxidant glutathione. This is the first report indicating that Ni/NiFe2O4-GO nanocomposite-initiated cell death in E. coli through ROS age and oxidative stress.
Collapse
Affiliation(s)
- Narayanam
Phani Satyanarayana Acharyulu
- Department
of Physics, Krishna University, Machilipatnam, Andhra Pradesh 521003, India
- Department
of Engineering Physics, S.R.K.R. Engineering
College, West Godavari
District, Bhimavaram, Andhra
Pradesh 534204, India
| | - Arya Sohan
- CASEST,
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Pravallika Banoth
- CASEST,
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
| | - Srinivasu Chintalapati
- Department
of Physics, Andhra Loyola College, Krishna District, Vijayawada, Andhra Pradesh 520008, India
| | - Sejal Doshi
- Department
of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Venu Reddy
- Department
of Chemistry, S.R.K.R. Engineering College, Bhimavaram, Andhra Pradesh 534204, India
- Nanotechnology Research Centre, S.R.K.R.
Engineering College, Bhimavaram, Andhra Pradesh 534204, India
| | - Chella Santhosh
- Department
of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), Vijayawada, Andhra Pradesh 522302, India
| | | | - Luis De Los Santos Valladares
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- School
of Materials Science and Engineering, Northeastern
University, Shenyang, Liaoning 110819, People’s Republic of China
| | - Pratap Kollu
- CASEST,
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046, India
- . Phone: +91-40-2313-4327
| |
Collapse
|
3
|
Iqbal S, Jabeen F, Peng C, Shah MA, Ijaz MU, Rasul A, Ali S, Rauf A, Batiha GE, Kłodzińska E. Nickel nanoparticles induce hepatotoxicity via oxidative and nitrative stress-mediated apoptosis and inflammation. Toxicol Ind Health 2021; 37:619-634. [PMID: 34569379 DOI: 10.1177/07482337211034711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nickel nanoparticles (Ni NPs) are utilized extensively in various industrial applications. However, there are increasing concerns about potential exposure to Ni NPs and consequent health effects. The aim of this study was to assess Ni NPs-induced liver toxicity in Sprague Dawley rats. Twenty-five rats were exposed to Ni NPs via intraperitoneal injection at doses of 15, 30, and 45 mg/kg per body weight for 28 days. Results from ICP-MS analysis showed an increase in the concentration of Ni NPs in a dose-dependent manner. The liver dysfunction was indicated by considerable production of ALT, AST, ALP, LDH, and TB in Ni NPs-treated rats. Histological examination demonstrated liver injuries (inflammatory cells, congestion, necrosis, and pyknosis) in exposed rats with dose-dependent severity of pathologies by semi-quantitative histograding system. To explore the toxicological pathways, we examined oxidative stress biomarkers and detected Ni NPs significantly elevated the levels of MDA and LPO while decreasing the levels of CAT and GSH. All the changes in biomarkers were recorded in a dose-dependent relationship. In addition, we found upregulated NF-kβ indicating activation of inflammatory cytokines. ELISA results of serum revealed a remarkable increase of nitrative stress markers (iNOS and NO), ATPase activity, inflammatory cytokine (IL-6, IL-1β, and TNF-α), and apoptotic mediators (caspase-3 and caspase-9) in Ni NPs-treated groups than the control. In summary, the result of this study provided evidence of hepatotoxicity of Ni NPs and insightful information about the involved toxic pathways, which will help in health risk assessment and management, related preventive measures for the use of Ni-NPs materials.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Pakistan Government College University, 72594Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Pakistan Government College University, 72594Government College University Faisalabad, Faisalabad, Pakistan
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences, 4102University of Queensland, Woolloongabba, QLD, Australia
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Pakistan Government College University, 72594Government College University Faisalabad, Faisalabad, Pakistan
| | - Shujat Ali
- School of Food and Biological Engineering, 12676Jiangsu University, Zhenjiang, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi-Pakistan
| | - Gaber Es Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Ewa Kłodzińska
- Department of Analytical Chemistry and Instrumental Analysis, Institute of Sport- National Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Iqbal S, Jabeen F, Chaudhry AS, Shah MA, Batiha GES. Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health 2021; 37:635-651. [PMID: 34491146 DOI: 10.1177/07482337211011008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel nanoparticles (Ni-NPs) are widely used for multiple purposes in industries. Ni-NPs exposure is detrimental to ecosystems owing to widespread use, and so their toxicity is important to consider for real-world applications. This review mainly focuses on the notable pathophysiological activities of Ni-NPs in various research models. Ni-NPs are stated to be more toxic than bulk forms because of their larger surface area to volume ratio and are reported to provoke toxicity through reactive oxygen species generation, which leads to the upregulation of nuclear factor-κB and promotes further signaling cascades. Ni-NPs may contribute to provoking oxidative stress and apoptosis. Hypoxia-inducible factor 1α and mitogen-activated protein kinases pathways are involved in Ni-NPs associated toxicity. Ni-NPs trigger the transcription factors p-p38, p-JNK, p-ERK1/2, interleukin (IL)-3, TNF-α, IL-13, Fas, Cyt c, Bax, Bid protein, caspase-3, caspase-8, and caspase-9. Moreover, Ni-NPs have an occupational vulnerability and were reported to induce lung-related disorders owing to inhalation. Ni-NPs may cause serious effects on reproduction as Ni-NPs induced deleterious effects on reproductive cells (sperm and eggs) in animal models and provoked hormonal alteration. However, recent studies have provided limited knowledge regarding the important checkpoints of signaling pathways and less focused on the toxic limitation of Ni-NPs in humans, which therefore needs to be further investigated.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| |
Collapse
|
5
|
Molecular Basis Supporting the Association of Talcum Powder Use with Increased Risk of Ovarian Cancer. Reprod Sci 2020; 27:1836-1838. [DOI: 10.1007/s43032-020-00267-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Özkan Vardar D, Aydin S, Hocaoğlu İ, Yağci Acar H, Başaran N. An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turk J Pharm Sci 2019; 16:282-291. [PMID: 32454726 DOI: 10.4274/tjps.galenos.2018.85619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
Objectives Silver sulfide (Ag2S) quantum dots (QDs) are highly promising nanomaterials in bioimaging systems due to their high activities for both imaging and drug/gene delivery. There is insufficient research on the toxicity of Ag2S QDs coated with meso-2,3-dimercaptosuccinic acid (DMSA). In this study, we aimed to determine the cytotoxicity of Ag2S QDs coated with DMSA in Chinese hamster lung fibroblast (V79) cells over a wide range of concentrations (5-2000 μg/mL). Materials and Methods Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays. The genotoxic and apoptotic effects of DMSA/Ag2S QDs were also assessed by comet assay and real-time polymerase chain reaction technique, respectively. Results Cell viability was 54.0±4.8% and 65.7±4.1% at the highest dose (2000 μg/mL) of Ag2S QDs using the MTT and NRU assays, respectively. Although cell viability decreased above 400 μg/mL (MTT assay) and 800 μg/mL (NRU assay), DNA damage was not induced by DMSA/Ag2S QDs at the studied concentrations. The mRNA expression levels of p53, caspase-3, caspase-9, Bax, Bcl-2, and survivin genes were altered in the cells exposed to 500 and 1000 μg/mL DMSA/Ag2S QDs. Conclusion The cytotoxic effects of DMSA/Ag2S QDs may occur at high doses through the apoptotic pathways. However, DMSA/Ag2S QDs appear to be biocompatible at low doses, making them well suited for cell labeling applications.
Collapse
Affiliation(s)
- Deniz Özkan Vardar
- Hitit University, Sungurlu Vocational High School, Health Programs, Çorum, Turkey
| | - Sevtap Aydin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - İbrahim Hocaoğlu
- Koç University, Graduate School of Materials Science and Engineering, İstanbul, Turkey
| | - Havva Yağci Acar
- Koç University, College of Sciences, Department of Chemistry, İstanbul, Turkey
| | - Nursen Başaran
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| |
Collapse
|
7
|
Jiráková K, Moskvin M, Machová Urdzíková L, Rössner P, Elzeinová F, Chudíčková M, Jirák D, Ziolkowska N, Horák D, Kubinová Š, Jendelová P. The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages. Neurochem Res 2019; 45:159-170. [PMID: 30945145 DOI: 10.1007/s11064-019-02790-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
Collapse
Affiliation(s)
- Klára Jiráková
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Maksym Moskvin
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Rössner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Fatima Elzeinová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Milada Chudíčková
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Jirák
- MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Natalia Ziolkowska
- MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Daniel Horák
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Šárka Kubinová
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Jendelová
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic. .,Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
8
|
Fukui H, Iwahashi H, Nishio K, Hagihara Y, Yoshida Y, Horie M. Ascorbic acid prevents zinc oxide nanoparticle-induced intracellular oxidative stress and inflammatory responses. Toxicol Ind Health 2017; 33:687-695. [PMID: 28854869 DOI: 10.1177/0748233717707361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exposure to zinc oxide nanoparticles (ZnO NPs) promotes acute pulmonary toxicity through oxidative stress and inflammation. Furthermore, dissolved zinc from ZnO NPs induces the formation of intracellular reactive oxygen species (ROS). We previously reported that supplemental ascorbic acid (AA) inhibits ZnO NP-induced acute pulmonary toxicity in a rat model; however, the mechanism of this action remains unclear. Therefore, we investigated the effects of AA on ZnO NP-induced cytotoxicity in human lung carcinoma A549 cells. AA was found to suppress intracellular production of ROS, and thus reduce the subsequent inflammation of ZnO NPs. However, intracellular Zn2+ concentrations were higher in AA-treated cells than in AA-untreated cells. AA was found to react with Zn2+ but not with the ZnO NPs themselves. These results suggest the possibility that AA-chelated extracellular Zn2+ and the Zn-AA complex was readily taken up into cell. Even if the intracellular Zn2+ level was high, cytotoxicity might be reduced because the Zn-AA complex was stable. Co-treatment of AA to A549 inhibited ROS production and subsequent intracellular inflammatory responses. These results are consistent with those previously reported from an in vivo model. Thus, two possibilities can be considered about the cytotoxicity-reducing the effect of AA: antioxidant efficacy and chelating effect.
Collapse
Affiliation(s)
- Hiroko Fukui
- 1 United Graduate School of Agricultural Science, Gifu University, Yanagido, Gifu City, Japan
| | - Hitoshi Iwahashi
- 1 United Graduate School of Agricultural Science, Gifu University, Yanagido, Gifu City, Japan
| | - Keiko Nishio
- 2 Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Yoshihisa Hagihara
- 2 Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | | | | |
Collapse
|
9
|
Abudayyak M, Öztaş E, Arici M, Özhan G. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. CHEMOSPHERE 2017; 169:117-123. [PMID: 27870932 DOI: 10.1016/j.chemosphere.2016.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/11/2016] [Accepted: 11/05/2016] [Indexed: 05/25/2023]
Abstract
Nanoparticles have been drawn attention in various fields ranging from medicine to industry because of their physicochemical properties and functions, which lead to extensive human exposure to nanoparticles. Bismuth (Bi)-based compounds have been commonly used in the industrial, cosmetic and medical applications. Although the toxicity of Bi-based compounds was studied for years, there is a serious lack of information concerning their toxicity and effects in the nanoscale on human health and environment. Therefore, we aimed to investigate the toxic effects of Bi (III) oxide (Bi2O3) nanoparticles in liver (HepG2 hepatocarcinoma cell), kidney (NRK-52E kidney epithelial cell), intestine (Caco-2 colorectal adenocarcinoma cell), and lung (A549 lung carcinoma cell) cell cultures. Bi2O3 nanoparticles (∼149.1 nm) were easily taken by all cells and showed cyto- and genotoxic effects. It was observed that the main cell death pathways were apoptosis in HepG2 and NRK-52E cells and necrosis in A549 and Caco-2 cells exposed to Bi2O3 nanoparticles. Also, the glutathione (GSH), malondialdehyde (MDA), and 8-hydroxy deoxyguanine (8-OHdG) levels were significantly changed in HepG2, NRK-52E, and Caco-2 cells, except A549 cell. The present study is the first to evaluate the toxicity of Bi2O3 nanoparticles in mammalian cells. Bi2O3 nanoparticles should be thoroughly assessed for their potential hazardous effects to human health and the results should be supported with in vivo studies to fully understand the mechanism of their toxicity.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey
| | - Ezgi Öztaş
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey
| | - Merve Arici
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey.
| |
Collapse
|
10
|
Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol In Vitro 2016; 40:94-101. [PMID: 28024936 DOI: 10.1016/j.tiv.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/27/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023]
Abstract
There are very few studies regarding the biological activity of cobalt-based nanoparticles (NPs) and, therefore, the possible mechanism behind the biological response of cobalt NPs has not been fully explored. The present study was designed to explore the potential mechanisms of the cytotoxicity of cobalt NPs in human breast cancer (MCF-7) cells. The shape and size of cobalt NPs were characterized by scanning and transmission electron microscopy (SEM and TEM). The crystallinity of NPs was determined by X-ray diffraction (XRD). The dissolution of NPs was measured in phosphate-buffered saline (PBS) and culture media by atomic absorption spectroscopy (AAS). Cytotoxicity parameters, such as [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) release suggested that cobalt NPs were toxic to MCF-7 cells in a dose-dependent manner (50-200μg/ml). Cobalt NPs also significantly induced reactive oxygen species (ROS) generation, lipid peroxidation (LPO), mitochondrial outer membrane potential loss (MOMP), and activity of caspase-3 enzymes in MCF-7 cells. Moreover, cobalt NPs decreased intracellular antioxidant glutathione (GSH) molecules. The exogenous supply of antioxidant N-acetyl cysteine in cobalt NP-treated cells restored the cellular GSH level and prevented cytotoxicity that was also confirmed by microscopy. Similarly, the addition of buthionine-[S, R]-sulfoximine, which interferes with GSH biosynthesis, potentiated cobalt NP-mediated toxicity. Our data suggested that low solubility cobalt NPs could exert toxicity in MCF-7 cells mainly through cobalt NP dissolution to Co2+.
Collapse
|
11
|
Mahmoud A, Ezgi Ö, Merve A, Özhan G. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types. Int J Toxicol 2016; 35:429-437. [DOI: 10.1177/1091581816648624] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Worldwide researchers have rising concerns about magnesium-based materials, especially magnesium oxide (MgO) nanaoparticles, due to increasing usage as promising structural materials in various fields including cancer treatment. However, there is a serious lack of information about their toxicity at the cellular and molecular levels. In this study, the toxic potentials of MgO nanoparticles were investigated on liver (HepG2), kidney (NRK-52E), intestine (Caco-2), and lung (A549) cell lines. For the toxicological assessment, the following assays were used: the particle characterization by transmission electron microscopy, the determination of cellular uptake by inductively coupled plasma-mass spectrometry, MTT and neutral red uptake assays for cytotoxicity, comet assay for genotoxicity, and the determination of malondialdehyde (MDA), 8-hydroxydeoxyguanosine, protein carbonyl, and glutathione levels by enzyme-linked immune sorbent assays for the potential of oxidative damage and annexin V-fluorescein isothiocyanate (FITC) apoptosis detection assay with propidium iodide (PI) for apoptosis. Magnesium oxide nanoparticles were taken up by the cells depending on their concentration and agglomeration/aggregation potentials. Magnesium oxide nanoparticles induced DNA (≤14.27 fold) and oxidative damage. At a concentration of ≥323.39 µg/mL, MgO nanoparticles caused 50% inhibition in cell viability by 2 different cytotoxicity assays. The cell sensitivity to cytotoxic and genotoxic damage induced by MgO nanoparticles was ranked as HepG2 < A549 < Caco-2 < NRK-52E. Although it was observed that MgO nanoparticles induced apoptotic effects on the cells, apoptosis was not the main cell death. DNA damage, cell death, and oxidative damage effects of MgO nanoparticles should raise concern about the safety associated with their applications in consumer products.
Collapse
Affiliation(s)
- Abudayyak Mahmoud
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Öztaş Ezgi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Arici Merve
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Fukui H, Iwahashi H, Endoh S, Nishio K, Yoshida Y, Hagihara Y, Horie M. Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles. J Occup Health 2015; 57:118-25. [PMID: 25735507 DOI: 10.1539/joh.14-0161-oa] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES It is known that inhalation of zinc oxide nanoparticles (ZnO NPs) induces acute pulmonary dysfunction, including oxidative stress, inflammation, and injury, but there are no reports on how to prevent these adverse effects. We have previously reported that the pulmonary symptoms caused by ZnO NPs were associated with oxidative stress; in the present study, we therefore investigated the use of ascorbic acid (AA), which is known as vitamin C, to prevent these toxic effects. METHODS A ZnO NP dispersion was introduced into rat lungs by intratracheal injection, and thereafter a 1% aqueous AA solution was given as drinking water. Bronchoalveolar lavage fluid was collected at 1 day and 1 week after injection, and lactate dehydrogenase (LDH) activity, heme oxygenase-1 (HO-1), and interleukin-6 (IL-6) levels were measured. In addition, expression of the chemokine cytokine-induced neutrophil chemoattractants (CINCs), HO-1, and metallothionein-1 (MT-1) genes in the lungs were determined. RESULTS Acute oxidative stress induced by ZnO NPs was suppressed by supplying AA. Increases in LDH activity and IL-6 concentration were also suppressed by AA, as was the expression of the CINC-1, CINC-3, and HO-1 genes. CONCLUSIONS Oral intake of AA prevents acute pulmonary oxidative stress and inflammation caused by ZnO NPs. Intake of AA after unanticipated exposure to ZnO NPs is possibly the first effective treatment for the acute pulmonary dysfunction they cause.
Collapse
Affiliation(s)
- Hiroko Fukui
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | | | |
Collapse
|
13
|
Aula S, Lakkireddy S, Jamil K, Kapley A, Swamy AVN, Lakkireddy HR. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra05889a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding of interplay between nanoparticles physicochemical and biophysical properties, and their impact on pharmacokinetic biodistribution and toxicological properties help designing of appropriate nanoparticle products for biomedical applications.
Collapse
Affiliation(s)
- Sangeetha Aula
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Department of Biotechnology
| | - Samyuktha Lakkireddy
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Department of Biotechnology
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
| | - Atya Kapley
- Centre for Biotechnology and Bioinformatics
- Jawaharlal Nehru Institute of Advanced Studies (JNIAS)
- Secunderabad
- India
- Environmental Genomics Division
| | - A. V. N. Swamy
- Department of Chemical Engineering
- Jawaharlal Nehru Technological University Anantapur (JNTUA)
- Anantapuramu
- India
| | - Harivardhan Reddy Lakkireddy
- Drug Delivery Technologies and Innovation
- Pharmaceutical Sciences
- Sanofi Research and Development
- 94403 Vitry-sur-Seine
- France
| |
Collapse
|
14
|
Akhtar MJ, Ahamed M, Khan MAM, Alrokayan SA, Ahmad I, Kumar S. Cytotoxicity and apoptosis induction by nanoscale talc particles from two different geographical regions in human lung epithelial cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:394-406. [PMID: 22331707 DOI: 10.1002/tox.21766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/16/2012] [Accepted: 01/21/2012] [Indexed: 05/31/2023]
Abstract
We have characterized the physicochemical properties of nanotalc particles from two different geographical regions and examined their toxicity mechanisms in human lung epithelial (A549) cells. Indigenous nanotalc (IN) of Indian origin and commercial nanotalc (CN) of American origin were used in this study. Physicochemical properties of nanotalc particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Brunauer-Emmet-Teller (BET), and dynamic light scattering (DLS). Results showed that both IN and CN particles significantly induce cytotoxicity and alteration in cell cycle phases. Both IN and CN particles were found to induce oxidative stress indicated by induction of reactive oxygen species (ROS), lipid peroxidation, and depletion of antioxidant levels. DNA fragmentation and caspase-3 enzyme activation due to IN and CN particles exposure were also observed. We further showed that after iron chelation, IN and CN particles produce significantly less cytotoxicity, oxidative stress, and genotoxicity to A549 cells as compared with nonchelated particles. In conclusion, this study demonstrated that redox active iron plays significant role in the toxicity of IN and CN particles, which may be mediated through ROS generation and oxidative stress.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- Fibre Toxicology Division, Indian Institute of Toxicology Research, Lucknow 226001, India; Department of Zoology, University of Lucknow, Lucknow 226007, India
| | | | | | | | | | | |
Collapse
|
15
|
Rani VS, Kumar AK, Kumar CP, Reddy ARN. Pulmonary Toxicity of Copper Oxide (CuO) Nanoparticles in Rats. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.571.577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Ahamed M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol 2013; 32:186-95. [PMID: 23315277 DOI: 10.1177/0960327112459206] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In medicine, the use of silica nanoparticles (SiO(2) NPs) offers new perspectives in biosensor, drug delivery and cancer therapy. However, questions about potential toxic and deleterious effects of SiO(2) NPs have also been raised. The aim of this study was to investigate the induction of cytotoxicity, oxidative stress and apoptosis by SiO(2) NPs (size 15 nm) in human skin epithelial (A431) and human lung epithelial (A549) cells. SiO(2) NPs (concentration range 25-200 µg/ml) induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) and lactate dehydrogenase leakage assays. SiO(2) NPs were also found to induce oxidative stress in a dose-dependent manner, indicated by depletion of glutathione and induction of reactive oxygen species (ROS) generation and lipid peroxidation. Quantitative real-time polymerase chain reaction analysis showed that following the exposure of cells to SiO(2) NPs, the messenger RNA level of apoptotic genes (caspase-3 and caspase-9) were upregulated in a dose-dependent manner. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in both kinds of cells exposed to SiO(2) NPs. This study suggested that SiO(2) NPs induce cytotoxicity and apoptosis in A431 and A549 cells, which is likely to be mediated through ROS generation and oxidative stress.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Karbownik-Lewińska M, Kokoszko-Bilska A. Oxidative damage to macromolecules in the thyroid - experimental evidence. Thyroid Res 2012; 5:25. [PMID: 23270549 PMCID: PMC3542017 DOI: 10.1186/1756-6614-5-25] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 11/20/2022] Open
Abstract
Whereas oxidative reactions occur in all tissues and organs, the thyroid gland constitutes such an organ, in which oxidative processes are indispensable for thyroid hormone synthesis. It is estimated that huge amount of reactive oxygen species, especially of hydrogen peroxide (H2O2), are produced in the thyroid under physiological conditions, justifying the statement that the thyroid gland is an organ of “oxidative nature”. Apart from H2O2, also other free radicals or reactive species, formed from iodine or tyrosine residues, participate in thyroid hormone synthesis. Under physiological conditions, there is a balance between generation and detoxification of free radicals. Effective protective mechanisms, comprising antioxidative molecules and the process of compartmentalization of potentially toxic molecules, must have been developed in the thyroid to maintain this balance. However, with additional oxidative abuse caused by exogenous or endogenous prooxidants (ionizing radiation being the most spectacular), increased damage to macromolecules occurs, potentially leading to different thyroid diseases, cancer included.
Collapse
|
18
|
Stępniak J, Lewiński A, Karbownik-Lewińska M. Membrane lipids and nuclear DNA are differently susceptive to Fenton reaction substrates in porcine thyroid. Toxicol In Vitro 2012; 27:71-8. [PMID: 23022769 DOI: 10.1016/j.tiv.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 01/19/2023]
Abstract
Fenton reaction (Fe(2+)+H(2)O(2) → Fe(3+)+()OH+OH(-)) is of special significance in the thyroid, as both substrates are indispensable for thyroid hormone synthesis, therefore being available presumably at high concentrations under physiological conditions. The study aimed at evaluation if both Fenton reaction substrates are required to induce oxidative damage to membrane lipids and nuclear DNA in porcine thyroid homogenates, and if these macromolecules are vulnerable to the same extent. Thyroid homogenates and nuclear DNA were incubated in the presence of H(2)O(2) and/or Fe(2+). Malondialdehyde+4-hydroxyalkenals (MDA+4-HDA) concentration (lipid peroxidation index) was measured spectrophotometrically, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) concentration (DNA damage index) by HPLC. Whereas Fenton reaction substrates, used separately, did not affect lipid peroxidation, they increased 8-oxodG level for the highest H(2)O(2) concentration (100mM) and in Fe(2+) concentration-dependent manner (300, 150, 30 and 15 μM). If Fe(2+) and H(2)O(2) were applied together, lipid peroxidation increased significantly, however without H(2)O(2) concentration- but with clear Fe(2+) concentration-dependent effect. Concerning DNA damage, Fe(2+) enhanced H(2)O(2) effect, whereas Fe(2+) concentration-dependent effect was not changed by H(2)O(2). Excess of exclusively one of Fenton reaction substrates is sufficient to induce oxidative DNA damage, but not lipid peroxidation, in porcine thyroid. Comparing to H(2)O(2), Fe(2+) seems to be a stronger damaging substrate.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Łódź, 7/9 Żeligowski St, 90-752 Łódź, Poland
| | | | | |
Collapse
|
19
|
Patil G, Khan MI, Patel DK, Sultana S, Prasad R, Ahmad I. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic responses of micro- and nano-particles of dolomite on human lung epithelial cells A(549). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:436-445. [PMID: 22785077 DOI: 10.1016/j.etap.2012.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/21/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Dolomite is a natural mineral of great industrial importance and used worldwide, thus millions of workers are at risk of occupational exposure. Its toxicity is however, meagerly documented. In the present investigation, a dolomite powder obtained from its milling unit was analyzed by some standard methods namely, optical microscopy, transmission electron microscopy and dynamic light scattering. Results showed that dolomite powder contained particles of different shapes and size both microparticles (MPs) and nanoparticles (NPs), suggesting potential occupational exposure of these particles. An attempt was therefore, made to investigate dolomite toxicity in a particle size-dependent manner in human lung epithelial cells A(549). The comparative toxicity evaluation of MPs and NPs was carried out by assessing their effects on cell viability, membrane damage, glutathione, reactive oxygen species (ROS), lipid peroxidation (LPO), micronucleus (MN) and proinflammatory cytokines, namely tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). These markers of cytotoxicity, genotoxicity and inflammation were assayed in cells exposed to MPs and NPs in a dose-and time-dependent manner. Invariably, their toxic effects were dose-and time-dependent while NPs in general were significantly more toxic. Notably, NPs caused oxidative stress, genotoxicity and inflammatory responses, as seen by significant induction of ROS, LPO, MN, TNF-α, IL-1β and IL-6. Thus, the study tends to suggest that separate health safety standards would be required for micrometer and nanometer scale particles of dolomite.
Collapse
Affiliation(s)
- Govil Patil
- Fibre Toxicology Division, CSIR-Indian Institute of Toxicology Research, M.G. Marg, P.O. Box 80, Lucknow 226 001, U.P., India; Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Imran Khan
- Department of Dermatology, University of Wisconsin, Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | - Devendra Kumar Patel
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226 001, U.P., India
| | - Sarwat Sultana
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110 062, India
| | - Rajendra Prasad
- Uttar Pradesh Rural Institute of Medical Sciences and Research, Saifai, Etawa, India
| | - Iqbal Ahmad
- Fibre Toxicology Division, CSIR-Indian Institute of Toxicology Research, M.G. Marg, P.O. Box 80, Lucknow 226 001, U.P., India.
| |
Collapse
|
20
|
Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy PB, Reddy PN. Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 2012; 31:1113-31. [PMID: 22699116 DOI: 10.1177/0960327112446515] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this research, we investigated the toxicity responses of rat following a continuous 4 h inhalation exposure of only the head and nose to iron oxide nanoparticles (Fe(3)O(4) NPs, size = 15-20 nm). The rats for the investigation were exposed to a concentration of 640 mg/m(3) Fe(3)O(4) NPs. Markers of lung injury and proinflammatory cytokines (interleukin-1β, tumor necrosis factor-α, and interleukin-6) in bronchoalveolar lavage fluid (BALF) and blood, oxidative stress in lungs, and histopathology were assessed on 24 h, 48 h, and 14 days of postexposure periods. Our results showed a significant decrease in the cell viability, with the increase in the levels of lactate dehydrogenase, total protein, and alkaline phosphatase in the BALF. Total leukocyte count and the percentage of neutrophils in BALF increased within 24 h of postexposure. Immediately following acute exposure, rats showed increased inflammation with significantly higher levels of lavage and blood proinflammatory cytokines and were consistent throughout the observation period. Fe(3)O(4) NPs exposure markedly increased malondialdehyde concentration, while intracellular reduced glutathione and antioxidant enzyme activities were significantly decreased in lung tissue within 24-h postexposure period. On histological observation, the lung showed an early activation of pulmonary clearance and a size-dependant biphasic nature of the Fe(3)O(4) NPs in causing the structural alteration. Collectively, our data illustrate that Fe(3)O(4) NPs inhalation exposure may induce cytotoxicity via oxidative stress and lead to biphasic inflammatory responses in Wistar rat.
Collapse
Affiliation(s)
- A Srinivas
- Department of Toxicology, International Institute of Biotechnology and Toxicology (IIBAT), Padappai, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
21
|
Akhtar MJ, Ahamed M, Fareed M, Alrokayan SA, Kumar S. Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. J Toxicol Sci 2012; 37:139-48. [PMID: 22293418 DOI: 10.2131/jts.37.139] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite the great interest in nanoparticles (NPs) safety, no comprehensive test paradigm has been developed. Oxidative stress has been implicated as an explanation behind the toxicity of NPs. It is reported that sulphoraphane (SFN) present in cruciferous vegetables like cauliflower and broccoli has potential to protect cells from oxidative damage and inflammation. However, protective role of SFN in nanotoxicity is not explored. We investigated the protective effect of SFN against the toxic response of copper oxide (CuO) NPs in mouse embryonic fibroblasts (BALB 3T3). Results showed that CuO NPs induced dose-dependent (5-15 µg/ml) cytotoxicity in BALB 3T3 cells demonstrated by MTT and lactate dehydrogenase (LDH) assays. CuO NPs were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) and lipid peroxidation (LPO) and depletion of glutathione and glutathione reductase. Co-treatment of BALB 3T3 cells with SFN (6 µM) significantly attenuated the cytotoxicity, ROS generation and oxidative stress caused by CuO NPs. Moreover, we found that co-treatment of another antioxidant N-acetyl-cysteine (NAC) (2 mM) also significantly attenuated glutathione depletion caused by CuO NPs but protection from the loss of cell viability due to CuO NPs exposure was not significant. We believe this is the first report showing that SFN significantly protected the BALB 3T3 cells from CuO NPs toxicity, which is mediated through generation of oxidants and depletion of antioxidants. Consequently, protective mechanism of SFN against CuO NPs toxicity was different from NAC that should be further investigated.
Collapse
|
22
|
Ahmad J, Ahamed M, Akhtar MJ, Alrokayan SA, Siddiqui MA, Musarrat J, Al-Khedhairy AA. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 2012; 259:160-8. [PMID: 22245848 DOI: 10.1016/j.taap.2011.12.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/25/2022]
Abstract
Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25-200μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Zoology, College of Science, King Saud University, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Ahmad I, Khan MI, Patil G, Chauhan LKS. Evaluation of cytotoxic, genotoxic and inflammatory responses of micro- and nano-particles of granite on human lung fibroblast cell IMR-90. Toxicol Lett 2011; 208:300-7. [PMID: 22101213 DOI: 10.1016/j.toxlet.2011.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/28/2022]
Abstract
Occupational exposure of granite workers is well known to cause lung impairment and silicosis. Toxicological profiles of different size particles of granite dust, however, are not yet understood. Present evaluation of micro- and nano-particles of granite dust as on human lung fibroblast cells IMR-90, revealed that their toxic effects were dose-dependent, and nanoparticles in general were more toxic. In this study we first demonstrated that nanoparticles caused oxidative stress, inflammatory response and genotoxicity, as seen by nearly 2 fold induction of ROS and LPO, mRNA levels of TNF-α and IL-1β, and induction in micronuclei formation. All these were significantly higher when compared with the effect of micro particles. Thus, the study suggests that separate health safety standards would be required for granite particles of different sizes.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Fibre Toxicology Division, CSIR - Indian Institute of Toxicology Research, Mahatma Gandhi Marg, P.O. Box 80, Lucknow 226001, India.
| | | | | | | |
Collapse
|
25
|
Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. CHEMOSPHERE 2011; 85:34-42. [PMID: 21733543 DOI: 10.1016/j.chemosphere.2011.06.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/25/2011] [Accepted: 06/05/2011] [Indexed: 05/31/2023]
Abstract
Silver and titanium dioxide nanoparticles are known to induce oxidative stress in vitro and in vivo. Here we test if they impact development, mating success, and survivorship in Drosophila melanogaster, and if so, if these effects are reversible by antioxidants. Ingestion of nanotitanium dioxide during the larval stage of the life cycle showed no effects on development or survivorship, up to doses of 200 μg mL(-1). Conversely, ingestion of nanosilver had major dose, size, and coating-dependent effects on each of these aspects of life history. Each of these effects was partially or fully reversible by vitamin C. Larvae growing on nanosilver supplemented with vitamin C showed a greater than twofold increase in survivorship compared to flies reared on nanosilver alone, and a threefold increase in mating success. Vitamin C also rescued cuticular and pigmentation defects in nanosilver fed flies. Biochemical assays of superoxide dismutase and glutathione show these markers respond to nanotitanium dioxide and nanosilver induced oxidative stress, and this response is reduced by vitamin C. These results indicate that life history effects of nanosilver ingestion result from oxidative stress, and suggest antioxidants as a potential remediation for nanosilver toxicity. Conversely, the lack of nanotitanium dioxide life history toxicity shows that oxidative stress does not necessarily result in whole organism effects, and argues that nanoparticle toxicity needs to be examined at different levels of biological organization.
Collapse
Affiliation(s)
- Ryan Posgai
- Department of Biology, Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469, USA
| | | | | | | | | | | |
Collapse
|
26
|
Rezić I. Determination of engineered nanoparticles on textiles and in textile wastewaters. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 2011; 205:105-15. [PMID: 21624445 DOI: 10.1016/j.toxlet.2011.05.1027] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to assess the acute toxic potential of cerium oxide nanoparticles (CeO(2) NPs) in rats when exposed through the head and nose inhalation route. The rats were exposed to CeO(2) NPs and the resultant effects if any, to cause cytotoxicity, oxidative stress and inflammation in the lungs were evaluated on a 24h, 48h and 14 day post exposure period. Our results showed a significant decrease in the cell viability, with the increase of lactate dehydogenase, total protein and alkaline phosphatase levels in the bronchoalveolar lavage fluid (BALF) of the exposed rats. Total leukocyte count and the percentage of neutrophils in BALF were elevated within 24h of post exposure. The concentrations of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) were significantly increased in the BALF and in the blood throughout the observation period. The level of malondialdehyde was elevated with the decreased levels of intracellular reduced glutathione (GSH) in the lung after exposure. The alveolar macrophages (AMs) and neutrophils overloaded with phagocytosed CeO(2) NPs were observed along with non-phagocytosed free CeO(2) NPs that were deposited over the epithelial surfaces of the bronchi, bronchiole and alveolar regions of lungs within 24h of post exposure and were consistent throughout the observation period. A well distributed, multifocal pulmonary microgranulomas due to impairment of clearance mechanism leading to biopersistence of CeO(2) NPs for an extended period of time were observed at the end of the 14 day post exposure period. These results suggest that acute exposure of CeO(2) NPs through inhalation route may induce cytotoxicity via oxidative stress and may lead to a chronic inflammatory response.
Collapse
Affiliation(s)
- A Srinivas
- Department of Toxicology, International Institute of Biotechnology and Toxicology (IIBAT), Padappai 601301, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
28
|
Ahmad I, Siddiqui H, Akhtar MJ, Khan MI, Patil G, Ashquin M, Patel DK, Arif JM. Toxic responses in primary rat hepatocytes exposed with occupational dust collected from work environment of bone-based industrial unit. CHEMOSPHERE 2011; 83:455-460. [PMID: 21237481 DOI: 10.1016/j.chemosphere.2010.12.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
In this in vitro study we investigated the toxic responses in hepatocytes treated with occupational dust to which workers are exposed in bone-based industrial units. The present study investigated the toxicity mechanism of bone-based occupational dust, from a particular industrial unit, on isolated rat hepatocytes. The hepatocytes were isolated by collagenase perfusion method and cell viability was determined by trypan blue exclusion and MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay treated with occupational dust at 0.1-1.0 mgmL(-1), for 120 min. The cell viability decreased significantly in a concentration-dependent manner. Dust induced significant membrane damage measured by lactate dehydrogenase (LDH) and glutathione (GSH) release in culture media for 30-, 60- and 120 min treatment duration. The toxicity was found to be correlated with the induction of lipid peroxidation (LPO). In addition, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) generation by occupational dusts were also found to be time- and concentration-dependent. Over all the present study provides initial evidences for the toxic potential of occupational dust generated in bone-based industries and, therefore, the dust exposure to workers in unorganized industrial units should be controlled.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Fibre Toxicology Division, Indian Institute of Toxicology Research (CSIR), Lucknow 226 001, UP, India.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 2011; 283:101-8. [PMID: 21382431 DOI: 10.1016/j.tox.2011.02.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/14/2022]
Abstract
Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ahamed M. Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 2011; 25:930-6. [PMID: 21376802 DOI: 10.1016/j.tiv.2011.02.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/03/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Nickel nanoparticle (Ni NP) is increasingly used in modern industries such as catalysts, sensors and electronic applications. Due to wide-spread industrial applications the inhalation is the primary source of exposure to Ni NPs. However, data demonstrating the effect of Ni NPs on the pulmonary system remain scarce. The present study was designed to examine the toxic effect of human lung epithelial A549 cells treated with well characterized Ni NPs at the concentrations of 0, 1, 2, 5, 10 and 25 μg/ml for 24 and 48 h. Mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH), reactive oxygen species (ROS), membrane lipid peroxidation (LPO) and caspase-3 activity were assessed as toxicity end points. Results showed that Ni NPs reduced mitochondrial function and induced the leakage of LDH in dose and time-dependent manner. Ni NPs were also found to induce oxidative stress in dose and time-dependent manner indicated by depletion of GSH and induction of ROS and LPO. Further, activity of caspase-3 enzyme, marker of apoptosis was significantly higher in treated cells with time and Ni NPs dosage. The results exhibited significant toxicity of Ni NPs in human lung epithelial A549 cells which is likely to be mediated through oxidative stress. This study warrants more careful assessment of Ni NPs before their industrial applications.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
31
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
32
|
Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, Ahmad I. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 2010; 276:95-102. [PMID: 20654680 DOI: 10.1016/j.tox.2010.07.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/21/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022]
Abstract
Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells). Both sizes of silica nanoparticles induced dose-dependent cytotoxicity as measured by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) generation, and membrane lipid peroxidation (LPO). However, both sizes of silica nanoparticles had little effect on intracellular glutathione (GSH) level and the activities of glutathione metabolizing enzymes; glutathione reductase (GR) and glutathione peroxidase (GPx). Buthionine-[S,R]-sulfoximine (BSO) plus silica nanoparticles did not result in significant GSH depletion than that caused by BSO alone nor N-acetyl cysteine (NAC) afforded significant protection from ROS and LPO induced by silica nanoparticles. The rather unaltered level of GSH is also supported by finding no appreciable alteration in the level of GR and GPx. Our data suggest that the silica nanoparticles exert toxicity in A549 cells through the oxidant generation (ROS and LPO) rather than the depletion of GSH.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- Fibre Toxicology Division, Indian Institute of Toxicology Research (CSIR), Lucknow, UP, India
| | | | | | | | | | | | | |
Collapse
|