1
|
El-Mahrouk SR, El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Arsenic Trioxide (ATO III) Induces NAD(P)H Quinone Oxidoreductase 1 (NQO1) Expression in Hepatic and Extrahepatic Tissues of C57BL/6 Mice. Chem Res Toxicol 2024; 37:2040-2051. [PMID: 39630573 DOI: 10.1021/acs.chemrestox.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arsenic trioxide (ATOIII) has emerged as a potent therapeutic agent for acute promyelocytic leukemia (APL), yet its clinical application is often limited by significant adverse effects. This study investigates the molecular mechanisms underlying ATOIII's impact on cellular detoxification pathways, focusing on the regulation of NAD(P)H/quinone oxidoreductase (NQO1), a crucial enzyme in maintaining cellular homeostasis and cancer prevention. We explored ATOIII's effects on NQO1 expression in C57BL/6 mice and Hepa-1c1c7 cells, both independently and in combination with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a known NQO1 inducer. Our findings revealed that ATOIII significantly increased NQO1 expression in hepatic and extrahepatic tissues, as well as in Hepa-1c1c7 cells, at mRNA, protein, and activity levels. This upregulation occurred both in the presence and absence of TCDD. Mechanistically, we demonstrated that ATOIII promotes the nuclear translocation of both nuclear factor erythroid 2-related factor-2 (NRF2) and aryl hydrocarbon receptor (AHR) transcription factors. Furthermore, ATOIII exposure increased antioxidant response element (ARE)-driven reporter gene activity, indicating a transcriptional mechanism of NQO1 induction. Notably, gene silencing experiments confirmed the critical roles of both NRF2 and AHR in mediating ATOIII-induced NQO1 expression. In conclusion, ATOIII exposure is found to upregulate the NQO1 enzyme through a transcriptional mechanism via AHR- and NRF2- dependent mechanisms, offering valuable insights into its therapeutic mechanisms.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Faculty of Pharmacy, Tanta University, Gharbia, Tanta 31111, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| |
Collapse
|
2
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
3
|
Response of Cytoprotective and Detoxifying Proteins to Vanadate and/or Magnesium in the Rat Liver: The Nrf2-Keap1 System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8447456. [PMID: 34950419 PMCID: PMC8689234 DOI: 10.1155/2021/8447456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 10/15/2021] [Indexed: 01/11/2023]
Abstract
Oxidative stress (OS) is a mechanism underlying metal-induced toxicity. As a redox-active element, vanadium (V) can act as a strong prooxidant and generate OS at certain levels. It can also attenuate the antioxidant barrier and intensify lipid peroxidation (LPO). The prooxidant potential of V reflected in enhanced LPO, demonstrated by us previously in the rat liver, prompted us to analyze the response of the nuclear factor erythroid-derived 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) system involved in cellular regulation of OS to administration of sodium metavanadate (SMV, 0.125 mg V/mL) and/or magnesium sulfate (MS, 0.06 mg Mg/mL). The levels of some Nrf2-dependent cytoprotective and detoxifying proteins, i.e., glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), glutamate cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), NAD(P) H dehydrogenase quinone 1 (NQO1), UDP-glucumno-syltransferase 1 (UGT1), and heme oxygenase 1 (HO-1); glutathione (GSH); metallothionein (MT1); and glutamate-cysteine ligase (GCL) mRNA were measured. We also focused on the V-Mg interactive effects and trends toward interactive action as well as relationships between the examined indices. The elevated levels of Nrf2, GCL mRNA, and GCL catalytic subunit (GCLC) confirm OS in response to SMV and point to the capacity to synthesize GSH. The results also suggest a limitation of the second step in GSH synthesis reflected by the unchanged glutathione synthetase (GSS) and GSH levels. The positive correlations between certain cytoprotective/detoxifying proteins (which showed increasing trends during the SMV and/or MS administration, compared to the control) and between them and malondialdehyde (MDA), the hepatic V concentration/total content, and/or V dose (discussed by us previously) point to cooperation between the components of antioxidant defense in the conditions of the hepatic V accumulation and SMV-induced LPO intensification. The V-Mg interactive effect and trend are involved in changes in Nrf2 and UGT1, respectively. The p62 protein has to be determined in the context of potential inhibition of degradation of Keap1, which showed a visible upward trend, in comparison with the control. The impact of Mg on MT1 deserves further exploration.
Collapse
|
4
|
Bai X, Wang J, Ding X, Bai S, Zeng Q, Xuan Y, Su Z, Zhang K. Proteomic alteration of albumen by dietary vanadium in commercial egg-type layers. Poult Sci 2019; 99:1705-1716. [PMID: 32115038 PMCID: PMC7587766 DOI: 10.1016/j.psj.2019.10.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 11/16/2022] Open
Abstract
Vanadium (V) is an ultratrace metal with the insulin-tropic properties and is often researched as the diabetes drug. However, in animals, V has been reported to have toxic effects on the development, immunity, oxidation-reduction equilibrium, gastrointestinal function, and so forth. Especially in poultry, supplementation of more than 10 mg of V/kg in the layer diets has been shown to adversely affect the egg production and egg quality. In this study, we supplemented 0 mg of V/kg, 5 mg of V/kg, and 10 mg of V/kg in the layer diets for 35 D and examined the quantitative proteomics of albumen for finding the possible target signaling pathway and mechanism of V action and made the preliminary verification. In contrast to the control group, V resulted in a significant drop in the albumen height, and in oviduct ampulla, the activity of total antioxidant capacity and glutathione peroxidase significantly decreased (P = 0.01, P = 0.02), the content of malonic dialdehyde significantly increased (P = 0.01), and the apoptosis rate significantly increased in the 5-mg V/kg and 10-mg V/kg treatment groups (P < 0.01). V affected 36 differentially accumulated proteins in albumen, with 23 proteins upregulated and 13 proteins downregulated. The expressions of innate protein albumen lysozyme (Q6LEL2), vitellogenin-2 (P02845), and the F1NWD0 protein in albumen belonged to the P53 family were significantly reduced, in contrast to the control (P < 0.05), and the expression of riboflavin-binding protein (P02752) was significantly improved (P < 0.05). The Hippo signaling pathway-fly, which is suitable for the key protein P53 as the most significantly affected network, might be important for discriminating V.
Collapse
Affiliation(s)
- Xue Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China; College of Life Science and Technology, Southwest Minzu University, Chengdu 610000, China
| | - Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Xuan
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuowei Su
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
6
|
Thakur S, Banerjee S, Das S, Chattopadhyay S. DFT study on the redox behavior of two dioxovanadium(v) complexes with N2O donor Schiff base ligands and their use in catalytic oxidation ofortho-aminophenol. NEW J CHEM 2019. [DOI: 10.1039/c9nj04672k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Solution phase redox behavior of two vanadium(v) Schiff base complexes was checked. The results agree well with DFT calculations. Both complexes exhibited good catalytic efficiency for the conversion ofo-aminophenol to 2-aminophenoxazine-3-one.
Collapse
Affiliation(s)
| | - Snehasis Banerjee
- Govt. College Of Engineering and Leather Technology
- Salt Lake Sector-III, Block-LB
- Kolkata-106
- India
| | - Saurabh Das
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | | |
Collapse
|
7
|
Anwar-Mohamed A, Elshenawy OH, Soshilov AA, Denison MS, Chris Le X, Klotz LO, El-Kadi AOS. Methylated pentavalent arsenic metabolites are bifunctional inducers, as they induce cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase through AhR- and Nrf2-dependent mechanisms. Free Radic Biol Med 2014; 67:171-87. [PMID: 24161444 DOI: 10.1016/j.freeradbiomed.2013.10.810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/29/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) ultimately leads to the induction of the carcinogen-activating enzyme cytochrome P450 1A1 (CYP1A1), and activation of the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) in addition to the AhR pathway induces the expression of the NADP(H):quinone oxidoreductase (NQO1). Therefore, the aim of this study was to examine the effect of As(III) pentavalent metabolites, MMA(V), DMA(V), and TMA(V), on AhR and Nrf2 activation and on the expression of their prototypical downstream targets CYP1A1 and NQO1, respectively. Our results showed that treatment of HepG2 cells with MMA(V), DMA(V), or TMA(V) in the absence and presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin or sulforaphane significantly induced both CYP1A1 and NQO1 at the mRNA, protein, and catalytic activity levels. Furthermore, these metabolites increased the AhR-dependent XRE-driven and the Nrf2-dependent ARE-driven luciferase reporter activities, which coincided with increased nuclear accumulation of both transcription factors. However, none of these metabolites were shown to be AhR ligands. The induction of CYP1A1 by these metabolites seems to be ligand-independent, possibly through a decrease in HSP90 protein expression levels. The metabolites also increased ROS production, which was significantly higher than that produced by As(III). Upon knockdown of AhR and Nrf2 the MMA(V)-, DMA(V)-, and TMA(V)-mediated induction of both CYP1A1 and NQO1 proteins was significantly decreased. In conclusion, this study demonstrates for the first time that methylated pentavalent arsenic metabolites are bifunctional inducers, as they increase CYP1A1 by activating the AhR/XRE signaling pathway and they increase NQO1 by activating the Nrf2/ARE signaling pathway in addition to the AhR/XRE pathway.
Collapse
Affiliation(s)
- Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Anatoly A Soshilov
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - X Chris Le
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2G3
| | - Lars-Oliver Klotz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1; College of Pharmacy, Qatar University, Doha 02713, Qatar.
| |
Collapse
|
8
|
Song MO, Mattie MD, Lee CH, Freedman JH. The role of Nrf1 and Nrf2 in the regulation of copper-responsive transcription. Exp Cell Res 2014; 322:39-50. [PMID: 24462598 DOI: 10.1016/j.yexcr.2014.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
Abstract
Recent evidences indicated Nrf2 is more potent than Nrf1 in the activation of antioxidant genes. However, the roles of Nrf proteins in the regulation of copper-responsive transcription have not been well addressed. We took the toxicogenomic approach and the present network and Gene Ontology analyses results showed that Nrf1 and Nrf2 are distinctively involved in copper-responsive transcriptional regulation in HepG2 transcriptome. Cells deficient in either Nrf1 or Nrf2 were more susceptible to copper exposure than wild type cells. Nrf1 and Nrf2 null cells were transfected with the luciferase reporters containing either ARE(s) or a combination of ARE(s) and MREs, and then treated with copper. In Nrf2-null (Nrf2(-/-)) cells, copper did not activate transcription of reporter genes, whereas Nrf1 deficiency did not affect copper-inducible activation. Ectopic expression of Nrf2 restored copper-inducible transcription in Nrf2(-/-) cells. However, the changes in the intrinsic mRNA levels of MT-1 in Nrf null cells following copper treatment showed that Nrf1 and Nrf2 equally contributed to MT-1 activation after 4h, while Nrf1involved more than Nrf2 following 24h exposure. These results suggest that while Nrf2 is crucial for MRE/ARE-mediated transcription in response to copper, Nrf1 may activate MT-1 expression by a mechanism different from that Nrf2 employs.
Collapse
Affiliation(s)
- Min Ok Song
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangwon-do 210-702, Republic of Korea.
| | - Michael D Mattie
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA.
| | - Chang-Ho Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangwon-do 210-702, Republic of Korea
| | - Jonathan H Freedman
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Changes in iron metabolism and oxidative status in STZ-induced diabetic rats treated with bis(maltolato) oxovanadium (IV) as an antidiabetic agent. ScientificWorldJournal 2014; 2014:706074. [PMID: 24511298 PMCID: PMC3913100 DOI: 10.1155/2014/706074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/08/2013] [Indexed: 01/24/2023] Open
Abstract
The role of vanadium as a micronutrient and hypoglycaemic agent has yet to be fully clarified. The present study was undertaken to investigate changes in the metabolism of iron and in antioxidant defences of diabetic STZ rats following treatment with vanadium. Four groups were examined: control; diabetic; diabetic treated with 1 mgV/day; and Diabetic treated with 3 mgV/day. The vanadium was supplied in drinking water as bis(maltolato) oxovanadium (IV) (BMOV). The experiment had a duration of five weeks. Iron was measured in food, faeces, urine, serum, muscle, kidney, liver, spleen, and femur. Superoxide dismutase, catalase, NAD(P)H: quinone-oxidoreductase-1 (NQO1) activity, and protein carbonyl group levels in the liver were determined. In the diabetic rats, higher levels of Fe absorbed, Fe content in kidney, muscle, and femur, and NQO1 activity were recorded, together with decreased catalase activity, in comparison with the control rats. In the rats treated with 3 mgV/day, there was a significant decrease in fasting glycaemia, Fe content in the liver, spleen, and heart, catalase activity, and levels of protein carbonyl groups in comparison with the diabetic group. In conclusion BMOV was a dose-dependent hypoglycaemic agent. Treatment with 3 mgV/day provoked increased Fe deposits in the tissues, which promoted a protein oxidative damage in the liver.
Collapse
|
10
|
Abdelhamid G, Amara IEA, Anwar-Mohamed A, El-Kadi AOS. Modulation of cytochrome P450 1 (Cyp1) by vanadium in hepatic tissue and isolated hepatocyte of C57BL/6 mice. Arch Toxicol 2013; 87:1531-43. [DOI: 10.1007/s00204-013-1023-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
|
11
|
Sasaki K, Neyazaki M, Shindo K, Ogawa T, Momose M. Quantitative profiling of glucosinolates by LC–MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 903:171-6. [DOI: 10.1016/j.jchromb.2012.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/14/2012] [Accepted: 07/14/2012] [Indexed: 11/27/2022]
|
12
|
Abdelhamid G, Amara IE, Anwar-Mohamed A, El-Kadi AO. Modulation of aryl hydrocarbon receptor-regulated genes by acute administration of ammonium metavanadate in kidney, lung and heart of C57BL/6 mice. J Appl Toxicol 2012; 33:1230-40. [DOI: 10.1002/jat.2774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| | - Issa E.A. Amara
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| | - Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| |
Collapse
|
13
|
Sanchez-Gonzalez C, Bermudez-Peña C, Trenzado CE, Goenaga-Infante H, Montes-Bayon M, Sanz-Medel A, Llopis J. Changes in the antioxidant defence and in selenium concentration in tissues of vanadium exposed rats. Metallomics 2012; 4:814-9. [DOI: 10.1039/c2mt20066j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|