1
|
In vitro assessment of the biocompatibility of chemically treated silicone materials with human lens epithelial cells. Sci Rep 2022; 12:4649. [PMID: 35301374 PMCID: PMC8931081 DOI: 10.1038/s41598-022-08443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Cytotoxicity testing is a regulatory requirement for safety testing of new ocular implants. In vitro toxicity tests determine whether toxic chemicals are present on a material surface or leach out of the material matrix. A method of evaluating the cytotoxicity of ocular implants was developed using fluorescent viability dyes. To assess the assay’s sensitivity in detecting toxic substances on biomaterials, zinc diethydithiocarbamate (ZDEC) and benzalkonium chloride (BAK) were deposited on silicone surfaces at different concentrations. Human lens epithelial cells (HLEC) were added to the surface of these treated silicone surfaces and were assessed for viability. The viability of both the adherent and non-adherent cells was determined using confocal microscopy with, annexin V, ethidium homodimer, and calcein. Cell metabolism was also evaluated using resazurin and the release of inflammatory cytokines was quantified using a multiplex Mesoscale Discovery platform. Confocal microscopy was shown to be a sensitive assay for evaluating material toxicity, as significant toxicity (p < 0.05) from ZDEC and BAK-treated surfaces compared to the untreated silicone control was detected. Patterns of cytokine release from cells varied depending on the toxin evaluated and the toxin concentration and did not directly correlate with the reduction in cell metabolic activity measured by alamarBlue.
Collapse
|
2
|
Sang S, Yan Y, Shen Z, Cao Y, Duan Q, He M, Zhang Q. Photo-crosslinked hydrogels for tissue engineering of corneal epithelium. Exp Eye Res 2022; 218:109027. [PMID: 35276182 DOI: 10.1016/j.exer.2022.109027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
Abstract
The vast majority of patients with corneal blindness cannot recover their vision due to the serious shortage of donor cornea. However, the technology to construct a feasible corneal substitute is a promising treatment method for corneal blindness. In this paper, methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA) double network (GHDN) hydrogels were prepared by modifying gelatin and hyaluronic acid with methacrylate anhydride (MA). GHDN hydrogel was compared with GelMA single network and HAMA single network hydrogels through characterization experiments of mechanical properties, optical properties, hydrophilicity and in-situ degradation in vitro. At the same time, the biocompatibility of hydrogel was tested by inoculating rabbit corneal epithelial cells (CEpCs) epidermal cells on hydrogels using CCK-8 test, live/dead staining, immunofluorescence staining and qRT-PCR. It was found that the GHDN hydrogel has optical transparency in the visible region, and its mechanical properties are better than those of GelMA and HAMA hydrogels, and its hydrophilicity is similar to that of normal human corneas. The results of in vitro hydrogel culture of CEpCs showed that the proliferation of CEpCs on GHDN hydrogel was two times higher than that of HAMA hydrogel, and the expression of specific marker Cytokeratin 3 (CK3) and Cytokeratin 12 (CK12) could be better maintained on GHDN hydrogel. All the experimental results proved that GHDN hydrogel has good physical properties and biocompatibility and is a potential candidate for corneal tissue engineering scaffolds.
Collapse
Affiliation(s)
- Shengbo Sang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yayun Yan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhizhong Shen
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanyan Cao
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China; College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Qianqian Duan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Min He
- Department of Ophthalmology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Qiang Zhang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
3
|
Lan X, Lei Y, He Z, Yin A, Li L, Tang Z, Li M, Wang Y. A transparent hydrophilic anti-biofouling coating for intraocular lens materials prepared by "bridging" of the intermediate adhesive layer. J Mater Chem B 2021; 9:3696-3704. [PMID: 33870984 DOI: 10.1039/d1tb00065a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The attachment of bio-foulants, including unwanted cells, proteins, and bacteria, to a medical device such as an intraocular lens can lead to implantation failure. Hydrophilic polymers are often used as surface modifiers in the fabrication of anti-biofouling coatings, but a hydrophilic coating can easily become swollen and peel off the substrate. In this study, we chose polymethyl methacrylate (PMMA) as the representative material of intraocular lenses because PMMA has better biocompatibility, a higher refractive index, better optical clarity, lighter weight, more stable performance, and lower cost than other intraocular lens materials. We fabricated polyvinyl alcohol (PVA) coatings with or without a "bridge", that is, an intermediate adhesive layer (AL), to increase the adhesion bonding effect between the anti-biofouling coating and the substrate. The results indicated that the prepared coatings were transparent and noncytotoxic. Moreover, the anti-adhesion properties of the cells and the resistance properties to nonspecific protein adsorption of PMMA modified by both AL and PVA coatings were better and more durable compared with the sample only modified with a physically dipped PVA coating. The coating prepared by AL "bridging" provides a new strategy for the preparation of a transparent hydrophilic anti-biofouling coating suitable for PMMA intraocular lens materials.
Collapse
Affiliation(s)
- Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Anlin Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. and College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Linhua Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhonglan Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Meiling Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
Fouling in ocular devices: implications for drug delivery, bioactive surface immobilization, and biomaterial design. Drug Deliv Transl Res 2021; 11:1903-1923. [PMID: 33454927 DOI: 10.1007/s13346-020-00879-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The last 30 years has seen a proliferation of research on protein-resistant biomaterials targeted at designing bio-inert surfaces, which are prerequisite for optimal performance of implantable devices that contact biological fluids and tissues. These efforts have only been able to yield minimal results, and hence, the ideal anti-fouling biomaterial has remained elusive. Some studies have yielded biomaterials with a reduced fouling index among which high molecular weight polyethylene glycols have remained dominant. Interestingly, the field of implantable ocular devices has not experienced an outflow of research in this area, possibly due to the assumption that biomaterials tested in other body fluids can be translated for application in the ocular space. Unfortunately, progression in the molecular understanding of many ocular conditions has brought to the fore the need for treatment options that necessitates the use of anti-fouling biomaterials. From the earliest implanted horsehair and silk seton for glaucoma drainage to the recent mini telescopes for sight recovery, this review provides a concise incursion into the gradual evolution of biomaterials for the design of implantable ocular devices as well as approaches used to overcome the challenges with fouling. The implication of fouling for drug delivery, the design of immune-responsive biomaterials, as well as advanced surface immobilization approaches to support the overall performance of implantable ocular devices are also reviewed.
Collapse
|
5
|
Abstract
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs.
Collapse
Affiliation(s)
| | | | | | - Gui-Qin Wang
- Department of Ophthalmology, Navy General Hospital of PLA, Beijing 100048; Department of Ophthalmilogy, Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
6
|
Pintwala R, Postnikoff C, Molladavoodi S, Gorbet M. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells. J Biomater Appl 2014; 29:1119-32. [PMID: 25281645 DOI: 10.1177/0885328214552711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal biocompatibility, specifically through the quantification of cell-surface markers of leukocyte activation.
Collapse
Affiliation(s)
- Robert Pintwala
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Cameron Postnikoff
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sara Molladavoodi
- Faculty of Engineering, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud Gorbet
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Piccinini F, Pierini M, Lucarelli E, Bevilacqua A. Semi-quantitative monitoring of confluence of adherent mesenchymal stromal cells on calcium-phosphate granules by using widefield microscopy images. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2395-2410. [PMID: 24863020 DOI: 10.1007/s10856-014-5242-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The analysis of cell confluence and proliferation is essential to design biomaterials and scaffolds to use as bone substitutes in clinical applications. Accordingly, several approaches have been proposed in the literature to estimate the area of the scaffold covered by cells. Nevertheless, most of the approaches rely on sophisticated equipment not employed for routine analyses, while the rest of them usually do not provide significant statistics about the cell distribution. This research aims at studying confluence and proliferation of mesenchymal stromal cells (MSC) adherent on OSPROLIFE(®), a commercial biomaterial in the form of granules. In particular, we propose a Computer Vision approach that can routinely be employed to monitor the surface of the single granules covered by cells because only a standard widefield fluorescent microscope is required. In order to acquire significant statistics data, we analyse wide-area images built by using MicroMos v2.0, an updated version of a previously published software specific for stitching brightfield and phase-contrast images manually acquired via a widefield microscope. In particular, MicroMos v2.0 permits to build accurate "mosaics" of fluorescent images, after correcting vignetting and photo-bleaching effects, providing a consistent representation of a sample region containing numerous granules. Then, our method allows to make automatically a statistically significant estimate of the percentage of the area of the single granules covered by cells. Finally, by analysing hundreds of granules at different time intervals we also obtained reliable data regarding cell proliferation, confirming that not only MSC adhere onto the OSPROLIFE(®) granules, but even proliferate over time.
Collapse
Affiliation(s)
- Filippo Piccinini
- Advanced Research Center on Electronic Systems for Information and Communication Technologies "E. De Castro" (ARCES), University of Bologna, Via Toffano 2/2, I-40125, Bologna, Italy,
| | | | | | | |
Collapse
|