1
|
Alves Côrtes J, Dornelas J, Duarte F, Messora MR, Mourão CF, Alves G. The Effects of the Addition of Strontium on the Biological Response to Calcium Phosphate Biomaterials: A Systematic Review. APPLIED SCIENCES 2024; 14:7566. [DOI: 10.3390/app14177566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Strontium is known for enhancing bone metabolism, osteoblast proliferation, and tissue regeneration. This systematic review aimed to investigate the biological effects of strontium-doped calcium phosphate biomaterials for bone therapy. A literature search up to May 2024 across Web of Science, PubMed, and Scopus retrieved 759 entries, with 42 articles meeting the selection criteria. The studies provided data on material types, strontium incorporation and release, and in vivo and in vitro evidence. Strontium-doped calcium phosphate biomaterials were produced via chemical synthesis and deposited on various substrates, with characterization techniques confirming successful strontium incorporation. Appropriate concentrations of strontium were non-cytotoxic, stimulating cell proliferation, adhesion, and osteogenic factor production through key signaling pathways like Wnt/β-catenin, BMP-2, Runx2, and ERK. In vivo studies identified novel bone formation, angiogenesis, and inhibition of bone resorption. These findings support the safety and efficacy of strontium-doped calcium phosphates, although the optimal strontium concentration for desired effects is still undetermined. Future research should focus on optimizing strontium release kinetics and elucidating molecular mechanisms to enhance clinical applications of these biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Juliana Alves Côrtes
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Jessica Dornelas
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Fabiola Duarte
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
| | - Carlos Fernando Mourão
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
- Department of Clinical and Translational Research, Tufts University Scholl of Dental Medicine, Boston, MA 02111, USA
- Clinical Research Unit, Antônio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Gutemberg Alves
- Post-Graduation Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University, Niterói 24033-900, Brazil
- Clinical Research Unit, Antônio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| |
Collapse
|
2
|
Curtis TM, Nilon AM, Greenberg AJ, Besner M, Scibek JJ, Nichols JA, Huie JL. Odorant Binding Causes Cytoskeletal Rearrangement, Leading to Detectable Changes in Endothelial and Epithelial Barrier Function and Micromotion. BIOSENSORS 2023; 13:329. [PMID: 36979541 PMCID: PMC10046532 DOI: 10.3390/bios13030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Non-olfactory cells have excellent biosensor potential because they express functional olfactory receptors (ORs) and are non-neuronal cells that are easy to culture. ORs are G-protein coupled receptors (GPCRs), and there is a well-established link between different classes of G-proteins and cytoskeletal structure changes affecting cellular morphology that has been unexplored for odorant sensing. Thus, the present study was conducted to determine if odorant binding in non-olfactory cells causes cytoskeletal changes that will lead to cell changes detectable by electric cell-substrate impedance sensing (ECIS). To this end, we used the human umbilical vein endothelial cells (HUVECs), which express OR10J5, and the human keratinocyte (HaCaT) cells, which express OR2AT4. Using these two different cell barriers, we showed that odorant addition, lyral and Sandalore, respectively, caused an increase in cAMP, changes in the organization of the cytoskeleton, and a decrease in the integrity of the junctions between the cells, causing a decrease in cellular electrical resistance. In addition, the random cellular movement of the monolayers (micromotion) was significantly decreased after odorant exposure. Collectively, these data demonstrate a new physiological role of olfactory receptor signaling in endothelial and epithelial cell barriers and represent a new label-free method to detect odorant binding.
Collapse
Affiliation(s)
- Theresa M. Curtis
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | - Annabella M. Nilon
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | | | - Matthew Besner
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | - Jacob J. Scibek
- Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045, USA
| | | | | |
Collapse
|
3
|
Wlodkowic D, Karpiński TM. Live-Cell Systems in Real-Time Biomonitoring of Water Pollution: Practical Considerations and Future Perspectives. SENSORS 2021; 21:s21217028. [PMID: 34770335 PMCID: PMC8588540 DOI: 10.3390/s21217028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Continuous monitoring and early warning of potential water contamination with toxic chemicals is of paramount importance for human health and sustainable food production. During the last few decades there have been noteworthy advances in technologies for the automated sensing of physicochemical parameters of water. These do not translate well into online monitoring of chemical pollutants since most of them are either incapable of real-time detection or unable to detect impacts on biological organisms. As a result, biological early warning systems have been proposed to supplement conventional water quality test strategies. Such systems can continuously evaluate physiological parameters of suitable aquatic species and alert the user to the presence of toxicants. In this regard, single cellular organisms, such as bacteria, cyanobacteria, micro-algae and vertebrate cell lines, offer promising avenues for development of water biosensors. Historically, only a handful of systems utilising single-cell organisms have been deployed as established online water biomonitoring tools. Recent advances in recombinant microorganisms, cell immobilisation techniques, live-cell microarrays and microfluidic Lab-on-a-Chip technologies open new avenues to develop miniaturised systems capable of detecting a broad range of water contaminants. In experimental settings, they have been shown as sensitive and rapid biosensors with capabilities to detect traces of contaminants. In this work, we critically review the recent advances and practical prospects of biological early warning systems based on live-cell biosensors. We demonstrate historical deployment successes, technological innovations, as well as current challenges for the broader deployment of live-cell biosensors in the monitoring of water quality.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Plenty Road, P.O. Box 71, Bundoora, VIC 3083, Australia
- Correspondence: ; Tel.: +61-3-9925-7157; Fax: +61-3-9925-7110
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
4
|
Isolation of the Tephrosia vogelii extract and rotenoids and their toxicity in the RTgill-W1 trout cell line and in zebrafish embryos. Toxicon 2020; 183:51-60. [PMID: 32454059 DOI: 10.1016/j.toxicon.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/12/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
This study focused on identifying the rotenoids from the Tephrosia vogelli plant (fish-poison-bean), investigating the toxic potency of a crude T. vogelii extract and individual rotenoids (tephrosin, deguelin and rotenone) in vitro and in vivo and assessing the mode of action. A trout (Onychorynhis mykiss) gill epithelial cell line (RTgill-W1) was used to determine the cytotoxicity of rotenoids and effects on cell metabolism. Zebrafish (Danio rerio) aged from 3 h post fertilization (hpf) to 72 hpf were used for testing the developmental toxicity. The crude T. vogelii plant extract significantly decreased the cellular metabolic activity and was cytotoxic at lower concentrations (5 and 10 nM, respectively), while tephrosin, deguelin and rotenone showed these effects at concentrations ≥ 50 nM. The crude T. Vogelli extract had the highest toxic potency and induced adverse health effects in zebrafish including deformities and mortality at the lowest concentration (5 nM) compared to rotenone (10 nM) and deguelin and tephrosin (50 nM). These results indicate that the crude T. Vogelii extracts are highly potent and the bioactivity of these extracts warrant further investigation for their potential use to treat parasites in human and veterinary medicine and as a natural alternative to pesticides.
Collapse
|
5
|
MEMS biosensor for monitoring water toxicity based on quartz crystal microbalance. Biointerphases 2020; 15:021006. [PMID: 32216379 DOI: 10.1116/1.5142722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper presents the use of a commercial quartz crystal microbalance (QCM) to investigate live-cell activity in water-based toxic solutions. The QCM used in this research has a resonant frequency of 10 MHz and consists of an AT-cut quartz crystal with gold electrodes on both sides. This QCM was transformed into a functional biosensor by integrating with polydimethylsiloxane culturing chambers. Rainbow trout gill epithelial cells were cultured on the resonators as a sensorial layer. The fluctuation of the resonant frequency, due to the change of cell morphology and adhesion, is an indicator of water toxicity. The shift in the resonant frequency provides information about the viability of the cells after exposure to toxicants. The toxicity result shows distinct responses after exposing cells to 0.526 μM of pentachlorophenol (PCP) solution, which is the Military Exposure Guidelines concentration. This research demonstrated that the QCM is sensitive to a low concentration of PCP and no further modification of the QCM surface was required.
Collapse
|
6
|
Drieschner C, Vo NTK, Schug H, Burkard M, Bols NC, Renaud P, Schirmer K. Improving a fish intestinal barrier model by combining two rainbow trout cell lines: epithelial RTgutGC and fibroblastic RTgutF. Cytotechnology 2019; 71:835-848. [PMID: 31256301 PMCID: PMC6663964 DOI: 10.1007/s10616-019-00327-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 06/22/2019] [Indexed: 12/16/2022] Open
Abstract
An in vitro model of the fish intestine is of interest for research and application in diverse fields such as fish physiology, aquaculture and chemical risk assessment. The recently developed epithelial barrier model of the fish intestine relies on the RTgutGC cell line from rainbow trout (Oncorhynchus mykiss), cultured in inserts on permeable membranes. Our aim was to extend the current system by introducing intestinal fibroblasts as supportive layer in order to reconstruct the epithelial-mesenchymal interface as found in vivo. We therefore initiated and characterized the first fibroblast cell line from the intestine of rainbow trout, which has been termed RTgutF. Co-culture studies of RTgutGC and RTgutF were performed on commercially available electric cell substrate for impedance sensing (ECIS) and on newly developed ultrathin, highly porous alumina membranes to imitate the cellular interaction with the basement membrane. Cellular events were examined with non-invasive impedance spectroscopy to distinguish between barrier tightness and cell density in the ECIS system and to determine transepithelial electrical resistance for cells cultured on the alumina membranes. We highlight the relevance of the piscine intestinal fibroblasts for an advanced intestinal barrier model, particularly on ultrathin alumina membranes. These membranes enable rapid crosstalk of cells cultured on opposite sides, which led to increased barrier tightening in the fish cell line-based epithelial-mesenchymal model.
Collapse
Affiliation(s)
- Carolin Drieschner
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
- Microsystems Laboratory 4, School of Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Hannah Schug
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Michael Burkard
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Philippe Renaud
- Microsystems Laboratory 4, School of Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, Switzerland.
- Laboratory of Environmental Toxicology, School of Architecture, Civil and Environmental Engineering, EPFL (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland.
- Department of Environmental Systems Science, ETHZ (Swiss Federal Institute of Technology in Zurich), Zurich, Switzerland.
| |
Collapse
|
7
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
8
|
Liu XF, Wu YH, Wei SN, Wang N, Li YZ, Zhang NW, Li PF, Qin QW, Chen SL. Establishment and characterization of a brain-cell line from kelp grouper Epinephelus moara. JOURNAL OF FISH BIOLOGY 2018; 92:298-307. [PMID: 29333652 DOI: 10.1111/jfb.13471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
A new brain-cell line, EMB, was developed from kelp grouper Epinephelus moara, a cultured marine fish. The EMB cells were subcultured for more than 60 passages. The cells were cultured in Leibovitz's L-15 medium (L15) supplemented with antibiotics, foetal bovine serum (FBS), 2-mercaptoethanol (2-ME) and basic fibroblast growth factor (bFGF). The cells could grow at 18-30° C, with the maximum growth between 24 and 30° C. The optimum FBS concentration for the cells growth ranged between 15 and 20%. Chromosome analysis indicated that the modal chromosome number was 48 in the cells at passage 45. After being transfected with pEGFP-N3 plasmid, the cells could successfully express green fluorescence protein (GFP), implying that this cell line can be used for transgenic studies. A significant cytopathic effect (CPE) was observed in the cells after infection with Singapore grouper iridovirus (SGIV) or red spotted grouper nervous necrosis virus (RGNNV) and the viral replication was confirmed by quantitative real-time PCR (qrt-PCR) assay, which suggested EMB's application potential for studies of SGIV and RGNNV.
Collapse
Affiliation(s)
- X F Liu
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- College of Marine Life, Ocean University of China, Qingdao 266003, China
| | - Y H Wu
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - S N Wei
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - N Wang
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - Y Z Li
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - N W Zhang
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
| | - P F Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Q W Qin
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - S L Chen
- Yellow Sea Fisheries Research Institute, CAFS, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
9
|
Semple SL, Vo NTK, Li AR, Pham PH, Bols NC, Dixon B. Development and use of an Arctic charr cell line to study antiviral responses at extremely low temperatures. JOURNAL OF FISH DISEASES 2017; 40:1423-1439. [PMID: 28261806 DOI: 10.1111/jfd.12615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
Arctic charr (Salvelinus alpinus) are the northernmost distributed freshwater fish and can grow at water temperatures as low as 0.2 °C. Other teleost species have impaired immune function at temperatures that Arctic charr thrive in, and thus, charr may maintain immune function at these temperatures. In this study, a fibroblastic cell line, named ACBA, derived from the bulbus arteriosus (BA) of Arctic charr was developed for use in immune studies at various temperatures. ACBA has undergone more than forty passages at 18 °C over 3 years, while showing no signs of senescence-associated β-galactosidase activity and producing nitric oxide. Remarkably, ACBA cells survived and maintained some mitotic activity even at 1 °C for over 3 months. At these low temperatures, ACBA also continued to produce MH class I proteins. After challenge with poly I:C, only antiviral Mx proteins were induced while MH proteins remained constant. When exposed to live viruses, ACBA was shown to permit viral infection and replication of IPNV, VHSV IVa and CSV at 14 °C. Yet at the preferred temperature of 4 °C, only VHSV IVa was shown to replicate within ACBA. This study provides evidence that Arctic charr cells can maintain immune function while also resisting infection with intracellular pathogens at low temperatures.
Collapse
Affiliation(s)
- S L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - N T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - A R Li
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - P H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - N C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - B Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
10
|
Tan L, Schirmer K. Cell culture-based biosensing techniques for detecting toxicity in water. Curr Opin Biotechnol 2017; 45:59-68. [DOI: 10.1016/j.copbio.2016.11.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023]
|
11
|
Drieschner C, Minghetti M, Wu S, Renaud P, Schirmer K. Ultrathin Alumina Membranes as Scaffold for Epithelial Cell Culture from the Intestine of Rainbow Trout. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9496-9505. [PMID: 28244327 DOI: 10.1021/acsami.7b00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Permeable membranes are indispensable for in vitro epithelial barrier models. However, currently available polymer-based membranes are low in porosity and relatively thick, resulting in a limited permeability and unrealistic culture conditions. In this study, we developed an ultrathin, nanoporous alumina membrane as novel cell culture interface for vertebrate cells, with focus on the rainbow trout (Onchorynchus mykiss) intestinal cell line RTgutGC. The new type of membrane is framed in a silicon chip for physical support and has a thickness of only 1 μm, with a porosity of 15% and homogeneous nanopores (Ø = 73 ± 21 nm). Permeability rates for small molecules, namely lucifer yellow, dextran 40, and bovine serum albumin, exceeded those of standard polyethylene terephthalate (PET) membranes by up to 27 fold. With the final goal to establish a representative model of the fish intestine for environmental toxicology, we engineered a simple culture setup, capable of testing the cellular response toward chemical exposure. Herein, cells were cultured in a monolayer on the alumina membranes and formed a polarized epithelium with apical expression of the tight junction protein ZO-1 within 14 days. Impedance spectroscopy, a noninvasive and real time electrical measurement, was used to determine cellular resistance during epithelial layer formation and chemical exposure to evaluate barrier functionality. Resistance values during epithelial development revealed different stages of epithelial maturity and were comparable with the in vivo situation. During chemical exposure, cellular resistance changed immediately when barrier tightness or cell viability was affected. Thus, our study demonstrates nanoporous alumina membranes as promising novel interface for alternative in vitro approaches, capable of allowing cell culture in a physiologically realistic manner and enabling high quality microscopy and sensitive measurement of cellular resistance.
Collapse
Affiliation(s)
- Carolin Drieschner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Microsystems Laboratory 4, School of Architecture, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Matteo Minghetti
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Department of Integrative Biology, Oklahoma State University , 74078 Oklahoma, United States
| | - Songmei Wu
- Microsystems Laboratory 4, School of Architecture, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
- School of Science, Beijing Jiaotong University , 100044 Beijing, P. R China
| | - Philippe Renaud
- Microsystems Laboratory 4, School of Architecture, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Department of Civil and Environmental Engineering, School of Architecture, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH-Zürich , 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Roggo C, van der Meer JR. Miniaturized and integrated whole cell living bacterial sensors in field applicable autonomous devices. Curr Opin Biotechnol 2017; 45:24-33. [PMID: 28088093 DOI: 10.1016/j.copbio.2016.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022]
Abstract
Live-cell based bioreporters are increasingly being deployed in microstructures, which facilitates their handling and permits the development of instruments that could perform autonomous environmental monitoring. Here we review recent developments of on-chip integration of live-cell bioreporters, the coupling of their reporter signal to the devices, their longer term preservation and multi-analyte capacity. We show examples of instruments that have attempted to fully integrate bioreporters as their sensing elements.
Collapse
Affiliation(s)
- Clémence Roggo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
13
|
van der Meer JR. Towards improved biomonitoring tools for an intensified sustainable multi-use environment. Microb Biotechnol 2016; 9:658-65. [PMID: 27468753 PMCID: PMC4993185 DOI: 10.1111/1751-7915.12395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/10/2016] [Indexed: 11/28/2022] Open
Abstract
The increasing use of our environment for multiple contrasting activities (e.g. fisheries, tourism) will have to be accompanied by improved monitoring of environmental quality, to avoid transboundary conflicts and ensure long-term sustainable intensified usage. Biomonitoring approaches are appropriate for this, since they can integrate biological effects of environmental exposure rather than measure individual compound concentrations. Recent advances in biomonitoring concepts and tools focus on single-cell assays and purified biological components that can be miniaturized and integrated in automated systems. Despite these advances, we are still very far from being able to deploy bioassays routinely in environmental monitoring, mostly because of lack of experience in interpreting responses and insufficient robustness of the biosensors for their environmental application. Further future challenges include broadening the spectrum of detectable compounds by biosensors, accelerate response times and combining sample pretreatment strategies with bioassays.
Collapse
|
14
|
Brennan LM, Widder MW, McAleer MK, Mayo MW, Greis AP, van der Schalie WH. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity. J Vis Exp 2016. [PMID: 27023147 PMCID: PMC4828219 DOI: 10.3791/53555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.
Collapse
|
15
|
Szulcek R, van Bezu J, Boonstra J, van Loon JJWA, van Nieuw Amerongen GP. Transient Intervals of Hyper-Gravity Enhance Endothelial Barrier Integrity: Impact of Mechanical and Gravitational Forces Measured Electrically. PLoS One 2015; 10:e0144269. [PMID: 26637177 PMCID: PMC4670102 DOI: 10.1371/journal.pone.0144269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022] Open
Abstract
Background Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to ‘classical’ biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied. Methods In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces. Results Short intervals of micro- or hyper-gravity evoked distinct endothelial responses. Stimulated micro-gravity led to decreased endothelial barrier integrity, whereas hyper-gravity caused sustained barrier enhancement by rapid improvement of cell-cell integrity, evidenced by a significant junctional accumulation of VE-cadherin (p = 0.011), significant enforcement of peripheral F-actin (p = 0.008) and accompanied by a slower enhancement of cell-matrix interactions. The hyper-gravity triggered EC responses were force dependent and nitric-oxide (NO) mediated showing a maximal resistance increase of 29.2±4.8 ohms at 2g and 60.9±6.2 ohms at 4g vs. baseline values that was significantly suppressed by NO blockage (p = 0.011). Conclusion In conclusion, short-term application of hyper-gravity caused a sustained improvement of endothelial barrier integrity, whereas simulated micro-gravity weakened the endothelium. In clear contrast, classical forces of shear stress and hydrostatic pressure induced either short-lived or no changes to the EC barrier. Here, ECIS has proven a powerful tool to characterize subtle and distinct EC gravity-responses due to its high temporal resolution, wherefore ECIS has a great potential for the study of gravity-responses such as in real space flights providing quantitative assessment of a variety of cell biological characteristics of any adherent growing cell type in an automated and continuous fashion.
Collapse
Affiliation(s)
- Robert Szulcek
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
- Department of Pulmonology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Jan van Bezu
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Johannes Boonstra
- Deptartment of Cellular Architecture and Dynamics, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Jack J. W. A. van Loon
- Dutch Experiment Support Center (DESC), ESTEC, TEC-MMG-Lab, European Space Agency (ESA), Noordwijk, The Netherlands
- Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), Amsterdam, The Netherlands
| | - Geerten P. van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Zhang X, Li F, Nordin AN, Tarbell J, Voiculescu I. Toxicity studies using mammalian cells and impedance spectroscopy method. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
O'Hara T, Seddon B, McClean S, Dempsey E. TOXOR: Design and Application of an Electrochemical Toxicity Biosensor for Environmental Monitoring. ELECTROANAL 2014. [DOI: 10.1002/elan.201400433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Rakers S, Imse F, Gebert M. Real-time cell analysis: sensitivity of different vertebrate cell cultures to copper sulfate measured by xCELLigence(®). ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1582-1591. [PMID: 25001081 DOI: 10.1007/s10646-014-1279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
In this study, we report the use of a real-time cell analysis (RTCA) test system, the xCELLigence(®) RTCA, as efficient tool for a fast cytotoxicity analysis and comparison of four different vertebrate cell cultures. This new dynamic real-time monitoring and impedance-based assay allows for a combined measurement of cell adhesion, spreading and proliferation. Cell cultures were obtained from mouse, rat, human and fish, all displaying a fibroblast-like phenotype. The measured impedance values could be correlated to characteristic cell culture behaviours. In parallel, relative cytotoxicity of a commonly used but due to its very good water solubility highly hazardous pesticide, copper sulfate, was evaluated under in vitro conditions through measurements of cell viability by classical end-point based assays MTT and PrestoBlue(®). Cell line responses in terms of viability as measured by these three methods were variable between the fish skin cells and cells from higher vertebrates and also between the three methods. The advantage of impedance-based measurements is mainly based on the continuous monitoring of cell responses for a broad range of different cells, including fish cells.
Collapse
Affiliation(s)
- S Rakers
- LG Aquatic Cell Technology, Fraunhofer Research Institution for Marine Biotechnology, Paul-Ehrlich-Str. 1-3, 23562, Lübeck, Germany,
| | | | | |
Collapse
|
19
|
Widder MW, Brennan LM, Hanft EA, Schrock ME, James RR, van der Schalie WH. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip. J Appl Toxicol 2014; 35:701-8. [DOI: 10.1002/jat.3017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Mark W. Widder
- US Army Center for Environmental Health Research; 568 Doughten Drive Fort Detrick MD 21702-5010 USA
| | - Linda M. Brennan
- US Army Center for Environmental Health Research; 568 Doughten Drive Fort Detrick MD 21702-5010 USA
| | | | | | | | | |
Collapse
|
20
|
Liu F, Nordin AN, Li F, Voiculescu I. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants. LAB ON A CHIP 2014; 14:1270-1280. [PMID: 24463940 DOI: 10.1039/c3lc51085a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper presents a lab-on-chip biosensor containing an enclosed fluidic cell culturing well seeded with live cells for rapid screening of toxicants in drinking water. The sensor is based on the innovative placement of the working electrode for the electrical cell-substrate impedance sensing (ECIS) technique as the top electrode of a quartz crystal microbalance (QCM) resonator. Cell damage induced by toxic water will cause a decrease in impedance, as well as an increase in the resonant frequency. For water toxicity tests, the biosensor's unique capabilities of performing two complementary measurements simultaneously (impedance and mass-sensing) will increase the accuracy of detection while decreasing the false-positive rate. Bovine aortic endothelial cells (BAECs) were used as toxicity sensing cells. The effects of the toxicants, ammonia, nicotine and aldicarb, on cells were monitored with both the QCM and the ECIS technique. The lab-on-chip was demonstrated to be sensitive to low concentrations of toxicants. The responses of BAECs to toxic samples occurred during the initial 5 to 20 minutes depending on the type of chemical and concentrations. Testing the multiparameter biosensor with aldicarb also demonstrated the hypothesis that using two different sensors to monitor the same cell monolayer provides cross validation and increases the accuracy of detection. For low concentrations of aldicarb, the variations in impedance measurements are insignificant in comparison with the shifts of resonant frequency monitored using the QCM resonator. A highly linear correlation between signal shifts and chemical concentrations was demonstrated for each toxicant.
Collapse
Affiliation(s)
- F Liu
- Department of Mechanical Engineering, City College of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
21
|
Dayeh VR, Bols NC, Tanneberger K, Schirmer K, Lee LEJ. The use of fish-derived cell lines for investigation of environmental contaminants: an update following OECD's fish toxicity testing framework No. 171. ACTA ACUST UNITED AC 2013; Chapter 1:Unit1.5. [PMID: 23670863 DOI: 10.1002/0471140856.tx0105s56] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protocols for evaluating chemical toxicity at the cellular level using fish cell lines are described in this unit. Routine methodologies for growing salmonid cell lines, and using them in aquatic toxicology studies that support the mandate of the Organization for Economic Co-operation and Development (OECD) to reduce the use of whole animals in toxicity testing, are presented. Rapid, simple, cost-effective tests evaluating viability of cells with three indicator dyes per sample provides a broad overview of the sensitivity of cells to chemical contaminants. This fluorometric assay involves: (1) alamar blue for metabolic activity, (2) CFDA-AM for membrane integrity, and (3) neutral red for lysosomal function. These protocols are conveniently performed in semi-unison within the same multiwell plates and read at three different wavelengths. Detailed step-by-step descriptions of the assays, parameters to consider, troubleshooting, and guidelines for data interpretation are provided as essential tools for investigating environmental aquatic contaminants at the cellular level.
Collapse
Affiliation(s)
- Vivian R Dayeh
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Banerjee P, Kintzios S, Prabhakarpandian B. Biotoxin detection using cell-based sensors. Toxins (Basel) 2013; 5:2366-83. [PMID: 24335754 PMCID: PMC3873691 DOI: 10.3390/toxins5122366] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized.
Collapse
Affiliation(s)
- Pratik Banerjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, 338 Robison Hall, 3825 Desoto Avenue, Memphis, TN 38152, USA
| | - Spyridon Kintzios
- School of Food Science, Biotechnology and Development, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece; E-Mail:
| | - Balabhaskar Prabhakarpandian
- Bioengineering Laboratory Core, Cellular and Biomolecular Engineering, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA; E-Mail:
| |
Collapse
|
23
|
Suitability of invertebrate and vertebrate cells in a portable impedance-based toxicity sensor: Temperature mediated impacts on long-term survival. Toxicol In Vitro 2013; 27:2061-6. [DOI: 10.1016/j.tiv.2013.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/25/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022]
|
24
|
Ríos Á, Zougagh M, Avila M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal Chim Acta 2012; 740:1-11. [DOI: 10.1016/j.aca.2012.06.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/31/2012] [Accepted: 06/12/2012] [Indexed: 02/09/2023]
|