1
|
Moreira JS, Galvão DS, Xavier CFC, Cunha S, Pita SSDR, Reis JN, Freitas HFD. Phenotypic and in silico studies for a series of synthetic thiosemicarbazones as New Delhi metallo-beta-lactamase carbapenemase inhibitors. J Biomol Struct Dyn 2022; 40:14223-14235. [PMID: 34766882 DOI: 10.1080/07391102.2021.2001379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past two decades have been marked by a global spread of bacterial resistance to β-lactam drugs and carbapenems derivatives are the ultimate treatment against multidrug-resistant bacteria. β-lactamase expression is related to resistance which demands the development of bacterial resistance blockers. Drug inhibitor combinations of serine-β-lactamase and β-lactam were successful employed in therapy despite their inactivity against New Delhi metallo-beta-lactamase (NDM). Until now, few compounds are active against NDM-producing bacteria and no specific inhibitors are available yet. The rational strategy for NDM inhibitors development starts with in vitro assays aiming to seek compounds that could act synergistically with β-lactam antibiotics. Thus, eight thiosemicarbazone derivatives were synthesized and investigated for their ability to reverse the resistant phenotype in NDM in Enterobacter cloacae. Phenotypic screening indicated that four isatin-beta-thiosemicarbazones showed Fractional Inhibitory Concentration (FIC) ≤ 250 µM in the presence of meropenem (4 µg/mL). The most promising compound (FIC= 31.25 µM) also presented synergistic effect (FICI = 0.34). Docking and molecular dynamics studies on NDM-thiosemicarbazone complex suggested that 2,3-dihydro-1H-indol-2-one subunit interacts with catalytic zinc and interacted through hydrogen bonds with Asp124 acting like a carboxylic acid bioisostere. Additionally, thiosemicarbazone tautomer with oxidized sulfur (thione) seems to act as a spacer rather than zinc chelator, and the aromatic moieties are stabilized by pi-pi and cation-pi interactions with His189 and Lys221 residues. Our results addressed some thiosemicarbazone structural changes to increase its biological activity against NDM and highlight its scaffold as promising alternatives to treat bacterial resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jonatham Souza Moreira
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Silvio Cunha
- Chemistry Institute, Federal University of Bahia, Ondina, Salvador, Bahia, Brazil
| | - Samuel Silva da Rocha Pita
- Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Federal University of Bahia, Salvador, Bahia, Brazil
| | - Joice Neves Reis
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Humberto Fonseca de Freitas
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
2
|
Justim JDR, Bohs LMC, Martins BB, Bandeira KCT, Melo APLD, Gervini VC, Bresolin L, Godoi M, Peixoto CRDM. Electrochemical characterization of isatin-thiosemicarbazone derivatives. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Savall ASP, Fidélis EM, Gutierrez MEZ, Martins BB, Gervini VC, Puntel RL, Roos DH, Ávila DS, Pinton S. Pre‐clinical evidence of safety and protective effect of isatin and oxime derivatives against malathion‐induced toxicity. Basic Clin Pharmacol Toxicol 2019; 126:399-410. [DOI: 10.1111/bcpt.13359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
|
4
|
In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon. Biomolecules 2019; 9:biom9100583. [PMID: 31597234 PMCID: PMC6843506 DOI: 10.3390/biom9100583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Casualties caused by organophosphorus pesticides are a burden for health systems in developing and poor countries. Such compounds are potent acetylcholinesterase irreversible inhibitors, and share the toxic profile with nerve agents. Pyridinium oximes are the only clinically available antidotes against poisoning by these substances, but their poor penetration into the blood-brain barrier hampers the efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in future SAR studies, we evaluated neutral aryloximes as reactivators for paraoxon-inhibited Electrophorus eel acetylcholinesterase. Our findings may result into lead compounds, useful for development of more active compounds for emergencies and supportive care.
Collapse
|
5
|
Cavalcante SFDA, Kitagawa DAS, Rodrigues RB, Bernardo LB, da Silva TN, Dos Santos WV, Correa ABDA, de Almeida JSFD, França TCC, Kuča K, Simas ABC. Synthesis and in vitro evaluation of neutral aryloximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem Biol Interact 2019; 309:108682. [PMID: 31163137 DOI: 10.1016/j.cbi.2019.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Casualties caused by nerve agents, potent acetylcholinesterase inhibitors, have attracted attention from media recently. Poisoning with these chemicals may be fatal if not correctly addressed. Therefore, research on novel antidotes is clearly warranted. Pyridinium oximes are the only clinically available compounds, but poor penetration into the blood-brain barrier hampers efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in SAR studies, we synthesized and evaluated neutral aryloximes as reactivators for acetylcholinesterase inhibited by NEMP, a VX surrogate. Although few tested compounds reached comparable reactivation results with clinical standards, they may be considered as leads for further optimization.
Collapse
Affiliation(s)
- Samir F de A Cavalcante
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil; Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro, 21941-902, Brazil; University Castelo Branco (UCB), School of Pharmacy, Avenida Santa Cruz 1631, Rio de Janeiro, 21710-255, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic.
| | - Daniel A S Kitagawa
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Rafael B Rodrigues
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Leandro B Bernardo
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Thiago N da Silva
- University Castelo Branco (UCB), School of Pharmacy, Avenida Santa Cruz 1631, Rio de Janeiro, 21710-255, Brazil
| | - Wellington V Dos Santos
- Emergency and Rescue Department (DSE), Rio de Janeiro State Fire Department (CBMERJ), Praça São Salvador 4, Rio de Janeiro, 22231-170, Brazil; University Universus Veritas (UNIVERITAS), School of Biomedicine, Rua Marquês de Abrantes 55, Rio de Janeiro, 22230-060, Brazil
| | - Ana Beatriz de A Correa
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Joyce S F D de Almeida
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Tanos C C França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic; Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic
| | - Alessandro B C Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|