1
|
Suttithumsatid W, Toriumi T, Sukketsiri W, Nagasaki Y, Panichayupakaranant P. Enhanced Stability of α-Mangostin-Rich Extract and Selective Cytotoxicity against Cancer Cells via Encapsulation in Antioxidant Nanoparticles (AME@Nano AOX). ACS Biomater Sci Eng 2024; 10:5027-5038. [PMID: 39023101 DOI: 10.1021/acsbiomaterials.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
α-Mangostin-rich extract (AME) shows promise as a functional ingredient for cancer chemotherapy. Here, we encapsulated AME in our originally designed antioxidant nanoparticles (NanoAOX) to increase its solubility and prevent oxidative degradation (AME@NanoAOX). In this study, two types of self-assembled polymers containing nitroxide radicals were engineered. These polymers were self-assembled into nanoscale particles in aqueous media, entrapping AME (abbreviated as AME@NanoAOX(B) and AME@NanoAOX(G)). These formulations considerably improved the stability of AME against oxidative degradation and exhibited different release profiles of α-mangostin under different pH conditions. Furthermore, AME-encapsulated nanoparticles exhibited potent cytotoxicity against various cancer cell lines, including human breast cancer (MCF-7), human lung cancer (A549), human colon cancer (Caco-2), human cervical cancer (HeLa), and human liver cancer (HepG2) cell lines, with minimal cytotoxicity in normal human mammary epithelial cells (hTERT-HME1), thus providing a high selectivity index (SI). These results indicated the promising feature of AME-encapsulated antioxidant nanoparticles (AME@NanoAOX) for cancer chemotherapy.
Collapse
Affiliation(s)
- Wiwit Suttithumsatid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Takuto Toriumi
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Hat-Yai 90112, Thailand
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Department of Chemistry Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- High-value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
2
|
Li Y, Jiao H, Zhang H, Wang X, Fu Y, Wang Q, Liu H, Yong YC, Guo J, Liu J. Biosafety consideration of nanocellulose in biomedical applications: A review. Int J Biol Macromol 2024; 265:130900. [PMID: 38499126 DOI: 10.1016/j.ijbiomac.2024.130900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Nanocellulose-based biomaterials have gained significant attention in various fields, especially in medical and pharmaceutical areas, due to their unique properties, including non-toxicity, high specific surface area, biodegradability, biocompatibility, and abundant feasible and sophisticated strategies for functional modification. The biosafety of nanocellulose itself is a prerequisite to ensure the safe and effective application of biomaterials as they interact with living cells, tissues, and organs at the nanoscale. Potential residual endogenous impurities and exogenous contaminants could lead to the failure of the intended functionalities or even serious health complications if they are not adequately removed and assessed before use. This review summarizes the sources of impurities in nanocellulose that may pose potential hazards to their biosafety, including endogenous impurities that co-exist in the cellulosic raw materials themselves and exogenous contaminants caused by external exposure. Strategies to reduce or completely remove these impurities are outlined and classified as chemical, physical, biological, and combined methods. Additionally, key points that require careful consideration in the interpretation of the biosafety evaluation outcomes were discussed to ensure the safety and effectiveness of the nanocellulose-based biomaterials in medical applications.
Collapse
Affiliation(s)
- Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Bartosz G, Pieńkowska N, Kut K, Cieniek B, Stefaniuk I, Sadowska-Bartosz I. Effect of Low Concentration of Nitroxides on SH-SY5Y Cells Transfected with the Tau Protein. Int J Mol Sci 2023; 24:16675. [PMID: 38069000 PMCID: PMC10706669 DOI: 10.3390/ijms242316675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Nitroxides, stable synthetic free radicals, are promising antioxidants, showing many beneficial effects both at the cellular level and in animal studies. However, the cells are usually treated with high millimolar concentrations of nitroxides which are not relevant to the concentrations that could be attained in vivo. This paper aimed to examine the effects of low (≤10 μM) concentrations of three nitroxides, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), 4-hydroxy-TEMPO (TEMPOL) and 4-amino-TEMPO (TEMPAMINE), in pure chemical systems and on SH-SY5Y cells transfected with the human tau protein (TAU cells), a model of chronic cellular oxidative stress, and transfected with the empty plasmid (EP cells). All nitroxides were active in antioxidant-activity tests except for the 2,2'-azinobis-(3-ethylbenzthiazolin-6-sulfonate) radical (ABTS•) decolorization assay and reduced Fe3+, inhibited autoxidation of adrenalin and pyrogallol and oxidation of dihydrorhodamine123 by 3-morpholino-sydnonimine SIN-1. TEMPO protected against fluorescein bleaching from hypochlorite, but TEMPAMINE enhanced the bleaching. Nitroxides showed no cytotoxicity and were reduced by the cells to non-paramagnetic derivatives. They decreased the level of reactive oxygen species, depleted glutathione, and increased mitochondrial-membrane potential in both types of cells, and increased lipid peroxidation in TAU cells. These results demonstrate that even at low micromolar concentrations nitroxides can affect the cellular redox equilibrium and other biochemical parameters.
Collapse
Affiliation(s)
- Grzegorz Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Natalia Pieńkowska
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Kacper Kut
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| | - Bogumił Cieniek
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (B.C.); (I.S.)
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland; (B.C.); (I.S.)
| | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (G.B.); (N.P.); (K.K.)
| |
Collapse
|
4
|
Falandt M, Bernal PN, Dudaryeva O, Florczak S, Gröfibacher G, Schweiger M, Longoni A, Greant C, Assunção M, Nijssen O, van Vlierberghe S, Malda J, Vermonden T, Levato R. Spatial-Selective Volumetric 4D Printing and Single-Photon Grafting of Biomolecules within Centimeter-Scale Hydrogels via Tomographic Manufacturing. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:admt.202300026. [PMID: 37811162 PMCID: PMC7615165 DOI: 10.1002/admt.202300026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 10/10/2023]
Abstract
Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 μm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 μm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.
Collapse
Affiliation(s)
- Marc Falandt
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Oksana Dudaryeva
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Gabriel Gröfibacher
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Matthias Schweiger
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Alessia Longoni
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Coralie Greant
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Marisa Assunção
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Olaf Nijssen
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Sandra van Vlierberghe
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Jos Malda
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht 3584CG, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| |
Collapse
|
5
|
Mołoń M, Szlachcikowska D, Stępień K, Kielar P, Galiniak S. Two faces of TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) - An antioxidant or a toxin? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119412. [PMID: 36529401 DOI: 10.1016/j.bbamcr.2022.119412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
2,2,6,6-Tetramethylpiperidine-1-oxyl, commonly known as TEMPO, is one of the compounds called nitroxides that are used in the chemical industry for synthesis of many organic compounds as well as for electrodes in all-organic radical batteries. Additionally, TEMPO is a widely used antioxidant in scientific studies. Technological progress and simultaneous care for the environment leads to resorting to new industrial methods which require the use of compounds that have not been fully tested for their impact on living organisms. Therefore, TEMPO may be an environmental pollutant and its effect on living organisms is not fully understood. The aim of our study was to determine the influence of TEMPO on the physiology, chronological lifespan and wide transcription changes of a eukaryotic model organism, namely the Saccharomyces cerevisiae yeast. For this purpose, we used the BY4741 wild-type and isogenic mutants with a disorder in the response to oxidative stress (sod1Δ, sod2Δ, yap1Δ) and repair of DNA damage (rad52Δ). We showed that supplementation with TEMPO inhibited the cell growth rate of all analyzed strains while simultaneously slowing down the aging of post-mitotic cells in the yeast population. In addition, TEMPO-treated yeast cells manifested a significantly increased level of metabolism in the wild-type and sod2Δ strains. TEMPO also displayed genoprotective effect by reducing the number of DNA double-strand breaks in cells. Here, we are the first to show the widespread effect of TEMPO on yeast. In conclusion, we have shown that, contrary to the commonly accepted notion, TEMPO has also a toxic effect, especially on active mitotic cells. We hypothesize that translation impairment or ribosome biogenesis disorder is likely to be considered secondary effects of TEMPO toxicity related to cell cycle arrest. Therefore, despite the growing interest in the use of this compound in the chemical industry, its toxic effect on the environment, especially biosphere, should be taken into account.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Rzeszów, Poland.
| | - Dominika Szlachcikowska
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Rzeszów, Poland
| | - Karolina Stępień
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland
| | - Patrycja Kielar
- Department of Biology, Institute of Biology and Biotechnology, Rzeszów University, Rzeszów, Poland
| | - Sabina Galiniak
- Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów University, Rzeszów, Poland.
| |
Collapse
|
6
|
Sun Q, Yang J, Fan Y, Cai K, Lu Z, He Z, Xu Z, Lai X, Zheng Y, Liu C, Wang F, Sun Z. The role of trace N-Oxyl compounds as redox mediator in enhancing antiviral ribavirin elimination in UV/Chlorine process. APPLIED CATALYSIS. B, ENVIRONMENTAL 2022; 317:121709. [PMID: 35812172 PMCID: PMC9254691 DOI: 10.1016/j.apcatb.2022.121709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 05/19/2023]
Abstract
Ribavirin (RBV) is an antiviral drug used for treating COVID-19 infection. Its release into natural waters would threaten the health of aquatic ecosystem. This study reports an effective approach to degrade RBV by the trace N-oxyl compounds (2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and N-Hydroxyphthalimide (NHPI)) enhanced UV activated free chlorine (UV/Chlorine) process. The results indicated that TEMPO and NHPI at low concentrations (0.1 μM and 1 μM, respectively) could strongly enhance RBV degradation in both deionized water with different pHs and practical surface water. The enhancement was verified to be attributed to the transformation of TEMPO and NHPI into their reactive forms (i.e., TEMPO+ and PINO), which generations deeply relied on radicals. The two N-oxyl compounds inhibit ClO• yield by hindering the reaction of free chlorine vs. HO• and Cl•. The analyses on acute toxicities of RBV degradation products indicate that UV/Chlorine/N-oxyl compounds process can detoxify RBV more efficiently than UV/Chlorine process.
Collapse
Affiliation(s)
- Qiyuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Jing Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yongjie Fan
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Zhilei Lu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhenle He
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zeping Xu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xingteng Lai
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yuyi Zheng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Changqing Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Feifeng Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
7
|
Jud W, Salazar CA, Imbrogno J, Verghese J, Guinness SM, Desrosiers JN, Kappe CO, Cantillo D. Electrochemical Oxidation of Alcohols Using Nickel Oxide Hydroxide as Heterogeneous Electrocatalyst in Batch and Continuous Flow. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Chase A. Salazar
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Joseph Imbrogno
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jenson Verghese
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Steven M. Guinness
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jean-Nicolas Desrosiers
- Chemical Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - C. Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
8
|
Rizzo R, Ruetsche D, Liu H, Zenobi‐Wong M. Optimized Photoclick (Bio)Resins for Fast Volumetric Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102900. [PMID: 34611928 PMCID: PMC11468798 DOI: 10.1002/adma.202102900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Volumetric printing (VP) is a light-mediated technique enabling printing of complex, low-defect 3D objects within seconds, overcoming major drawbacks of layer-by-layer additive manufacturing. An optimized photoresin is presented for VP in the presence of cells (volumetric bioprinting) based on fast thiol-ene step-growth photoclick crosslinking. Gelatin-norbornene (Gel-NB) photoresin shows superior performance, both in physicochemical and biocompatibility aspects, compared to (meth-)acryloyl resins. The extremely efficient thiol-norbornene reaction produces the fastest VP reported to date (≈10 s), with significantly lower polymer content, degree of substitution (DS), and radical species, making it more suitable for cell encapsulation. This approach enables the generation of cellular free-form constructs with excellent cell viability (≈100%) and tissue maturation potential, demonstrated by development of contractile myotubes. Varying the DS, polymer content, thiol-ene ratio, and thiolated crosslinker allows fine-tuning of mechanical properties over a broad stiffness range (≈40 Pa to ≈15 kPa). These properties are achieved through fast and scalable methods for producing Gel-NB with inexpensive, off-the-shelf reagents that can help establish it as the gold standard for light-mediated biofabrication techniques. With potential applications from high-throughput bioprinting of tissue models to soft robotics and regenerative medicine, this work paves the way for exploitation of VPs unprecedented capabilities.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Dominic Ruetsche
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Hao Liu
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
9
|
Pichla M, Bartosz G, Pieńkowska N, Sadowska-Bartosz I. Possible artefacts of antioxidant assays performed in the presence of nitroxides and nitroxide-containing nanoparticles. Anal Biochem 2020; 597:113698. [DOI: 10.1016/j.ab.2020.113698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
10
|
Guo X, Chen Y, Moore MM, Mei N. Detection of Loss of Heterozygosity in Tk-Deficient Mutants from L5178Y Tk +/--3.7.2C Mouse Lymphoma Cells. Methods Mol Biol 2020; 2102:251-270. [PMID: 31989560 DOI: 10.1007/978-1-0716-0223-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mouse lymphoma assay (MLA), a forward mutation assay using the Tk+/--3.7.2C clone of the L5178Y mouse lymphoma cell line and the Thymidine kinase (Tk) gene, has been widely used as an in vitro genetic toxicity assay for more than four decades. The MLA can evaluate the ability of mutagens to induce a wide range of genetic events including both gene mutations and chromosomal mutations and has been recommended as one component of several genotoxicity test batteries. Tk-deficient mutants often exhibit chromosomal abnormalities involving the distal end of chromosome 11 where the Tk gene is located, in mice, and the type of chromosome alteration can be analyzed using a loss of heterozygosity (LOH) approach. LOH has been considered an important event in human tumorigenesis and can result from any of the following several mechanisms: large deletions, mitotic recombination, and chromosome loss. In this chapter, the authors describe the procedures for the detection of LOH in the Tk mutants from the MLA, and apply LOH analysis for understanding the types of genetic damage that is induced by individual chemicals.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
11
|
Liang Y, Dong B, Pang N, Hu J. ROS generation and DNA damage contribute to abamectin-induced cytotoxicity in mouse macrophage cells. CHEMOSPHERE 2019; 234:328-337. [PMID: 31229705 DOI: 10.1016/j.chemosphere.2019.06.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/18/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of abamectin has recently raised safety concerns as abamectin has yielded various toxicities to non-target organisms. However, the underlying mechanisms of abamectin-induced toxicity are still largely unknown. The present study aimed to investigate the abamectin-induced cytotoxicity in mouse macrophage cells (RAW264.7) and its underlying mechanisms. Abamectin treatment caused oxidative stress as characterized by increased intensity of the ROS indicator. Abamectin also led to DNA damage as demonstrated by increased 8-OHdG/dG ratio in cells even at a relatively low dose (NOAEL). Pretreatment with catalase-PEG, a ROS inhibitor, attenuated abamectin-induced DNA damage, indicating that ROS overproduction should be the reason for abamectin-induced DNA damage. The effects of abamectin on ROS elimination and generation were also investigated, and the results showed that abamectin induced concentration-dependent alteration in the expression and activities of CAT, SOD, GPx enzymes and GSH level (ROS elimination), but had limited effects on the expression and activities of NOX, mitochondrial complex I and III (ROS production) in RAW264.7 cells. Therefore, the effects of abamectin on ROS elimination should be the main reason for abamectin-induced oxidative stress in RAW264.7 cells. Abamectin treatment activated MAPK and ATM/ATR signaling pathways as demonstrated by increased phosphorylation of JNK, ATM and ATR. In addition, inhibiting JNK and ATM/ATR signaling pathways partially rescued the decrease in cell viability, indicating that abamectin-induced ROS overproduction and DNA damage might finally lead to cytotoxicity through JNK and ATM/ATR signaling pathways. These findings should be useful for the more comprehensive assessment of the toxic effects of abamectin.
Collapse
Affiliation(s)
- Yiran Liang
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Bizhang Dong
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Nannan Pang
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jiye Hu
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
12
|
Guo X, Seo JE, Bryce SM, Tan JA, Wu Q, Dial SL, Moore MM, Mei N. Comparative Genotoxicity of TEMPO and 3 of Its Derivatives in Mouse Lymphoma Cells. Toxicol Sci 2019; 163:214-225. [PMID: 29385624 DOI: 10.1093/toxsci/kfy022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TEMPO (2, 2, 6, 6-tetramethylphiperidine-1-oxyl) and its derivatives are stable free radical nitroxides widely used in the field of chemistry, biology, and pharmacology. TEMPO was previously found to be mutagenic and to induce micronuclei in mammalian cells. In this study, we investigated and quantified the genotoxicity of 4 structurally similar nitroxides, TEMPO and 3 of its derivatives (4-hydroxy-TEMPO, 4-oxo-TEMPO, and 4-methoxy-TEMPO), using the mouse lymphoma assay (MLA) and Comet assay in L5178Y Tk+/- cells. The results showed that all tested nitroxides were cytotoxic and mutagenic in the MLA, both in the presence and absence of S9, with metabolic activation significantly enhancing the cytotoxicity and/or mutagenicity. In addition, the 4 nitroxides caused DNA-strand breakage. The mutagenicity and DNA damaging dose-responses of the test articles were compared using the PROAST benchmark dose software package. The potency ranking of the 4 nitroxides for mutagenicity was different from the ranking of the DNA damaging effects. The mode of action analysis by a multi-endpoint DNA damage pathway assay classified all 4 nitroxides as clastogens. In addition, the majority of the induced Tk mutants showed loss of heterozygosity at the Tk and D11Mit42 loci (ie, chromosome damage <31 Mbp). These results suggest that TEMPO and its 3 derivatives are cytotoxic and mutagenic in mouse lymphoma cells through a mechanism that involves strand breakage and large alterations to DNA. The potency rankings indicate that the different TEMPO derivatives vary in their mutagenic and DNA damaging potential.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | | | - Jenna A Tan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Stacey L Dial
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Martha M Moore
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
13
|
Pauton M, Aubert C, Bluet G, Gruss-Leleu F, Roy S, Perrio C. Development, Optimization, and Scope of the Radiosynthesis of 3/5-[18F]Fluoropyridines from Readily Prepared Aryl(pyridinyl) Iodonium Salts: The Importance of TEMPO and K2CO3. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mathilde Pauton
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Catherine Aubert
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Guillaume Bluet
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | | | - Sébastien Roy
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
14
|
Guo X, Pan B, Seo JE, Chen Y, Yan J, Mei N, Chen T. Whole genome sequencing analysis of small and large colony mutants from the mouse lymphoma assay. Arch Toxicol 2018; 92:3585-3595. [DOI: 10.1007/s00204-018-2318-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 11/25/2022]
|
15
|
Guo X, Mei N. Benchmark Dose Modeling of In Vitro Genotoxicity Data: a Reanalysis. Toxicol Res 2018; 34:303-310. [PMID: 30370005 PMCID: PMC6195882 DOI: 10.5487/tr.2018.34.4.303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023] Open
Abstract
The methods of applied genetic toxicology are changing from qualitative hazard identification to quantitative risk assessment. Recently, quantitative analysis with point of departure (PoD) metrics and benchmark dose (BMD) modeling have been applied to in vitro genotoxicity data. Two software packages are commonly used for BMD analysis. In previous studies, we performed quantitative dose-response analysis by using the PROAST software to quantitatively evaluate the mutagenicity of four piperidine nitroxides with various substituent groups on the 4-position of the piperidine ring and six cigarette whole smoke solutions (WSSs) prepared by bubbling machine-generated whole smoke. In the present study, we reanalyzed the obtained genotoxicity data by using the EPA's BMD software (BMDS) to evaluate the inter-platform quantitative agreement of the estimates of genotoxic potency. We calculated the BMDs for 10%, 50%, and 100% (i.e., a two-fold increase), and 200% increases over the concurrent vehicle controls to achieve better discrimination of the dose-responses, along with their BMDLs (the lower 95% confidence interval of the BMD) and BMDUs (the upper 95% confidence interval of the BMD). The BMD values and rankings estimated in this study by using the EPA's BMDS were reasonably similar to those calculated in our previous studies by using PROAST. These results indicated that both software packages were suitable for dose-response analysis using the mouse lymphoma assay and that the BMD modeling results from these software packages produced comparable rank orders of the mutagenic potency.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
16
|
Mogharabi-Manzari M, Kiani M, Aryanejad S, Imanparast S, Amini M, Faramarzi MA. A Magnetic Heterogeneous Biocatalyst Composed of Immobilized Laccase and 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) for Green One-Pot Cascade Synthesis of 2-Substituted Benzimidazole and Benzoxazole Derivatives under Mild Reaction Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mehdi Mogharabi-Manzari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center; Tehran University of Medical Sciences; P.O. Box 14155-6451 Tehran 1417614411 Iran
- Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran 1417614411 Iran
| | - Mahshid Kiani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center; Tehran University of Medical Sciences; P.O. Box 14155-6451 Tehran 1417614411 Iran
| | - Sima Aryanejad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center; Tehran University of Medical Sciences; P.O. Box 14155-6451 Tehran 1417614411 Iran
| | - Somaye Imanparast
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center; Tehran University of Medical Sciences; P.O. Box 14155-6451 Tehran 1417614411 Iran
| | - Mohsen Amini
- Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran 1417614411 Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center; Tehran University of Medical Sciences; P.O. Box 14155-6451 Tehran 1417614411 Iran
| |
Collapse
|
17
|
Kobakhidze A, Elisashvili V, Corvini PFX, Čvančarová M. Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO. N Biotechnol 2018; 43:44-52. [DOI: 10.1016/j.nbt.2017.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 07/20/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
18
|
Lewandowski M, Gwozdzinski K. Nitroxides as Antioxidants and Anticancer Drugs. Int J Mol Sci 2017; 18:ijms18112490. [PMID: 29165366 PMCID: PMC5713456 DOI: 10.3390/ijms18112490] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Nitroxides are stable free radicals that contain a nitroxyl group with an unpaired electron. In this paper, we present the properties and application of nitroxides as antioxidants and anticancer drugs. The mostly used nitroxides in biology and medicine are a group of heterocyclic nitroxide derivatives of piperidine, pyrroline and pyrrolidine. The antioxidant action of nitroxides is associated with their redox cycle. Nitroxides, unlike other antioxidants, are characterized by a catalytic mechanism of action associated with a single electron oxidation and reduction reaction. In biological conditions, they mimic superoxide dismutase (SOD), modulate hemoprotein’s catalase-like activity, scavenge reactive free radicals, inhibit the Fenton and Haber-Weiss reactions and suppress the oxidation of biological materials (peptides, proteins, lipids, etc.). The use of nitroxides as antioxidants against oxidative stress induced by anticancer drugs has also been investigated. The application of nitroxides and their derivatives as anticancer drugs is discussed in the contexts of breast, hepatic, lung, ovarian, lymphatic and thyroid cancers under in vivo and in vitro experiments. In this article, we focus on new natural spin-labelled derivatives such as camptothecin, rotenone, combretastatin, podophyllotoxin and others. The applications of nitroxides in the aging process, cardiovascular disease and pathological conditions were also discussed.
Collapse
Affiliation(s)
- Marcin Lewandowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
19
|
Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Med Res Rev 2017; 38:1159-1187. [PMID: 29095519 DOI: 10.1002/med.21461] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The biological effects attributed to nitric oxide (• NO) and nitroxyl (HNO) have been extensively studied, propelling their array of putative clinical applications beyond cardiovascular disorders toward other age-related diseases, like cancer and neurodegenerative diseases. In this context, the unique properties and reactivity of the N-O bond enabled the development of several classes of compounds with potential clinical interest, among which • NO and HNO donors, nitrones, and nitroxides are of particular importance. Although primarily studied for their application as cardioprotective agents and/or molecular probes for radical detection, continuous efforts have unveiled a wide range of pharmacological activities and, ultimately, therapeutic applications. These efforts are of particular significance for diseases in which oxidative stress plays a key pathogenic role, as shown by a growing volume of in vitro and in vivo preclinical data. Although in its early stages, these efforts may provide valuable guidelines for the development of new and effective N-O-based drugs for age-related disorders. In this report, we review recent advances in the chemistry of NO and HNO donors, nitrones, and nitroxides and discuss its pharmacological significance and potential therapeutic application.
Collapse
Affiliation(s)
- Catarina Oliveira
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carlos Fernandes
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Tiago Silva
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
ROS generation and JNK activation contribute to 4-methoxy-TEMPO-induced cytotoxicity, autophagy, and DNA damage in HepG2 cells. Arch Toxicol 2017; 92:717-728. [PMID: 28993908 DOI: 10.1007/s00204-017-2084-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023]
Abstract
4-Methoxy-TEMPO, a derivative of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), is a stable nitroxide radical and is generally used in organic and pharmaceutical syntheses for the oxidation of alcohols. Previously, we reported the involvement of reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) in TEMPO-induced apoptosis in mouse L5178Y cells. In this study, we investigated 4-methoxy-TEMPO induced toxicity in human HepG2 hepatoma cells and its underlying mechanisms. Treatments with 4-methoxy-TEMPO (0.5-5 mM for 2-6 h) caused oxidative stress as demonstrated by increased intensity of the ROS indicator H2DCF-DA, decreased levels of glutathione. 4-Methoxy-TEMPO treatment also induced DNA damage as characterized by increased levels of DNA tail intensity in the Comet assay, increased phosphorylation of related proteins including γ-H2A.X, p-Chk1, and p-Chk2, and activation of MAPK signaling pathways. In addition, 4-methoxy-TEMPO also induced autophagy as demonstrated by the conversion of LC3B-I to II, decreased level of p62, and the appearance of GFP-LC3B punctae. To investigate the crosstalk between different signaling pathways, pretreatment of HepG2 with N-acetylcysteine, an ROS scavenger, attenuated 4-methoxy-TEMPO-induced DNA damage, suppressed JNK activation, and diminished autophagy induction. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased DNA damage levels induced by 4-methoxy-TEMPO. These results suggest that multiple mechanisms including ROS generation, DNA damage, and MAPK activation contribute to 4-methoxy-TEMPO-induced toxicity.
Collapse
|
21
|
Warnier C, Lemaire C, Becker G, Zaragoza G, Giacomelli F, Aerts J, Otabashi M, Bahri MA, Mercier J, Plenevaux A, Luxen A. Enabling Efficient Positron Emission Tomography (PET) Imaging of Synaptic Vesicle Glycoprotein 2A (SV2A) with a Robust and One-Step Radiosynthesis of a Highly Potent 18F-Labeled Ligand ([ 18F]UCB-H). J Med Chem 2016; 59:8955-8966. [PMID: 27598384 DOI: 10.1021/acs.jmedchem.6b00905] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We herein describe the straightforward synthesis of a stable pyridyl(4-methoxyphenyl)iodonium salt and its [18F] radiolabeling within a one-step, fully automated and cGMP compliant radiosynthesis of [18F]UCB-H ([18F]7), a PET tracer for the imaging of synaptic vesicle glycoprotein 2A (SV2A). Over the course of 1 year, 50 automated productions provided 34 ± 2% of injectable [18F]7 from up to 285 GBq (7.7 Ci) of [18F]fluoride in 50 min (uncorrected radiochemical yield, specific activity of 815 ± 185 GBq/μmol). The successful implementation of our synthetic strategy within routine, high-activity, and cGMP productions attests to its practicality and reliability for the production of large doses of [18F]7. In addition to enabling efficient and cost-effective clinical research on a range of neurological pathologies through the imaging of SV2A, this work further demonstrates the real value of iodonium salts for the cGMP 18F-PET tracer manufacturing industry, and their ability to fulfill practical and regulatory requirements in that field.
Collapse
Affiliation(s)
- Corentin Warnier
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Christian Lemaire
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Guillaume Becker
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Guillermo Zaragoza
- Unidad de RX, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Fabrice Giacomelli
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - Joël Aerts
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium.,INSERM U1148 , 75018 Paris, France
| | | | - Mohamed Ali Bahri
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | | | - Alain Plenevaux
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| | - André Luxen
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liege , 4000 Liege, Belgium
| |
Collapse
|
22
|
Guo X, Li Y, Yan J, Ingle T, Jones MY, Mei N, Boudreau MD, Cunningham CK, Abbas M, Paredes AM, Zhou T, Moore MM, Howard PC, Chen T. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology 2016; 10:1373-84. [PMID: 27441588 DOI: 10.1080/17435390.2016.1214764] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.
Collapse
Affiliation(s)
| | - Yan Li
- a Division of Genetic and Molecular Toxicology
| | - Jian Yan
- a Division of Genetic and Molecular Toxicology
| | | | | | - Nan Mei
- a Division of Genetic and Molecular Toxicology
| | - Mary D Boudreau
- c Division of Biochemical Toxicology , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | | | - Mazhar Abbas
- a Division of Genetic and Molecular Toxicology .,d Institute of Molecular Biology and Biotechnology, The University of Lahore , Pakistan , and
| | | | - Tong Zhou
- e Center for Veterinary Medicine, U.S. Food and Drug Administration , Rockville , MD , USA
| | | | | | - Tao Chen
- a Division of Genetic and Molecular Toxicology
| |
Collapse
|
23
|
Melone L, Tarsini P, Candiani G, Punta C. N-Hydroxyphthalimide catalysts as bioactive pro-oxidants. RSC Adv 2016. [DOI: 10.1039/c5ra26556h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Hydroxyphthalimide organocatalysts bearing lipophilic moieties exhibit a cytotoxic action by promoting oxidative stress in cells.
Collapse
Affiliation(s)
- L. Melone
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
- Università degli Studi e-Campus
- Como
| | - P. Tarsini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
| | - G. Candiani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
| | - C. Punta
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
| |
Collapse
|
24
|
Reactive oxygen species and c-Jun N-terminal kinases contribute to TEMPO-induced apoptosis in L5178Y cells. Chem Biol Interact 2015; 235:27-36. [PMID: 25882087 DOI: 10.1016/j.cbi.2015.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/04/2015] [Accepted: 04/08/2015] [Indexed: 01/14/2023]
Abstract
The biological consequences of exposure to piperidine nitroxides is a concern, given their widespread use in manufacturing processes and their potential use in clinical applications. Our previous study reported that TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), a low molecular weight free radical, possesses pro-oxidative activity in L5178Y cells. In this study, we investigated and characterized the role of reactive oxygen species (ROS) in TEMPO-induced toxicity in L5178Y cells. We found that TEMPO induced time- and concentration-dependent intracellular ROS production and glutathione depletion. TEMPO also induced apoptosis as demonstrated by increased caspase-3/7 activity, an increased proportion of annexin V stained cells, and decreased expression of anti-apoptotic proteins including Bcl-2, Bcl-xL and Mcl-1. N-acetylcysteine, a ROS scavenger, attenuated the ROS production and apoptosis induced by TEMPO. Moreover, Western blot analyses revealed that TEMPO activated γ-H2A.X, a hallmark of DNA damage, and c-Jun N-terminal kinases (JNK), a key member in the mitogen-activated protein kinase (MAPK) signaling pathway. Addition of SP600125, a JNK-specific inhibitor, blocked TEMPO-mediated JNK phosphorylation and also attenuated TEMPO-induced apoptosis. These findings indicate that both ROS production and JNK activation are involved in TEMPO-induced apoptosis, and may contribute to the toxicity of TEMPO in L5178Y cells.
Collapse
|
25
|
Littler BJ, Aizenberg M, Ambhaikar NB, Blythe TA, Curran TT, Dvornikovs V, Jung YC, Jurkauskas V, Lee EC, Looker AR, Luong H, Martinot TA, Miller DB, Neubert-Langille BJ, Otten PA, Rose PJ, Ruggiero PL. Development of a Manufacturing Process for an HCV Protease Inhibitor Candidate Molecule. Org Process Res Dev 2014. [DOI: 10.1021/op500210w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Benjamin J. Littler
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Michael Aizenberg
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Narendra B. Ambhaikar
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Todd A. Blythe
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Timothy T. Curran
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Vadims Dvornikovs
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Young C. Jung
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Valdas Jurkauskas
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Elaine C. Lee
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Adam R. Looker
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Hoa Luong
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Theodore A. Martinot
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - David B. Miller
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Bobbianna J. Neubert-Langille
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Pieter A. Otten
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Peter J. Rose
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| | - Piero L. Ruggiero
- Chemical Development, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States, and 11010 Torreyana Road, San
Diego, California 92121, United States
| |
Collapse
|
26
|
Sen’ VD, Tikhonov IV, Borodin LI, Pliss EM, Golubev VA, Syroeshkin MA, Rusakov AI. Kinetics and thermodynamics of reversible disproportionation-comproportionation in redox triad oxoammonium cations - nitroxyl radicals - hydroxylamines. J PHYS ORG CHEM 2014. [DOI: 10.1002/poc.3392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vasily D. Sen’
- Institute of Problems of Chemical Physics; Russian Academy of Sciences; Chernogolovka 142432 Russian Federation
| | - Ivan V. Tikhonov
- P.G. Demidov Yaroslavl State University; Yaroslavl 150000 Russian Federation
| | - Leonid I. Borodin
- P.G. Demidov Yaroslavl State University; Yaroslavl 150000 Russian Federation
| | - Evgeny M. Pliss
- P.G. Demidov Yaroslavl State University; Yaroslavl 150000 Russian Federation
| | - Valery A. Golubev
- Institute of Problems of Chemical Physics; Russian Academy of Sciences; Chernogolovka 142432 Russian Federation
| | - Mikhail A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow 119991 Russian Federation
| | | |
Collapse
|
27
|
Sadowska-Bartosz I, Galiniak S, Skolimowski J, Stefaniuk I, Bartosz G. Nitroxides prevent protein glycoxidationin vitro. Free Radic Res 2014; 49:113-21. [DOI: 10.3109/10715762.2014.982113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Bhalerao DS, Arkala AKR, Madhavi YV, Nagaraju M, Gade SR, Kumar UKS, Bandichhor R, Dahanukar VH. Synthesis and Process Optimization of Boceprevir: A Protease Inhibitor Drug. Org Process Res Dev 2014. [DOI: 10.1021/op500065t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dinesh S. Bhalerao
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| | - Anil Kumar Reddy Arkala
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| | - Y. V. Madhavi
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| | - M. Nagaraju
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| | - Srinivas Reddy Gade
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| | - U. K. Syam Kumar
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| | - Rakeshwar Bandichhor
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| | - Vilas H. Dahanukar
- IPD, R&D, Dr. Reddy’s Laboratories Ltd., Innovation Plaza, Survey Nos. 42, 45, 46, and 54, Bachupally, Qutubullapur 500073, Andhra Pradesh, India
| |
Collapse
|